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Design of stabilizing switching control laws for discrete- and continuous-time linear systems using

piecewise-linear Lyapunov functions

XENOFON D. KOUTSOUKOSt and PANOS J. ANTSAKLIS}*

In this paper, the stability of switched linear systems is investigated using piecewise linear Lyapunov functions. In
particular, we identify classes of switching sequences that result in stable trajectories. Given a switched linear system,
we present a systematic methodology for computing switching laws that guarantee stability based on the matrices of the
system. In the proposed approach, we assume that each individual subsystem is stable and admits a piecewise linear
Lyapunov function. Based on these Lyapunov functions, we compose ‘global’ Lyapunov functions that guarantee
stability of the switched linear system. A large class of stabilizing switching sequences for switched linear systems is
characterized by computing conic partitions of the state space. The approach is applied to both discrete-time and

continuous-time switched linear systems.

1. Introduction

Switching control design methods have become
increasingly popular especially in the case when the
desired task is composed by multiple performance objec-
tives. In classical control design, the goal is to synthesize
a smooth feedback controller defined usually by a con-
tinuous differentiable function. The resulting controllers
often compromise different performance criteria, for
example, response speed and accuracy. In hybrid control
design methods, the goal is to achieve multiple perform-
ance objectives by switching between members of a
family of feedback controllers. Switching control can
potentially improve the overall performance by locally
optimizing performance objectives and switching
between controllers using an adaptive algorithm, in the
sense that, different controllers are used in different
regions of the state space. Furthermore, it is possible
to design controllers that take into consideration state
and control constraints, for example, discontinuities in
the plant model. It should be noted that an overview of
performance benefits of hybrid control design methods
has been presented in McClamroch and Kolmanovsky
{2000).

The design of the family of controllers and the super-
visor that implements the switching logic between them
are central problems in switching control methods.
Stability of the closed-loop system is also a very import-
ant aspect as with any other feedback system, especially
since the system might become unstable even if all the
individual subsystem are stable (see, for example,
DeCarlo et af. 2000). In this paper, we study the stability
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of continuous and discrete-time switched linear systems
using piecewise linear Lyapunov functions and we iden-
tify classes of switching sequences that result in stable
trajectories. We assume that the individual subsystems
are stable and we compose ‘global’ Lyapunov functions
that guarantee stability of the closed-loop system. The
main motivation behind this problem is that it is often
easier to find switching controllers than to find a fixed
controller. Consider, for example, the control of the
longitudinal dynamics of an aircraft with constrained
angle of attack (DeCarlo et al. 2000). The control objec-
tive is twofold: track the pilot’s reference normal accel-
eration while maintaining a safety constraint in the
angle of attack. A continuous feedback control law
can be easily designed for each control objective result-
ing in two asymptotically stable subsystems and a
switching mechanism can be used to simultancously
achieve both objectives. One of the main control objec-
tives could be, for example, that the origin is a stable
equilibrium for the closed loop system since such a
switching system might become unstable for certain
switching sequences, even if all the individual subsystem
are stable. For such problems, it is important to char-
acterize switching sequences that result in stable trajec-
tories. Additional closed-loop performance criteria are
also very important but out of the scope of this paper,

The stability analysis presented in this paper is based
on piecewise linear Lyapunov functions. Piecewise linear
Lyapunov functions have been used extensively for the
analysis of dynamical systems. The first investigations
can be found Rosenbrock (1963 a,b), Weissenberger
(1969, 1973) and Mitra and So (1972). The problem of
constructing piecewise linear Lyapunov functions and
their application to non-linear and large scale systems
has been considered in Brayton and Tong (1979, 1980),
Michel er al. (1984) and Ohta et al. (1993). Construction
of piecewise linear Lyapunov functions {or discrete-time
dynamical systems has been studied in Bitsoris (1988),
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Bitsons and Gravalou (1993) and Bitsoris and Vassilaki
(1995) using positively invariant polyhedral sets. In
addition, a survey for set invariance in control can be
found in Blanchini (1999). Finally, piecewise linear
Lyapunov functions described by the infinity norm
which play an important role in our framework have
been investigated in Kiendl ¢r @f. (1992) and Polanski
(1995, 1997). The stabilization of orthogonal piecewise
linear syslems using piecewise linear Lyapunov func-
tions has been studied in Yfoulis er af. (1999). Finally,
stabilizing switching laws based on conic partitions of
the state space for second-order switched linear systems
have been considered in Xu and Antsaklis (2000).
Stability of swilched systems has been studied exten-
sively in the literature (see, for example, DeCarlo et af.
2000, Liberzon and Morse 1999, Michel 1999 and refer-
ences therein). Sufficient conditions for uniform stab-
ility, uniform asymptotic stability, exponential stability
and instability were established in Ye er af/. (1998).
Necessary conditions (converse theorems) for some of
the above stability results have also been established.
Analysis tools for switched and hybrid systems based
on multiple Lyapunov functions were presented in
Branicky (1998). It should be noted that the problem
of characterizing classes of stabilizing switching signals
in the case when all the individual subsystems are stable
has been identified as one of the basic problems for
control design methods in Liberzon and Morse (1999).
Given a family of stabilizing controllers, it is reasonable
lo ask whether the swilched system will be stable for
useful classes of switching signals. Of course, a constant
switching signal that selects only one controfler trivially
addresses closed-loop stability. However, in order to
exploit the performance benefits of hybrid control
design by switching between multiple controllers, it is
important to identify a large class of switching signals
that guarantee stability of the feedback system.
Stability analysis of switched systems is usually
curried out using a Lyapunov-like function for each
subsystem (DeCarlo ¢ af. 2000). These Lyapunov func-
tions are pieced together in some manner in order to
compose a Lyapunov function that guarantees that the
energy of the overall system decreases to zero along
the state trajectories of the system. The application of
the theoretical results 1o practical hybrid systems is
accomplished usually using a linear matrix inequality
(LMI) problem formulation for constructing a set of
quadratic Lyapunov-like functions (Johansson and
Rantzer 1998, Pettersson and Lennartson 1996).
Existence of a sclution to the LMI problem guarantees
that the hybrid system is stuble. However, in order to
formulate the LMI problem, a partition of the state
spuce and therefore a switching law must be known «a
priori. Usually, such a partition consists of a set of ellip-
soidal regions derived by exploiting the physical insight

for the particular application. Although, the LMI
approach for hybrid system stability is computationally
efficient, it is based only on sufficient conditions and
more importantly, it relies on a particular partition
chosen by the designer.,

In order to investigate the stability properties of
practical hybrid systems, there is an important need to
characterize partitions of the state space that lead to
stable trajectories based on the system parameters.
Such partitions can be used very efficiently for the design
of switching control laws that guarantee stability of the
overall system. In our approach, we characterize a large
class of switching sequences that result in stable trajec-
tories. Given a switched linear system, we present a
systematic methodology for computing switching laws
based on the system parameters that guarantee stability.
We assume that each individual subsystem is stable
and admits a piecewise linear Lyapunov function.
Based on these Lyapunov functions, we compose
‘global’ Lyapunov functions that guarantee stability of
the switched linear system. The main contribution of
this work is that based on the piecewise linear
Lyapunov functions we construct a conic partition of
the state space that is used to characierize a large class
of switching laws that result in stable trajectories.

It should be noted that the problem considered in
this paper has been addressed vusing multiple Lyapunov
function tools under the assumption that switching
among stable systems is slow enough (DeCarlo er al.
2000, Liberzon and Morse 1999). Here, we consider
piecewise linear Lyapunov functions and we develop a
systematic approach to characterize stabilizing switch-
ing sequence that offers a significant advantage.
Individual piecewise linear Lyapunov functions are
‘pieced together’ in a systematic way and they result in
a conic partition of the state space that can be used very
efficiently for the design of the switching control law.
Note that the paper reports results from Koutsoukos
(2000} and that early results for the discrete-time
case have been reportied in Koutsoukos and Antsaklis
{2000}.

This paper is organized as follows. In §2, a mathe-
matical modet lor discrete-time switched linear systems
is introduced and the problem of identifying stabilizing
switching sequences is described. Section 3 presents the
necessary background for piecewise linear Lyapunov
functions. The emphasis is put on computational
methods for constructing such Lyapunov functions.
The technical results for the characterization of stabiliz-
ing switching sequences are presented in §4, and the
approach is illustrated with a numerical example. The
application of the methodology to continuous-time
switched linear systems is presented in § 5. Finally, con-
cluding remarks are presented in §6.
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2.  Problem statement

In this section, we consider discrete-time switched
linear systems described by

x(e+1) = A,x(1), geQ@={1,...,N} (1)

where x(1) € R",r € Z* (the set of non-negative inte-
gers) and 4, € R

The mathematical model described by equation (1)
represents the continuous (state) portion of piecewise
linear hybrid dynamical systems. The particular mode
g at any given time instant may be selected by a decision-
making process. We represent such a decision-making
process by a switching law of the form

(e +1) = 8(q(1), x(r)) (2}

Given x(1), the next state is computed using the discrete
state ¢(), that is x(z+ 1) = Aynx(t). The function
6 @ x R" — Q is usually defined using a partition of
the continuous state space.

Our objective is to investigate the stability of the
switched linear system (1) under the switching law (2).
Note that the origin x, =0 is an equilibrium for the
system (1). Furthermore, for a particular switching
law, the switched system (1) can be viewed as a special
case of a time-varying linear system, and therefore the
usual definitions of stability can be used (see, for
example, Antsaklis and Michel 1997).

3. Piecewise linear Lyapunov functions

In this section, we briefly present some background
material necessary for the stability analysis of switched
linear systems presented later in this paper. We consider
the discrete-time linear system

x(f4+ 1) = Ax(2) (3)
where x{r} € R" and 4 € R"*",

Definition 1: A non-empty set P c R" is said to be
(positively) invariant for the system (3) if x{0)e P
implies that x(r) € P for every r € (Z*) Z.

In the case when the system admits a positively
invariant polyhedral set P containing the origin, a
Lyapunov function can be constructed by considering
the Minkowski functional (gauge function) of P (see, for
example, Blanchini 1995). For bounded invariant poly-
hedral sets this is accomplished as follows.

Let F; be a face of a polytope and consider the
corresponding hyperplane H; as shown in figure 1. The
hyperplane can be described (perhaps after normaliza-
tion) by

Hi={xeR" (x,w) =1}

where w; € R" is the gradient vector of the hyperplane
and {-,-} denotes the inner product.

Hi cone(F,)
W,
p
- { b F.
— |
\ / 7
.\ Z,/"""'j—-’ / J ﬂ
\\ 0 /;
\ /
~_/

Figure I. A polytope P, a face F; and its corresponding
hyperplane H,.

Since the set P includes an open neighbourhood of
the origin, R" can be partitioned into a finite number of
cones defined as follows. Each face F of the polytope
can be described as the convex hull of its extreme points
SeR, j=1,...,r. A finitely generated cone can be
defined for the face F by

cone(F) = {xe‘.’R":x=Zaj_ﬁ, ;>0 j= l,...,r}
J=I

Consider a polytope PC R" and assume that
0 € int(P). The Minkowski functional of P is defined
by V(x) =inf{p > O|x € pP} where pP = {px|x € P}.
Consider a particular face F; and the corresponding
cone. Since F; € P, there exist unique p >0 and
X € F; such that for any x € cone(F;) we have x = px
and the Minkowski functional can be computed by

Vilx) = Hﬁ—”z = p = ok, wY = (%, )

since {¥,w;) =1,

Therefore, for x € cone(F;), the Lyapunov function
induced by the set P can be written as V;(x) = {x, w;).
Consequently, the Lyapunov function induced by P can
be computed for x € R" by V(x) = maxcicp{x, w;)
where m is the finite number of cones defined by the
polytope P.

A special case of piecewise linear Lyapunov func-
tions arise when the positively invariant set P of
Definition 1 is centrally symmetric. In this case, the
Lyapunov function ¥{x) can be represenied using the
infinity norm. Furthermore, there exists a class of linear
systems for which such a Lyapunov function can be
computed very efficiently. Consider the following
Lyapunov function candidate ¥(x) = | Wx|j,, where
W € R™" and || - ||, denotes the infinity norm defined
by ||lx]l o = maxgicq |xi].
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Theorem 1 (Bitsoris 1988): V(x) = ||Wx|, is a Lya-
punov function for the sysiem (3} if and only if there
exist a matrix @ € R™™ such that WA — QW =0 and
1€l < 1.

[t should be noted that a generalization of the above
theorem for every normed space that satisfies the self-
extension property has been presented in Loskot ez af.
(1998). In addition, similar results have been established
for differential and difference inclusions in Molchanov
and Pyatnitskiy (1989).

Corollary | (Bitsoris 1988): If V(x) =|Wx]|_, is a
Lyapunov function for the system (3) then the polyhedral
set P={x¢€ R"||Wx|, <1} is positively invariant.
In addition, the set pP for every real p>0 is also
positively invariant,

In the case when rank W =n(m>n) then P is
bounded. The number of vertices of the polyhedron P
rises with the number of rows m. If W € R™" then we
obtain a centrally symmetric polyhedron with 2"
vertices.

Remark: Note that in the case when rank W < n,
then V({x) is positive semidefinite and cannot be a
Lyapunov function for the system. However if
DV =Vix(t+1)] - V[x(1)] <0 the set P={xe R™
IWx|l,, < p} is a positively invariant set (for any
p > 0}, but is not always a domain of stability since it
can be unbounded (expanding infinitely into
n —rank W dimensions). In the following, we concen-
trate on the case that the set P is bounded although
the approach can be extended to the general case.

3.1. Computation of piecewise linear Lyapunov
Sfunctions

In order to study the stability properties of the
switched linear system (1) we assume that each individ-
ual subsystem admits such a piecewise linear Lyapunov
function. The efficient computation of each Lyapunov
function is very important for the application of the
proposed methodology to practical hybrid systems. A
Lyapunov function for each individual subsystem can
be defined by computing a positively invariant poly-
hedral set for the subsystem. In the following, we briefly
give the necessary background for the computation of
these piecewise linear Lyapunov functions. First, we
briefty describe a class of systems for which positively
invariant polyhedral sets and the corresponding
Lyapunov functions can be computed by a similarity
transformation (Bitsoris 1988). In this case, the
Lyapunov functions can be described using the infinity
norm. Second, we outline an algorithm (Brayton and

Tong 1979, 1980) which can be used for the computa-
tion of general positively invariant polyhedral sets.

A class of linear systems for which such a Lyapunov
function can be computed very efficiently is presented in
Bitsoris (1988). Consider the system x(r+ 1} = Ax(s)
where the eigenvalues of the matrix 4 are located in
the complex plane within the square defined by the
vertices (1,0),(0,#), (—1,0), and (0,~i) as shown in
figure 2. Then, the following result is shown.

Corollary 2 (Bitsoris 1988): If all the eigenvalues A; of
the nth order linear system x(t+ 1) = Ax(¢) are in the
open square |Re(X}| + [Im(X;)| < 1, then there exists a
matrix W € R™" with rank W = n such that the poly-
hedral set P={xec R" |Wx|, <1} is a positively
invariant set for the system.

Remark: The condition |Re(\}| + [Im(A;)| < | can be
replaced by |Re(X;)| + [Im();)] < I with the additional
hypothesis that to each eigenvalue ); such that
|[Re(A)| + |Im(A;)] = 1 with multiplicity v; there corre-
spond v linearly independent eigenvectors.

The matrix W can be computed as the solution to
the matrix

WA - QW =0 (4)

with the condition |Qx|, < 1. It is well known
(Gantmacher 1959) that if the matrices 4 and Q do
not have common eigenvalues then (4) has only the
trivial solution W = 0. The important assumption in
Corollary 2 is that W € R"™" with rank W = n. In this
case the matrix W can be computed as the similarity
transformation matrix by which 4 is transformed to
the real Jordan canonical form (Gantmacher 1959,
Lancaster and Tismenetsky 1985). In summary, when
the eigenvalues of the system are located in the complex

Im(2) 4
1

-1 1 Re@@

-1

Figure 2. Eigenvalue locations in the complex plane.
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plane within the square defined by the vertices
(1,0),(0,0), (=1,0), and (0, —¢) as shown in figure 2,
then a piecewise linear Lyapunov function can be com-
puted by the similarity transformation matrix by which
A is transformed to the real Jordan canonical form.

In our stability analysis for switched linear systems,
it is not necessary for the individual invariant polyhedral
sets to be centrally symmetric. Positively invariant poly-
hedral sets for stable discrete-time systems can be deter-
mined using computer generated Lyapunov functions
{Brayton and Tong 1979). The class of computer gener-
ated Lyapunov functions has been used for stability
analysis of non-linear systems in Brayton and Tong
(1979, 1980}, Michel et al. (1984) and Ohta er al.
(1993). The main idea is to construct a Lyapunov func-
tion that guarantees the stability of a set of matrices that
is determined by applying Euler’s discretization method
to a system of non-linear differential equations.

Our approach here is to use a computer generated
Lyapunov function for each individual subsystem.
Consider the matrix 4 € R"*" and let Py C R" be a
bounded polyhedral region of the origin. We denote
the convex hull of P by conv(P). Following Brayton
and Tong (1979) we define

P, = conv([j AP, 1) (5)

i=0

and

a0
pr=|)p (6)
=0
The following results may be found (Brayton and Tong
1979). First, the matrix A4 is stable if and only if P* is
bounded. Second, if 4 is stable then each set P, can
be computed by P, ; using finitely many iterations.
Furthermore, it is shown in Brayton and Tong (1980)
that if there exists constant X € R such that the eigen-
values of A satisfy the condition |A;| € K < 1, then the
set P* is finitely computable. In this case the set P* is
polyhedral as the convex hull of finitely many points.
Furthermore, P* is a positively invariant polyhedral set
of the system. Then, a piecewise linear Lyapunov func-
tion can be defined as the Lyapunov function induced by
the set P*.

4. Stabilizing switching sequences

In this section, we present an approach based on
multiple Lyapunov functions for the stability analysis
of the switched system (1). The main contribution is
an cfficient characterization of a class of switching
laws of the form (2) which guarantee the stability of
the systemn.

We assume that each individual subsystem admits a
positively invariant polyhedral set that contains the
origin which is described by

P, ={xeR" Wiy <T}

where W7 e R and 1=1,...,1)" € R". In view of
the above results, such a polyhedral set can be computed
if there exists constant X € R such that the eigenvalues
of A satisfy the condition |A;] < K < 1, We denote the
rows of the matrix WY by wf e R, i=1,. . The
Lyapunov function mduced by the set P can be
described by
Vy(x) = ]2}3’); {x,w?}

Note that if P, is centrally symmetric then there exists

? € " and the corresponding Lyapunov function
can be written as V,(x) = ||[Wx]|,,

We consider a class S, of swilching sequences of the
form

5= (QOl 1‘0)1(‘]11“)) -|(qj2lj)1°-°1 .\‘([0) = Xp

The meaning of the above notation is that the subsystem
g; is becoming active at time ;. It is assumed that if s is
finite with cardinality j+ 1 then f;,, = 00 s0 we can
study the stability properties of the switched system.
Furthermore, it is assumed that ¢; # ¢;,, which means
that the switching sequence s contains only time instants
when a switching occurs,

Suppose that the individual Lyapunov functions
satisfy the considion V, [x(f; + 1 Ve [x(2))] for
J=1,2,... and consider the multlple Lyapunov func-
tion deﬁned by Vx()] =V, [x()],; <1 < ;5. Then
by the definition of V, we have that DV(x) =
Vix(r+ 1)) - V[x(5)] <0 "for every >y, 1€ Z’
Note that the switched system for a fixed switching
sequence s can be viewed as a time-varying system.
Since V{x) is positive definite and radially unbounded,
and DV negative semidefinite, the system is stable in the
sense of Lyapunov (see, for example, Antsaklis and
Michel 1997) and the following proposition can be
stated.

Propesition 1: If V,[x(5+ 1)] <V, [x(1)], j=1.
2,..., then the switched system x(1+1) = 4,x(1) is
stable in the sense of Lyapunov,

Remark: If the condition ¥, [x(1;+ )] < ¥, ,[\(t,]
is used in the previous proposition, then the origin is
asymptotically stable for the switched system.

A multiple Lyapunov function composed by piece-
wise linear Lyapunov functions of the individuai sub-
systems offers a significant advantage. It allows the
characterization of the switching sequences that satisfy
the condition of Proposition | by computing a conic
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partition of the state space. First. we briefly describe the
necessary notions and notation from convex analysis in
order to construct the conic partition.

Given a polytope P C 'R", then a face of dimension &
is denoted us k-face F. The hyperplane that corresponds
to a k-face F is defined by the affine hull of F and is
denoted by aff(F). Each (n — I)-face corresponds to a
hyperplane that is defined by

aff(F;) = {x € R": {x,w;} = 1}

where w; € R" is the corresponding gradient vector,
The set of vertices of F can be found as vert(F) =
vert(P) N aff(F) where vert(P) is the set of vertices of
the polytope P. Finally, we denote the cone generated by
the vertices of F by cone(F).

Consider a pair of subsystems with matrices A,
and A4,. We want to compute the region Q=
{x € MW" V,,(x) <V, (x)}. Consider the faces F and
Fff of the polytopes P, and P,, respectively and assume
that C = cone(F]") Ncone(F{*) # . Next, we define
the halfspace HG = {x € R": (v, —w{') <0} and
the set @=CNHP. It is shown in the following
lemma that the multiple Lyapunov function defined in
Proposition | is decreasing if the system switches from
¢ to ¢ while x € Q.

Lemma 1: For cvery x€Q we have that V,(x) <
Vi (x).

Proof: For every xe€ C the Lyapunov functions
for the subsystems are given by ¥, (x) = (x, wi')
and  V,(x) = {x,w®) respectively. If x€Q we
have that {x,w{f —wf) <0 since x ¢ H? and there-
fore V,.(x) £ ¥, (x). O

Since 0 € HJ?, the set Q is clearly a polyhedral cone
as the intersection of cones with a common apex (x = 0)
as shown in figure 3,

Figure 3. The conic partition of the state space.

The set 2% can be computed as the union of poly-
hedral cones by repeating the above procedure for all
the pairs (F/", F*} of (n — 1)-faces of the polytope P as
shown in the following algorithm.

Algorithm for the computation of Q7::

INPUT: W, W 08 = g;

foriy =1,...,m,
foriy=1,...,m,,
C= cone(Fr."l") N cone(F‘.‘f);
if C# J then
Hi} = {x € " (xwf —nfl) <0
Q=Cn Hg:,
Q:F = ng U
end
end
end

The above procedure can be repeated for every pair
of subsystems to identify a class of stabilizing switching
signals for the switched linear system. The class of
switching sequences is characterized by the following
result.

Theorem 2: Consider the class of switching sequences
S4C Sy defined by gt + 1) = 8(q(e;), x(4;))  where
q(17) = g1, q(; + 1) = ¢; and x(1;} € Qb E D for
J=12,.... The switched linear system x(i+1)=
Ayx(t) is stable in the sense of Lyapunov for every
switching sequence s € Sy.

Proof: By induction, we have that if s = (gq, f) then
the system is stable since A, is stable. Assume that the
switched system is stable for 5= (g0, %), (q1.01),-..,
(gj-1,4i-1) and consider the switching sequence
s'= (‘Io,fo),(f{hll),---,(QJ—I,fj-l)a (¢, ;). Since x(4;) €
Qb |, we have that ¥, [x(1;+ 1)] <V, |[x(;)]. There-
fore, the multiple Lyapunov function defined by
Vix(e)] = V, [x(#)], # <t < 14 is decreasing for every
t and the system is stable in the sense of Lyapunov. [J

We have presented a methodology for the partition
of the state space into conic regions that are used to
characterize a class of stabilizing switching sequences.
The following example illustrates the approach.

Example: Consider the switched discrete-time linear
system x(t+ 1) = A,x(¢}, g€ {1,2} where

p 17 4 o 4 _[0ss —i.S]
— a =
'Tlo08 —15] "™ 27075 _oss

The system with matrix 4, has two complex conjugate
eigenvalues A > = 0.1 £ 0.8 and satisfies the conditions
of Corollary 2. Using the similarity transformation
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re [I 2]
[0
the real Jordan canonical form is given by
0.1 08
= W' AW = [
0 (W) 08 0.1

We have that
i
121l = max Zl lgg] =09 < 1

and therefore by Theorem 1, V;(x) = |]W‘x|| is a
Lyapunov function for the system. Furthermore, the set

Py ={xe R W' <1}

shown in figure 4 is a positively invariant polyhedral set.
The matrix 4, has two complex conjugate eigenvalues
A1z = 0.2 £,0.75. A positively invariant polyhedral set
P, is described by the Lyapunov function V, = | W 2x||

where
T 1 -2
1o

Consider the faces F' and F? of the polyhedral sets P,
and P, respectlvely as shown in figure 4. For every
x € cone(F! )ﬂcone(Fz) we have that V, (x) {(x,w")
and V;(x) = (x,w?) with w' =[1,2) and w? =[1,-2]
respectively. We consider the halfspace

H = {xe R%: (x,w’ —w!) <0}
={x€‘]:\'2:x220}

Therefore, for every x € 2 = cone(F') N cone(F?) N H}
we have that V,(x) < F;(x).

By repeating the procedure for all the pairs of faces
for the polytopes P\, and P, we compute the region

Qf = {x e R V() < ¥ (x)}
={xe R x, >0}
Similarly we have that
Q= {x e R: V| (x) < Vy(x)}
={xeR%:x, <0}

The switched system is stable for any switching sequence
§= (QO: "0)’ (qls I]), (q;! )3 - for which Y( ) € Qz if
gi-1=1lLg=2 and x(y )EQQ if 41 _2 g =1,
Jj=1,2,.... A stable trajectory is shown in figure 5.
The charactenzatlon of the stabilizing switching
sequences is based on sufficient conditions. Therefore,
for a switching sequence s that does not satisfy the
formulated conditions, the switched system is not
necessarily unstable. However, the switched system of
the example can pgenerate unstable trajectories as
shown in figure 6. A switching law leads to unstable
trajectories if the corresponding switching sequence is

Figure 4. The region £.



9319

Stabilizing switching control laws

T T
I I
| |
I I
i |
1 ]
1 I
I |
i |
||||||| F==----r
i 1
i !
I |
I |
| I
| |
I I
||||||| Ll
[ 1
I t
I I
| |
1 I
! |
| 1
| 1
||||||| T
I I
| |
1 |
| |
i 1
I '
I |
I I
||||||| RS, —
1 1
1 |
' )
l 1
I I
I I
I I
| I
||||||| re-——-—7r
I t
I i
I I
1 1
1 |
' l
I ¥
1 1
w0 -r o~

time switched system.

Figure 5. A stable trajectory for the discrete-

x10'

———mmb L _

T T T T T T T T T
! I 1 | | 1 1 1 |
3 | 1 1 | | | ] 1
1 | | | | I | 1 t
| | 1 1 | 1 | | |
| | | i ] ] | | 1
I ] | | | ] | | |
1oLl __L -L JE A P
| | I 1 1 | | |
| 1 1 1 1 | 1 |
1 1 1 t ] | |
1 I 3 | | 1 1
1 1 | | 1 1 i
i | 1 1 1 ' 1
t 1 | 1 | | i
T A=A ———I-——-F—--—r -t Znibiy el
1 1 | i | |
| ] | [ | |
| ! ] I | |
i | | 1 1 i
I | 1 | |
( | | | ! |
i ___ L | P ye| PEevemyeny |
i b
I |
|

L ettt ST S

|
!
|
08F-———— 4 e L e
|

2.5

1.5

05

0.5

120
x10

Figure 6. An unstable trajectory of the discrete-time switched system.



s 1 2 e

R T N T ———

940 X. D. Koutsoukos and P. J. Antsaklis

infinite and there exists a Lyapunov functions that
increases at every switching instant,

5. Continuous-time switched linear systems

In this section, a characterization of stabilizing
switching sequences for continuous-time switched linear
systems is presented. The set of stabilizing switching
sequences is characterized by compulting a conic parti-
tion of the state space similarly to the discrete-time case.

We consider the switched linear system

.\-'(t)=Aqx(’)1 qu ={l,...,N} (7)

where x(¢) € R and 4, € R"™". The switching law is
described by

g() = 8(q(n), x(1)) (8)

where ¢ =lim._, ..,7. The problem is to identify
classes of switching signals generated by (8) for which
the system (7) is stable. Note that in the following it is
assumed that only finitely many switchings can occur in
a finite time interval (non-Zeno behaviour),

5.1. Background material

In order to study the stability properties of the
switched linear system (7), we assume that each individ-
ual subsystem admits a piecewise linear Lyapunov func-
tion induced by a positively invariant polyhedral set.
Next, we summarize some results for the computation
of piecewise linear Lyapunov functions for a class of
continuous-time linear systems.

Consider the continuous-time linear system

*6) = Ax(1) (9)

where x(r) € %" and 4 € R"".

Similarly to the discrete-time case, there exists a class
of continuous linear systems for which a positively
invariant polyhedral set can be computed very effi-
ciently. If the eigenvalues A, of the system (9) are in
the complex left half plane and satisfy the condition
Im{X;)] < |Re(X;)] as shown in figure 7 then a
Lyapunov function ¥(x) = || Wx||,, can be constructed
using a similarity transformation (Kiend! er af, 1992).

The use of piecewise linear Lyapunov functions for
the stability of linear systems is based on the following
result {(Hahn 1967). Assume that there exists a function
V(x) such that V is positive definite and radially
unbounded, and the wupper right Dini derivative
(Blanchini 1999) of V' satisfies the condition

Vix(e+ Ad)] — Vix(0)]
At

Then, the equilibrium x = 0 is stable in the sense of
Lyapunov.

<0

OV = lim sup
Ar—0

Im(z) ,

R:(z)

2 3

Figure 7. Eigenvalue locations in the complex plane.

The conditions for V(x)=|Wx|, to be a
Lyapunov function for the system (9) can be stated
using the logarithmic norm induced by the infinity
norm. The logarithmic norm g, of a matrix Q € W™
is defined as (Desoer and Haneda 1972)

. I—a 1
e (0) = tim M2l — 1
a—(' [43
s 3
J=lg#i

The following theorem presented in Kiendl er af.
(1992) and Polanski (1995) gives necessary and sufficient
conditions for V(x} = ||Wx||,, to be a Lyapunov func-
tion of the system (9).

Theorem 3 (Kiendl er af. 1992): V(x}=|Wx]|, isa
Lyapunov function for the system X = Ax(t) if and only
if there exists Q € R™" such that WA — QW =0 and
(@) < 0.

A class of linear systems for which a piecewise linear
Lyapunov function can be computed very efficiently is
presented in Kiendl et af. (1992) and it is described by
the following corollary.

Corollary 3 (Kiendl et al. 1992):  If all the eigenvalues
Ai of the nth order system X = Ax(1) are in the complex
left  half plane  and  sarisfy  the  condition
[Im{X)| < |Re(M)W, then there exists W € R with
rank W =n  such  that  the  polyhedral  set
P={xeR"||Wx|l, < |} is a positively invariant set
Jor the system.

The above corollary is a consequence of the fact that
the matrix equation W4 —Q0A =0 has a solution
rank W with W = 5 if and only if the eigenvalues of A
are identical with the eigenvalues of @ (Gantmache
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1959). The matrix W can be computed as the similarity
transformation matrix by which A is transformed to the
real Jordan canonical form similar to the discrete-time
case.

5.2, Stabifizing switching sequences

In this section, we present an approach based on
multiple Lyapunov functions for the stability analysis
of the switched system (7). We assume that each indi-
vidual subsystem admits a piecewise linear Lyapunov
function described by the infinity norm. The main con-
tribution 1s an efficient characterization of a class of
switching laws of the form (8) which guarantee the stab-
ility of the system. Similar results can be developed for
more general piecewise linear Lyapunov functions as in
the discrete-time case in §4.

We assume that each individual subsystem admits a
positively invariant polyhedral set that contains the
origin which is described by

Po={xeW" Wi, <1}
where W? ¢ R We denote the rows of the matrix W?
by wf/ e R", i= IR

We consider a class S, of switching sequences of the
form

s=A{qo.to)s (g, 1), g iy, X{1g) = Xy
where €W, j=0,1,.... It is assumed that the
sequence of switching instants ,,1,,...,¢,... is diver-

gent in the sense that there are no infinitely many switch-
ings in a finite time interval. Similarly to the discrete-
time case, it is assumed that ¢; # g;,,.

Suppose that the individual Lyapunov functions
satisfy the considion ¥, [x(¢1)] < ¥V, | [x(y)] for j =1,
2,... and consider the multlple Lyapunov function
defined by Vx(r)] =V, [x(1)],1; <1< ;4. Then, we
have

DV = lim su V['Y(’"!'A’)] — Vix{1)] <0
A=t At

for every r € M" and therefore, the equilibrium x =0 is
stable in the sense of Lyapunov (see for example Hahn
1967), and the fol]owing proposition can be stated.

Proposition 2: Vo [x(i) <V, Ix(5)), = 1,2,.
then the sw:lched sls!em X = A.x(1) is stable in fhe
sense of Lyapunov.

A conic partition of the state space can be used to
characterize a class of switching sequences that satisfy
the condition of Proposition 2. Consider a pair of
subsystems with matrices 4, and A,,. The region
Qg: ={xe WV, (x) <V, (x)} can be computed asa
union of finitely generated Cones and can be computed

by the algorithm presented in §4 similarly to the dis-

crete-time case. The class of stabilizing switching
sequences is characterized by the following result.

Theorem 4:  Consider the class of swr!chmg sequences
S. C S, defined by g(ff) = 8(q(y;), x(1;)) where g(1;) =
gi-1. (tf) = q; and \(tj) € oy #Q Jor j=1,2,.
The swnched linear system r = A,,\( ) is stable in llae
sense of Lyapunov for every switching sequence s € S..

Proof: Similar to the proof of Theorem 2. O
Example: Consider the switched continuous-time
linear system
X = A,x(4), g€ {l1,2} {10)
where
4 = [ 1.7 1.8] and A, = [0.7 -1 }
—-4.5 -3.7 1.6 -1.7

The real Jordan canonical form can be computed by the
following simitarity transformations.

o =whawy =| 0]
where
W - [2 l]
11
and
0, = Wiy (W' = [:3:; _g::]
where

11 -05

We have that p, (0} =—0.1 <0 and therefore,
Vi(x) = |[W'x|l,, is a Lyapunov function for the sub-
system Ay. Similarly, pi.(@2} = —0.1 < 0 and Vy(x) =
|w? X||o, is a Lyapunov function for the subsystem A,.
The functions ¥, and ¥, correspond to the positively
invariant polyhedral sets P, = {x € R*: ||Wl\|| <1}
and P, = {x ¢ R2: I W’\|| < I} shown in figure 8.

Consider the faces F' and F? shown in figure 9. For
every X Econe(F')ﬂcone(F") we have that Vy(x) =
(x,w') and ¥y(x) = (v, w?) with w' =[2,1] and
wt = {1, 1] respectively, We consider the halfspace

Hi = {x e R (x,w* —w') <0}
={x e R x >0}

Therefore, for every x € Q = cone(F') Ncone(F*) N H}
we have that ¥5(x) < V(x).

By repeating the procedure for all the pairs of faces
for the polytopes P, and P, the we compute the region
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0 = {x € ®: Vy(x) < ¥ (%)}
= {xeR:x, >0}
Similarly we have that
Q) = {x e RV (x) < V3(x))
={xeN:x <0}

The switched system is stable for any switching

sequence s = (qg, fo), (¢1,01), ..., (g;,4;), ... for which
X(t) € QFif gy = 1,¢; =2 and x(;;) € Q) if g, =2,
gi=1,j=1,2,.... Astable trajectory is shown in figure
10.

The characterization of the stabilizing switching
sequences is based on sufficient conditions. Therefore,
for a switching sequence s that does not satisfy the
formulated conditions, the switched system is not
necessarily unstable. However, the switched system
(10} can generate unstable trajectories as shown in figure
11. An unstable trajectory can be generated by requiring
that the system will keep switching indefinitely and that
the Lyapunov function is increasing at every switching.

6. Conclusions

In this paper, the stability of piecewise switched
linear systems using piecewise linear Lyapunov func-
tions is investigated. In the proposed approach, we
assume that each individual subsystem is stable and
admits a piecewise linear Lyapunov function. Based
on these Lyapunov functions, we compose ‘global’
Lyapunov functions that guarantee stability of the
switched linear system. These multiple Lyapunov func-
tions correspond to conic partitions of the state space
which are efficiently computed using the developed
algorithms. The main advantage of the approach is
that the methodology for computing switching laws
that guarantee stability is based on the parameters of
the system and so, trajectories for particular initial
conditions do not need to be calculated. Therefore, the
proposed approach can be used very efficiently to inves-
tigate the stability properties of practical hybrid systems.
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