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Abstract

We introduce a semidecidable procedure which, given a Petri net structure and a set T

of transitions, synthesizes a supervisor enforcing the transitions in T to be live. We call this

liveness property T -liveness. When T equals the total set of Petri net transitions, T -liveness

corresponds to liveness. Enforcing only a subset of transitions to be live is useful when some

Petri net transitions model undesired events such as failures, and/or when the Petri net structure

does not allow enforcing all transitions to be live. Our procedure is based on structural net

properties, and so the synthesized supervisors are independent of the initial marking. The

supervisors are least restrictive for a wide class of Petri nets. No assumptions are made on the

Petri net structure: the Petri nets may be unbounded and have integer weights. In this paper

we restrict our attention to fully controllable and observable Petri nets. However we note that

the procedure is rather easily extendable to Petri nets having uncontrollable and unobservable

transitions.

1 Introduction

Petri nets are a compact representation of concurrent discrete event systems. One of the difficult

problems in the study of Petri nets is liveness. Liveness means that regardless of the current state

of the Petri net, any transition can be eventually fired. In other words no deadlocks occur. In this

paper we introduce a procedure which synthesizes supervisors for T -liveness. Such a supervisor

restricts the operation of the Petri net such that the supervised Petri net is T -live. While other

liveness related problems have been extensively studied [1], there are not many literature results

on the synthesis of liveness supervisors. Moreover, to the authors’ knowledge, there are no results

on T -liveness other than our results in [6]. The usual way to enforce liveness is based on the

reachability graph of the Petri net [14]. Due to the state explosion problem, this approach is not

considered to be satisfactory. A new approach attempting to reduce the computational load is

based on unfolding [5]. Both afore mentioned approaches are limited to bounded Petri nets and
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require a given initial marking. While our approach is a semidecidable procedure and so does not

address satisfactorily the computational problem, it is the only procedure known to the authors

which is applicable to general Petri nets, including unbounded Petri nets. Furthermore, it does

not depend on the initial marking. This together with the facts that: (a) the procedure generates

least restrictive liveness supervisors and usually least restrictive T -liveness supervisors, and (b) the

domain of the supervisor is the feasible set of a set of linear inequalities, favor the usage of our

procedure for solving resource optimization problems in manufacturing systems. In the literature

there is an approach which allows the synthesis of liveness enforcing supervisors and does not

depend on the initial marking [4]. However it only applies to a class of ordinary and conservative

Petri nets. The approach of [4] has been extended to a larger class of conservative Petri nets in [12].

The algorithm of [12] has polynomial complexity, however the supervisors are not least restrictive.

Another liveness enforcing approach for a restricted class of ordinary Petri nets is given in [13]

In this paper we generalize our liveness enforcement procedure in [8] to T -liveness enforcement.

The only input required by our procedure is the Petri net structure and the set T . Since the

supervisors are designed independently of the initial marking, when we say they are least restrictive

we mean two things. First, for any initial marking for which the supervisor is defined, there is no

other supervisor enforcing T -liveness which is less restrictive. Second, T -liveness cannot be enforced

for all initial markings for which the supervisor is not defined. In this paper we consider Petri nets

with controllable and observable transitions. However, the procedure is easily extendable to Petri

nets with uncontrollable and unobservable transitions, and we include this extension in the technical

report [7]. The procedure has been computer implemented and the program is available from the

authors.

We begin with preliminary notations and definitions in section 2. The remaining part of the

paper presents our contribution. Thus section 3 gives two theoretical results on which the T -liveness

procedure relies; we considered them in detail in [6]. Section 4 describes the T -liveness procedure,

beginning with the description of the operations it involves; the procedure is stated in section 4.5.

Section 5 illustrates the procedure on simple examples. In section 6 we formally prove that the

procedure synthesizes a least restrictive T -liveness supervisor.

2 Preliminaries

We assume the reader familiar with Petri nets. If this is not the case, we recommend the Petri

net survey in [11]. We will denote a Petri net structure by N = (P, T, F,W ), where P is the set
of places, T the set of transitions, F the set of transition arcs and W the transition arc weight

function. We use the symbol µ to denote a marking and we write (N , µ0) when we consider the
Petri net N with the initial marking µ0. The incidence matrix of a Petri net is denoted by D, where
the rows correspond to places and the columns to transitions. Also, by denoting a place by pi or a

transition by tj, we assume that pi corresponds to the i’th row of D and tj to the j’th column of
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D. We use the notation µ
σ→ µ′ to express that the marking µ enables the firing sequence σ and µ′

is reached by firing σ.

We will refer to Petri nets in which the arcs from places to transitions have weights equal to

one. We call such Petri nets PT-ordinary, because the only arcs a ∈ F satisfying the requirement
of an ordinary Petri net that W (a) = 1 are the arcs a = (p, t) from a place p to a transition t. An

asymmetric choice Petri net is defined by the property that for any two places pi and pj such

that pi • ∩pj• 6= ∅, either of pi• ⊆ pj• or pj• ⊆ pi• is satisfied.
A siphon is a set of places S ⊆ P , S 6= ∅, such that •S ⊆ S•. A siphon S is minimal if there

is no siphon S′ ⊂ S. A siphon S is controlled if for all reachable markings it contains at least one
token. Also, S is an empty siphon if the current total marking of S is zero.

A transition t of (N , µ0) is live if for all reachable markings there is an enabled firing sequence
containing t. Given T ′ ⊆ T , (N , µ0) is T ′-live if all transitions t ∈ T ′ are live. In particular, when
T ′ = T and (N , µ0) is T ′-live, (N , µ0) is live.
Given N , letM the set of all markings of N and U ⊆M. We define a supervisor as a function

Ξ : U → 2T that maps to every marking a set of transitions that the Petri net is allowed to fire.
We denote by R(N , µ0,Ξ) the set of reachable markings when (N , µ0) is supervised with Ξ. We
say that liveness can be enforced in N if there is an initial marking µ0 and a supervisor Ξ such
that (N , µ0) supervised by Ξ is live. The Petri net structures in which liveness can be enforced
(for some initial markings) are the repetitive Petri nets [11], and the Petri net structures in which

T -liveness can be enforced for some T are the partially repetitive Petri nets.

The supervisory technique used in this paper is supervision based on place invariants [10,

15], in which the supervisor is defined by a set of linear marking inequalities. The supervision

is accomplished by extending the Petri net with additional places, called control places. The

construction is summarized in the following theorem.

Theorem 2.1 [10, 15] Let a plant Petri net with controllable and observable transitions, incidence

matrix Dp and initial marking µp0 be given. A set of nc linear constraints Lµp ≤ b are to be
imposed. If b−Lµp0 ≥ 0 then a Petri net supervisor with incidence matrix Dc = −LDp and initial
marking µc0 = b− Lµp0 enforces the constraint Lµp ≤ b in the supervised system D = [DTp , DTc ]T .
Furthermore, the supervision is maximally permissive.

3 Theoretical Background

In this section we introduce a number of new results necessary for our T -liveness enforcement

method. We consider these results in detail in [6, 7]. We begin with a technical result.

Lemma 3.1 Let N = (P, T, F,W ) be a Petri net of incidence matrix D. Assume that there is an
initial marking µI which enables an infinite firing sequence σ. Let U ⊆ T be the set of transitions
which appear infinitely often in σ. There is a nonnegative integer vector x such that Dx ≥ 0 and
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∀ti ∈ U : x(i) 6= 0 and ∀ti ∈ T \ U : x(i) = 0.

Next we define several key concepts for our method: active subnets and active siphons. An active

subnet is a part of a Petri net which can be made live by supervision for appropriate markings. A

siphon is active with respect to an active subnet if it contains places from that subnet.

Definition 3.1 Let N = (P, T, F,W ) and D the incidence matrix of N0. Then NA = (PA, TA, FA,WA)
is an active subnet of N if PA = TA•, FA = F ∩{(TA×PA)∪(PA×TA)}, WA is the restriction
of W to FA, and TA is the set of transitions with nonzero entry in some nonnegative vector x which

satisfies Dx ≥ 0. We say that NA is T′-minimal if T ′ ⊆ TA and TA 6⊆ TAx for any other active
subnet NAx = (PAx , TAx , FAx ,WAx ) such that T ′ ⊆ TAx .

Definition 3.2 Given an active subnet NA of a Petri net N , a siphon of N is said to be an active
siphon (with respect to NA) if it is or includes a siphon of NA. An active siphon is minimal if
it does not include another active siphon (with respect to the same active subnet.)

The next result is fundamental for our T -liveness procedure.

Theorem 3.1 Given a PT-ordinary asymmetric choice Petri net (N , µ0), let T be a set of transi-
tions and NA a T -minimal active subnet. The Petri net is T -live (and also TA-live) if all minimal
active siphons with respect to NA are controlled.

4 The T -Liveness Enforcing Procedure

4.1 Introduction to the Procedure for T -Liveness Enforcement

Given a target Petri net N0, the liveness enforcing procedure generates a sequence of asymmetric
choice PT-ordinary Petri nets, N1, N2, . . . Nk, increasingly enhanced for liveness. N1 is N0 trans-
formed to be PT-ordinary and with asymmetric choice. The other Petri nets are largely obtained as

follows: in each iteration i the new minimal active siphons of Ni are controlled, and then, if needed,
the Petri net is transformed to be with asymmetric choice and PT-ordinary. Thus the iteration i

produces the asymmetric choice PT-ordinary net Ni+1. The active siphons (Definition 3.2) of each
Ni are taken with respect to an active subnet NAi computed for every iteration i; if T is the set
of transitions of N0 to be enforced live, NAi is a T -minimal active subnet of Ni (Definition 3.1).
Controlling a siphon involves enforcing a linear marking inequality. Let Liµ ≥ bi be the total set of
inequalities enforced in Ni. Because Nk is the last Petri net in the sequence, it has no uncontrolled
active siphons. Therefore, in view of Theorem 3.1, Nk is T -live for all initial markings which satisfy
Lkµ ≥ bk. Finally, the constraints defined by (Lk, bk) can be easily translated in constraints in
terms of the markings of N0, which define the supervisor for liveness enforcement in N0.
The liveness enforcement procedure is defined in section 4.5. The sections preceding section 4.5

define in detail operations performed by the procedure. Section 4.2 shows how the Petri nets
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are transformed to be PT-ordinary and with asymmetric choice. The precise way in which the

constraints are generated is considered in section 4.3. Then section 4.4 presents algorithms for the

computation of the active subnets.

4.2 Transforming Petri Nets to PT-ordinary asymmetric choice Petri nets

We are interested in using PT-ordinary asymmetric choice Petri nets because our T -liveness test

requires such Petri nets. However, as we will show in the next sections, by using the transformations

of this section we can synthesize T -liveness supervisors for Petri nets not necessarily PT-ordinary

or with asymmetric choice.

4.2.1 A Transformation of Petri Nets to PT-ordinary Petri Nets

We use a modified form of the similar transformation from [9], and we call it thePT-transformation.

Let N = (P, T, F,W ) be a Petri net. Transitions tj ∈ T such that W (p, tj) > 1 for some p ∈ •tj
may be split (decomposed) in several new transitions:

The transition tj is split in m = n(tj) transitions: tj,0, tj,1, tj,2, . . . tj,m−1, where n(tj) =
max{W (p, tj) : (p, tj) ∈ F}. Also, m − 1 new places are added: pj,1, pj,2, . . . pj,m−1. The
connections are as follows:

(i) •pj,i = tj,i, tj,i• = pj,i and pj,i• = tj,i−1, for i = 1 . . . m− 1
(ii) •tj,i = {p ∈ •tj :W (p, tj) > i}, for i = 0 . . . m− 1
(iii) tj,0• = tj•

Note that tj resembles very much tj,0: tj,0 has all the connections of tj plus one additional

transition arc. After the split is performed, we denote tj,0 by tj.

The PT-transformation consists in splitting all transitions t such that W (p, t) > 1 for some

p ∈ •t. In this way the transformed Petri net is PT-ordinary. We use the convention that a split
transition tj is also a transition of the PT-transformed net, since we denote tj,0 by tj.

4.2.2 Transformation of Petri nets to asymmetric choice Petri nets

Let N = (P, T, F,W ) be a Petri net and N ′ = (P ′, T ′, F ′,W ′) be the transformed Petri net, where
P ⊆ P ′, T ⊆ T ′. The idea of the transformation is as follows. Given the transition t, pi ∈ •t and
pj ∈ •t such that pi• 6⊆ pj• and pj• 6⊆ pi•, remove t from either the postset of pi or that of pj by
adding an additional place and transition. The idea is illustrated in figure 1(c-d). Note that the

operations correspond to a modified form of transition split operations (section 4.2.1).

Algorithm of the AC-Transformation

Input: N and optionally M ⊆ P ; the default value of M is M = P .
Output: N ′
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Figure 1: Illustration of the transition split: (a) initial configuration; (b) the effect of the PT-

transformation; (c) initial configuration; (d) the effect of the AC-transformation.

Initialize N ′ to be identical with N .

For every t ∈ T with | • t| > 1 do

1. Construct U = {(pi, pj) ∈ P × P : pi ∈ •t, pj ∈ •t, pi• 6⊆ pj • and pj• 6⊆ pi•}.
2. if U is empty, then continue with the next iteration.

3. Let Q := ∅.
4. For every (pi, pj) ∈ U
(a) A place p ∈ {pi, pj} ∩M is selected. If two choices are possible:

i. p = pi (or p = pj) if pi (or pj) has been previously selected for another element

of U .

ii. otherwise p is chosen such that p appears in other element of U . If both pi and

pj satisfy this property, select p ∈ {pi, pj} such that |p • | = max{|pi • |, |pj • |}.
iii. if none of pi and pj appears in another element of U , select p ∈ {pi, pj} such
that |p • | = max{|pi • |, |pj • |}.

(b) If a place p could be selected (i.e. if {pi, pj} ∩M 6= ∅) then Q := Q ∪ {p}
5. For all p ∈ Q, delete from N ′ the transition arc (p, t) and add a new place p′ and a new
transition t′ such that •t′ = {p}, t′• = {p′}, p′• = {t}, W ′(p, t′) = W ′(t′, p′) = 1 and
W ′(p′, t) =W (p, t).

The operation in the step 5 of the algorithm is a transition split. The transition split of

the AC-transformation is slightly different from the transition split of the PT-transformation in

section 4.2.1. We call the transformation to asymmetric choice Petri nets AC-transformation.

The second argument of the transformation, M , is used by the liveness enforcement procedure

in order to select the transitions which the algorithm splits. Indeed, in general there are many ways

in which to choose which transitions to be split such that the transformed net is with asymmetric

choice. The liveness enforcement procedure selects M such that the place invariants created in

previous iterations are not modified by the AC-transformation.
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4.3 Generating Marking Constraints

Each marking constraint generated by the procedure corresponds to the requirement that a minimal

active siphon is not empty. Thus, if S is such a siphon, the requirement is that

∑
p∈S
µ(p) ≥ 1 (1)

where µ is the marking. The siphon S can be invariant controlled in order to always satisfy (1).

The invariant is created by adding an additional place, called control place, which we denote by

C. See Theorem 2.1 or [4, 2, 3]. Thus the equation of the marking of C is

µ(C) =
∑
p∈S
µ(p)− 1 (2)

In an iteration the liveness procedure controls in this way all minimal active siphons. The Petri

net in which the control places are added is PT-ordinary and with asymmetric choice, but the Petri

net resulting after the control places have been added may no longer be so. By applying the PT

and AC transformations to make again the Petri net PT-ordinary and with asymmetric choice, the

relation (2) is modified. It can be proved that the new form is

µ(C) +

r∑
z=1

µ(pz) +

k∑
i=1

mi−1∑
j=1

jµ(pi,mi−j) =
∑
p∈S
µ(p)− 1 (3)

where the notations are as follows. k and mi are determined before the transition split: k = |C • |,
mi =W (C, ti) ∀ti ∈ C•. For the places pi,j resulted by splitting the transitions ti ∈ C•, we use the
notations used to describe the PT-transformation. The places pz are the places resulting from the

AC-transformation which satisfy • • pz = C. Note that the siphon S remains controlled, that is (1)
is still true. The procedure insures that (3) is not further modified by the operations performed in

subsequent iterations. This is accomplished by selecting in each iteration the parameter M of the

AC-transformation to equal the set of the control places added in that iteration.

4.3.1 The sets of inequalities (L, b) and (L0, b0)

The siphons in a iteration i may contain control places added in previous iterations. Thus (1) may

involve not only places of the target net N0, but also control places. However, the marking of the
control places appearing in (1) can be eliminated by using (3). By eliminating all control place

markings, (1) can be written as:

lTµ ≥ c (4)

where l is a column vector of integers, c a positive integer, and l(i) = 0 for all places pi which are

control places. The set of inequalities Lµ ≥ b contains the inequalities (4) corresponding to each
siphon controlled by the liveness procedure. When the procedure terminates, the supervisor of the
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target net is defined by LRµ ≥ b, where LR is L restricted to the columns which correspond to the
places of the target net.

The test we use to check whether a siphon S does not need a control place is as follows. First,

a control place C is added to enforce (1). If C• ⊆ •S, C is not needed and so it is deleted. In this
case (1) is true for all markings if true for the initial marking. Such initial marking constraints are

not stored in Lµ ≥ b, but in a separate set of constraints, L0µ ≥ b0. As in the case of Lµ ≥ b, the
constraints (1) stored in L0µ ≥ b0 are in the form (4). When the procedure terminates, the initial
marking µ0 of the target net is required to satisfy L0,Rµ0 ≥ b0, where L0,R is L0 restricted to the
columns which correspond to the places of the target net.

4.3.2 Implicitly controlled siphons

Let S be a siphon considered for control. We say that S is (implicitly) controlled if (1) is

satisfied for all markings µ which satisfy the current Lµ ≥ b and L0µ ≥ b0. For a controlled siphon
a control place is not necessary and no new constraint needs to be added in L0µ ≥ b0.

4.4 The Computation of a T -minimal Active Subnet

The following algorithm computes a T -minimal active subnet or signalizes if none exists. A T -

minimal active subnet does not exist iff some of the transitions of T cannot be made live under any

circumstances.

Input: The Petri net N0 = (P0, T0, F0,W0), its incidence matrix D, and a nonempty set of
transitions T ⊆ T0.
Output: The active subnet NA = (PA, TA, FA,WA).

1. Check the feasibility of Dx ≥ 0 s.t. x ≥ 0, x(i) ≥ 1 ∀ti ∈ T .

If feasible then

i. Let M = ‖x0‖ and xs = x0, where x0 is a solution of the feasibility problem.
ii. For ti ∈M \ T do
A. Check feasibility of Dx ≥ 0 subject to x ≥ 0, x(i) = 0, x(j) = 0 ∀tj ∈ T0 \M
and x(j) ≥ 1 ∀tj ∈ T .

B. If feasible then let x∗ be a solution, M = ‖x∗‖ and xs = x∗.
Else no T -minimal subnet exists and so return.

2. The active subnet is NA = (PA, TA, FA,WA), for TA = ‖xs‖, PA = TA•, FA = F0 ∩{(TA×
PA) ∪ (PA × TA)}, and WA the restriction of W0 to FA.

Because of the iterative nature of the liveness procedure, the active subnet needs to be reevaluated

at every iteration. However the algorithm above needs to be used only once, to compute NA0 . The
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active subnets NA1 , NA2 , NA3 , . . . can be computed by simply repeating the changes done to Ni−1
in NAi−1, i = 1, 2, . . .. Such an update of the active subnets is done in the following algorithm.
Input: NAi−1 = (PAi−1, TAi−1, FAi−1,WAi−1), Ni = (Pi, Ti, Fi,Wi) and the sets Σ(t), denoting for each
t ∈ Ti−1 which has been split the set of the new transitions in Ti \Ti−1 which appeared by splitting
t.

Output: NAi = (PAi , TAi , FAi ,WAi ).

1. TAi = T
A
i−1 ∪ {t ∈ Ti : ∃tu ∈ TAi−1 and t ∈ Σ(tu)}

2. The active subnet isNAi = (PAi , TAi , FAi ,WAi ), PAi = TAi •, FAi = Fi∩{(TAi ×PAi )∪(PAi ×TAi )}
and WAi is the restriction of Wi to F

A
i .

4.5 The T -Liveness Enforcing Procedure

Input: The target Petri net N0 and a nonempty set of transitions T .
Output: Two sets of constraints (L, b) and (L0, b0) (T -liveness is enforced for all initial markings

µ0 such that Lµ0 ≥ b, L0µ0 ≥ b0 when (N0, µ0) is supervised according to Lµ ≥ b.)
Procedure:

A. N0 is PT-transformed and then AC-transformed (section 4.2). The transformed net is N1.

B. T -minimal active subnets of N0 and N1 are computed (section 4.4). If none is found, T -
liveness is impossible, and so the procedure terminates.

C. For i ≥ 1 do (the initial Petri net of the iteration i is Ni; the active subnet is NAi .)

1. If no new uncontrolled minimal active siphon is found, the next step is D. (A siphon is

uncontrolled if not implicitly controlled.)

2. For every new uncontrolled minimal active siphon S:

Let C be the control place which would result by controlling the siphon.

(a) If C• ⊆ •S, then S does not need control and C is not added to Ni. The constraint
(4) is added to (L0, b0).

(b) If C• 6⊆ •S then C is added to Ni to enforce (1), and (4) is added to (L, b).
3. If the Petri net is no longer PT-ordinary, the Petri net is PT-transformed.

4. If the Petri net is no longer with asymmetric choice, the Petri net is AC-transformed,

where the second argument M is taken to be the set of the control places added in the

current iteration.

5. The matrices L and L0 are enhanced with new columns, each column corresponding to

one new place resulted in the steps 2, 3 and 4.
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6. The active subnet is updated according to the changes made in the steps 2, 3 and 4.

7. The final nets of the iteration i are denoted by NAi+1 and Ni+1. The next step is C.1.

D. The constraints (L, b) and (L0, b0) are modified to be written only in terms of the marking of

the target net N0, by removing the columns of L and L0 corresponding to places not in N0.

E. The redundant constraints of (L, b) and (L0, b0) are removed.

F. The supervisor of N0 is built according to the constraints (L, b) (Theorem 2.1).

5 Examples

Example 5.1 Consider the Petri net of figure 2(a), which is not PT-ordinary and not with

asymmetric choice. Three transitions cannot be made live, regardless of the initial marking: t1, t2,

t3. Therefore liveness cannot be enforced, however we may enforce T -liveness for T = {t4, t5}.
The first iteration begins with the PT and AC-transformed net N1. The active subnets are shown in
Figure 2(c). There is a single minimal active siphon, {p1, p2, p3}. A control place C1 is added to the
total net (Figure 2(d)). In this case the inequality (1) is µ(p1)+µ(p2)+µ(p3) ≥ 1, and so at the end
of this iteration L = [1, 1, 1, 0, 0] and b = 1. Due to the subsequent AC-transformation, the invariant

introduced by C1 has the form (3): µ(C1) = µ(p1) + µ(p2) + µ(p3)− µ(p1,2)− µ(p2,2)− µ(p3,2).
In the second iteration, {p1, p2, p2,1, p3,1, p1,2, p2,2, p3,2, C1} is the only new minimal active siphon.
The siphon is uncontrolled, since µ(p1) + µ(p2) + µ(p2,1) + µ(p3,1) + µ(p1,2) + µ(C1) ≥ 1, that is
2µ(p1) + 2µ(p2) + µ(p3) + µ(p2,1) + µ(p3,1) ≥ 2, is not implied by µ(p1) + µ(p2) + µ(p3) ≥ 1. The
control place C2 which is added is also a source place. The procedure terminates, since at the third

iteration there is no new minimal active siphon. The resulting matrices L and b after the step D

are:

L =

[
1 1 1

2 2 1

]
b =

[
1

2

]

There is one redundant constraint, so the final constraints are L = [2, 2, 1] and b = 2. The

supervised net is shown in Figure 2(f). By Theorem 6.1 it is T -live for all initial markings µ0 such

that Lµ0 ≥ b, and by Theorem 6.2, the supervision is least restrictive.

Example 5.2 Consider the Petri net structure of Figure 3(a). The only transitions which can be

made live are {t1, t2, t3, t4, t5, t6}. Assume that we only desire the transitions t ∈ T to be live, where
T = {t1, t2, t3}. For this T -liveness problem the procedure generates the intermediary Petri nets
N1, N2 and N3 of Figure 3(c-e), where the control places added to N1, N2 and N3 are connected
with dashed lines to the existing transitions. In the first iteration there is a single minimal active

siphon, {p1, p2, p3, p4, p5, p6, p7}, and the control place p11 is added. In the second iteration there
is again a single new minimal active siphon: {p1, p2, p3, p7, p8, p10, p11, p14}, and a control place p15
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(g) N0 supervised for T -liveness
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Figure 3: Example 5.2: (a) N0; (b) the supervised Petri net. (c) N1; (d) N2; (e) N3.
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is thus added. The procedure terminates at the third iteration with the inequalities (3) below (for

simplicity, we let µi = µ(pi)):

µ1 + µ2 + µ3 + µ4 + µ5 + µ6 + µ7 − µ12 − µ13 − µ14 ≥ 1

2µ1 + 2µ2 + 2µ3 + µ4 + µ5 + µ6 + 2µ7 + µ8 + µ10 − µ12 − µ13 − µ16 − µ17 − µ18 − µ19 − µ20 ≥ 2

After removing a redundant constraint, the supervisor of N0 is defined by L = [2, 2, 2, 1, 1, 1, 2]
and b = 2, and is the least restrictive T -liveness enforcing supervisor (Theorems 6.1 and 6.2).

6 Proof of the Liveness Enforcing Procedure

The proofs of the following results use the notations of the liveness procedure (section 4.5). Addi-

tionally we introduce the following definitions and notations. A marking µ of Ni is valid if for all
control places added in the iterations 1 . . . i − 1 the invariant equations of the form (3) hold true,
and if µ(p) = 0 for all places p other than control places and places of N0. Two valid markings
µi and µj of Ni and Nj are equivalent if µi(p) = µj(p) for all places p of N0. Both the PT and
AC transformations (section 4.2) perform transition splits. A transition ti may be split in more

than just one iteration, the transitions ti,k (where ti,k resulted by splitting ti) may also be split in

subsequent iterations, and so on. We denote by σ0,j(t) an arbitrary transition sequence of Nj such
that (a) σ0,j(t) enumerates the transitions (including t itself) in which t of N0 is successively split
until (and including) the iteration j − 1, and (b) valid markings µ of Nj exist such that µ enables
σ0,j(t). In this way firing the sequence σ0,j(t) in Nj corresponds to firing t in N0. If t is not split,
we let σ0,j(t) = t. The notation σi,j(t) for i < j and t in Ni, is similarly defined by taking Ni
instead of N0. If σ = t1t2t3 . . ., we let σi,j(σ) = σi,j(t1)σi,j(t2)σi,j(t3) . . .. For instance, in Example
5.1 σ0,2(t2) = t2,1t2, in Example 5.2 σ0,1(t4) is any of t8t9t4 and t9t8t4 and σ2,3(t10) = t14t10. Also,

we let Ni = (Pi, Ti, Fi,Wi).
The T -liveness enforcement procedure may terminate at either of step B or step F. The procedure

terminates at step B when no solution exists, as stated in the next result.

Proposition 6.1 The procedure terminates at step B iff there is no initial marking for which a

T -liveness enforcing supervisor exists.

The proof of Proposition 6.1 results easily from Lemma 3.1. When the procedure terminates at

step F, we say that it generates a T -liveness enforcing supervisor. The supervisor is obtained

by enforcing Lµ ≥ b on the Petri net and is defined for all initial markings µ0 satisfying L0µ0 ≥ b0
and Lµ0 ≥ b. The next result states that the supervised Petri net is indeed T -live for all such
initial markings µ0.

Theorem 6.1 The supervisors generated by the T -liveness procedure enforce T -liveness.

12

M.V. Iordache, P.J. Antsaklis, “T-Liveness Enforcement in Petri Nets Based on Structural Net Properties," 
Proceedings of the 40th IEEE Conference on Decision and Control, pp. 4984-4989, Orlando, FL, December 4-7, 
2001.



Proof: Let Nk be the Petri net at the last iteration. By construction, every marking µ of N0
which satisfies the constraints L0µ ≥ b0 and Lµ ≥ b has an equivalent marking in Nk such that
all active siphons of Nk are not empty. For such a marking Nk is TAk -live, by Theorem 3.1, where
TAk is the set of transition of the active subnet NAk . Assume that from an initial marking µ0 of
N0 satisfying L0µ0 ≥ b0 and Lµ0 ≥ b the supervised net (let it be NS) reaches a marking µ such
that the transition t ∈ T0 ∩ TAk is dead. (Note that T ⊆ T0 ∩ TAk .) We show that t dead leads to
contradiction. Let µ0,k and µk be the equivalent markings of µ0 and µ in Nk. Because µk is valid,
µk enables a transition sequence σ in Nk which includes the transitions of σ0,k(t). Let TR be the
set of transitions that appeared by split transition operations in all iterations. Let C be the set of
places added to the net as control places. It can be shown by induction on k that firing any t ∈ TR
always reduces the marking of some places in P0∪C. However, firing t ∈ T0 (note that T0 = Tk \TR)
may increase the marking of some places in P0 ∪ C. Because the total marking of P0 ∪ C is finite, σ
must include transitions t ∈ T0. Let t1 be the first transition in T0 that appears in σ. Then, it can
be shown that σ contains a subsequence σ0,k(t1) such that the transitions of σ0,k(t1) other than t1

appear before t1 in σ. Since all transitions of σ before t1 are in TR, and firing them only decrease

markings of P0 ∪ C, σ0,k(t1) is enabled by µk. Let t2 be the next transition of σ which is in T0.
Similarly, σ0,k(t1)σ0,k(t2) is enabled by µk. We continue this way and eventually find tj in σ and

in T0 such that tj = t. We have that µk enables σ0,k(t1)σ0,k(t2) . . . σ0,k(tj). But this implies that µ

enables t1t2 . . . tj, and since tj = t, t is not dead in NS , which is a contradiction. 2

Theorem 6.2 Given T and a target Petri net, if the T -liveness procedure generates a supervisor

and the target net has a single T -minimal active subnet, the supervisor is least restrictive.

Proof: Note that when µ0 and µ0,1 are equivalent, (N0, µ0) cannot be made T -live if (N1, µ0,1)
cannot be made T -live. Indeed, assume the contrary. Then µ0 enables an infinite transition

sequence σ in which all transitions of T appear infinitely often. But this implies that σ0,1(σ) is also

enabled by µ0,1, and therefore N1 is also T -live. Next we note that (Ni, µ0,i) cannot be made T -live
if (Ni+1, µ0,i+1) cannot be made T -live, where µi+1,0 is the equivalent marking of µi,0. Assume
the contrary. Let σ be an infinite firing sequence enabled by µi,0 such that all transitions of T

occur infinitely often in σ. Since (Ni+1, µ0,i+1) cannot be made T -live, σ′ = σi,i+1(σ) is not enabled
in Ni+1. Then σ = σ1t1σ2, µ0,i σ1→ µ1, µ0,i+1 σi,i+1(σ1)−→ µ′1, µ1 enables t1, but µ′1 does not enable
σi,i+1(t1). This corresponds to the following: Ni has an active siphon S1 which is controlled in Ni+1
with C1 and µ

′
1(C1) does not allow σi,i+1(t1) to fire. Hence t1 ∈ C1• was satisfied when C1 was

added to Ni. This implies t1 ∈ S1•. Firing σi,i+1(t1) in Ni+1 produces the same marking change
for the places in Pi as firing t1 in Ni. Since σi,i+1(t1) is not allowed by µ′1(C1) to fire, firing t1 from
µ1 empties S1. Indeed, otherwise firing σi,i+1(t1) would not empty S1 and so µ

′
1(C1) would allow

it. Since t1 is fired in the sequence σ = σ1t1σ2, S1 is an empty active siphon of (Ni, µ1).
An empty active siphon implies a set Tx of dead transitions from the active subnet. Therefore the
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transitions in Tx do not appear infinitely often in σ. Let Tx1 = {t ∈ TA1 : ∃tu ∈ σ1,i(t) and tu ∈ Tx}.
The active subnets NAi for i > 1 are computed using the update algorithm of section 4.4, so
Tx1 ⊆ TA1 . Using the same construction as in the proof of Theorem 6.1, the projection of σ on T1
(let it be σ1) is enabled by µ1,0, where µ1,0 is the restriction of µi,0 to the places of P1. Note that

the transitions of Tx1 do not appear infinitely often in σ1. We apply Lemma 3.1 for N1 and σ1, and
using the notation of Lemma 3.1, we let TAx = ‖x‖; TAx defines an active subnet and T ⊆ TAx , as all
transitions of T appear infinitely often in σ1. However T

A
1 is not a subset of T

A
x , for Tx1 ⊆ TA1 \TAx .

Therefore NA1 is not the single T -minimal subnet, and this is a contradiction.
Assume that N0 can be made T -live for a marking µ0 which does not satisfy all constraints Lµ ≥ b
and L0µ ≥ b0. Let i be the first iteration in which an inequality l′1µ ≥ b1 is added such that its
restriction l1µ ≥ b1 to P0 is one of the inequalities of Lµ ≥ b and L0µ ≥ b0 not satisfied by µ0.
The markings forbidden at every iteration i are those for which there are empty active siphons.

Therefore Ni has an empty active siphon for µ0,i, where µ0,i is the equivalent marking of µ0 in Ni.
By the paragraph above, this implies that (Ni, µ0,i) cannot be made T -live, and by the first part
of the proof this implies that (N0, µ0) cannot be made T -live, which is a contradiction. Therefore
all T -liveness enforcing supervisors forbid the markings such that Lµ 6≥ b or L0µ 6≥ b0. 2

7 Final Remarks

The procedure is able to find out immediately whether a T -liveness supervisor exists (Proposi-

tion 6.1). However the construction of the supervisor may not always terminate. Let TA be the

transition set of the active subnet NA0 of the target net N0. The proof of Theorem 6.1 guarantees
not only T -liveness but also TA-liveness (T ⊆ TA). Furthermore, there is a single TA-minimal
active subnet and so, by Theorem 6.2, the supervisors are always least restrictive with regard to

TA-liveness. This tells us that the procedure cannot terminate for the problems in which the least

restrictive TA-liveness supervisor is not representable as a set of linear marking inequalities.

The modification of the liveness procedure in [8] for guaranteed termination is also applicable to the

T -liveness procedure of this paper. The modification may affect the permissivity of the T -liveness

supervisor and applies to bounded Petri nets.

With regard to Theorem 6.2, note that in the case of liveness enforcement (T = T0), the whole net

is the only T -minimal active subnet, so the generated supervisors are least restrictive.

Finally, to extend the procedure to Petri nets with uncontrollable and unobservable transitions,

we use the concept of admissible constraints [10]. Thus, we check for each siphon whether the

constraint of (1) is inadmissible with respect to N0. If this is the case, we transform (1) to an
admissible constraint of the form ∑

p∈S
αpµ(p) ≥ 1 (5)
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where, αp ∈ Z+ and at least two αp are nonzero; then we enforce (5) instead of (1). Failure to
find an admissible constraint means failure of the procedure to synthesize a T -liveness supervisor.

While T -liveness enforcement can still be guaranteed, Theorem 6.2 is much harder to extend as its

proof relies on αp > 0 ∀p ∈ S.
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