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Abstract

This paper provides an approach to optimal con-
trol of switched systems with internally forced switch-
ings (IFS). For such systems, one can only control the
continuous input. But when the system state trajec-
tory evolves under the continuous control, a switching
sequence will be generated implicitly. Many practical
problems only involve optimization where the number
of switchings and the sequence of active subsystems are
specified. This is the stage 1 optimization we study in
detail in this paper. In our previous papers, we pro-
posed an approach for solving optimal control problems
for switched systems with externally forced switchings
(EFS). In this paper, we extend such an approach to
problems with IFS. The approach first transcribes a
stage 1 problem into an equivalent problem parameter-
ized by the switching instants and then the values of
the derivatives of the optimal cost with respect to the
switching instants are obtained based on the solution of
a two point boundary value differential algebraic equa-
tion formed by the state, costate, stationarity, bound-
ary equations and the equations for the state and the
costate at the switching instants, along with their dif-
ferentiations. With the knowledge of the derivatives,
nonlinear optimization methods can then be applied to
find the implicitly-generated optimal switching instants
along with the corresponding continuous input. An ex-
ample is shown to illustrate the results.

1 Introduction

A switched system is a particular kind of hybrid sys-
tem that consists of several subsystems and a switching
law that orchestrates the active subsystem at each time
instant. Switchings can be classified as externally forced
switchings (EFS) and internally forced switchings (IFS).
Many real-world processes such as chemical processes,
automotive systems, and electrical circuit systems, etc.,
can be modeled as switched systems.

Optimal control problems for switched systems,
which are one of the most challenging and important
classes of problems for such systems, have attracted the
attention of researchers recently. Many literature re-
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sults have appeared for problems with EFS only (see
e.g., [3, 5, 7, 8]). In our previous papers [11, 12], we also
proposed an approach to such problems. However, theo-
retical or practical results for optimal control of switched
systems with IFS have rarely be reported in the litera-
ture (see e.g., [1, 4, 6, 9]; [1, 6] deal with discrete-time
problems and [4, 9] provide some theoretical results).
The difficulty in solving such problems lies in the fact
that the switching sequence is generated implicitly along
with the systems state trajectory evolution.

In this paper, we study optimal control problems for
switched systems with IFS. A conceptual algorithm is
first presented which relates the IFS problems and the
EFS problems. Many practical problems only involve
optimization where the number of switchings and the
sequence of active subsystems are specified. We call
such problems stage 1 problems similar to the EFS case.
The main idea for solving such stage 1 problems is as
follows. We first regard an IFS problem as an EFS
problem with additional state constraints at the switch-
ing instants and solve the implicitly-generated optimal
switching sequence along with the corresponding control
input and then verify the results back in the IFS case.
In order to find the implicitly-generated optimal switch-
ing sequence, the derivatives of the optimal cost with
respect to the switching instants need to be known. It
is shown how the approach in [11, 12] can be extended
to such problems to obtain such derivative values. Note
here at each switching instant, the system’s state must
be restricted to a switching hypersurface (which is not
required for EFS problems in [11, 12]). Our approach
first transcribes a stage 1 problem into an equivalent
problem parameterized by the switching instants and
then the values of the derivatives are obtained based on
the solution of a two point boundary value differential
algebraic equation (DAE) formed by the state, costate,
stationarity, boundary equations and the equations for
the state and the costate at the switching instants, along
with their differentiations.

2 Problem Formulation

2.1 Switched Systems with IFS

A switched system is a particular kind of hybrid sys-
tem that consists of several subsystems and a switching
logic among them. According to the different nature
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that a switching might be generated, we classify switch-
ings into externally forced switchings (EFS) and inter-
nally forced switchings (IFS) (see Chapter 2 of [10] for
more details). In this paper, we focus on switched sys-
tems with IFS only which are defined as follows.

Definition 2.1 (Switched System with IFS) A
switched system with IFS is a 3-tuple S = (D,F,L)
where

e D = (I,E) is a directed graph indicating the discrete
structure of the system. The node set I = {1,2,--- , M}
is the set of indices for subsystems. The directed edge
set E is a subset of I x I — {(i,4)|i € I} which contains
valid internal events. If an event e = (i1,142) takes place,
the system switches from subsystem iy to is.

o F={fi: XixR™ xR — R"|i € I} where f; describes
the vector field for the i-th subsystems & = f;(x,u,t).
Here X; C R™ is the state constraint set for the i-th
subsystem.

o L={T.JT, CR",0 #£T, C X;, N Xiy,e = (i1,in) €
E} provides a logic constraint that relates the continuous
state and mode switchings. When the state trajectory
intersects T'e, e = (i1,i2) at subsystem i1, the event e
must be triggered and the system is forced to switch to
subsystem io. Furthermore, in this paper we consider I,
in the form of T. = {z|y.(z) = 0,7, : R* - R}, O

In view of Definition 2.1, a switched system S with
IFS is a collection of subsystems F related by a switch-
ing logic described by D and £. The only control in-
put for such a system is its continuous input. Although
one can only directly control & by the continuous input
u(t),t € [to,tyr], a switching sequence will be generated
implicitly along with the evolution of the system state
trajectory. We define a switching sequence as follows.

Definition 2.2 (Switching Sequence) For a
switched system S, a switching sequence o in [to,tf] is
defined as

o = ((to,io),(tl,el),(t2,62),--- ,(tK,eK)), (2.1)

with 0 < K <00, tg <t <ty <--- <tg < ty, and
io €1, ex = (ig_1,ir) € E fork=1,2,--- K.

We define X4, ¢, = {o’s in [to,ts]}. O

A switching sequence o as defined above indicates
that subsystem i, is active in [tg,tg4+1). Note that in
Definition 2.2, we only allow nonZeno sequences which
switch at most a finite number of times in [to,ts],
though different sequences may have different numbers
of switchings.

2.2 An Optimal Control Problem

Now we formulate the optimal control problem we
will study in this paper. In the sequel we denote
Uit t 5] 2 {ulu € Cplto, ts],u(t) € R™};ie., Uy, e, is the
set of all piecewise continuous functions for ¢ € [to,tf]
that take values in R™.

Problem 2.1 (Systems with IFS) Consider a
switched system S with IFS. Given a fized time interval
[to,tr], find a continuous input u € Uy, ;) such that
the corresponding continuous state trajectory x departs
from a given initial state x(ty) = wo with initial active
subsystem ig and meets an (n — ly)-dimensional smooth
manifold Sy = {z|¢s(x) =0,¢; : R* — R} at t; and

T=vat)+ [ La@aw. a2

to
18 minimized. O

Problem 2.1 is a basic optimal control problem with a
fixed end-time where the final state is on a smooth man-
ifold. In the sequel, we assume that f, L, ¢¢, 1) possess
enough smoothness properties for our derivations.

3 A Conceptual Algorithm for Stage 1 Problem

In [11, 12], we proposed a two stage optimization
methodology and a two stage algorithm for optimal con-
trol problems of switched systems with EFS (note that
a similar hierarchical decomposition method was devel-
oped independently in [4]; see [11] for comments on the
similarity and difference between our method and that
in [4]). In particular, we focused on stage 1 optimiza-
tion where the number of switchings and the sequence of
active subsystems are given and decompose it into the
following two substages.

Stage 1(a). Fix the total number of switchings to be
K and the sequence of active subsystems and let
the minimum value of J with respect to u be a
function of the K switching instants, i.e., J; =

Ji(t) for K > 0 (here # = (ti,ts,--- ,tx)T and
FeT 2 {(t1, - tx)T|to <t < -+ < i < tf}).
Find J;.

Stage 1(b). Minimize J; with respect to .

The following conceptual algorithm was then pro-
posed in [11, 12] for stage 1 problems.

Algorithm 3.1 (A Conceptual Algorithm)
(1). Set the iteration index j = 0. Choose an initial #/.

(2). By solving an optimal control problem (stage
1(a)), find J; (#).

(3). Find 22(#7) and Z21(#9).

(4). Use the gradient projection method or the con-
strained Newton’s method (if 88?; (t7) is known)
to update # to be #/+! (see [2] for more on the
methods). Set the iteration index j = j + 1.

(5). Repeat Steps (2), (3), (4) and (5), until a prespec-
ified termination condition is satisfied. |
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As pointed in [11, 12], the difficulty for Algorithm

3.1 lies on how to obtain % and 8;5;. To address

this difficulty, an approach based on the solution of a
two point boundary value differential algebraic equation
(DAE) was proposed in these papers for deriving the
values of 22+ and 8;:21.

In this paper, we focus on stage I problems for
switched systems with IFS in which we need to find an
optimal continuous input and optimal switching instants
if a given number of switchings and a given sequence
of active subsystems are prespecified. Note that many
practical IFS problems are in fact stage 1 problems. For
example, the speeding-up of an automatic transmission
automobile only requires switchings from gear 1 to 2
to 3 to 4 (although the switchings cannot be externally
forced by the driver). It can be seen that the decompo-
sition of stage 1 into two substages and the conceptual
algorithm 3.1 are still applicable to problems with IFS.
However, we point out that the IFS problems are more
difficult due to the following reasons. First, the state x
must be in the set I, when event e takes place; this puts
more constraints on the problem. Second, the switch-
ing sequences can depend on the continuous input in a
complicated way (note that for problems with EFS; the
switching sequence and the continuous input are inde-
pendent and can be generated separately). To address
these difficulties, in this paper, we propose the following
idea of a method which leads to an approach based on
an extension of the results for EFS problems.

Method 3.1 (A Method for IFS Problems)

1. Denote in a redundant fashion that an optimal
solution to the IFS problem contains both an op-
timal continuous input and an optimal switching
sequence (starting at subsystem i), i.e., regard an
IFS problem as an EFS problem with additional
state constraints at the switching instants. Solve
the corresponding EFS problem.

2. Verify the validity of the solution for the IFS prob-
lem (i.e., if the system under the continuous in-
put can generate the corresponding switching se-
quence). O

Step 1 in the above method can be solved using ex-
tensions of the methodology in [11]. Note that such an
extension must address the additional requirement in an
IFS problem which demands that the system’s state to
be restricted to a switching hypersurface at each switch-
ing instant (it is not required for EFS problems in [11]).

Necessary Conditions for Stage 1(a)

Stage 1(a) is in essence a conventional optimal con-
trol problem which seeks the minimum value J with
respect to w under a given switching sequence o=
((to,%0), (t1,€e1), -+, (tr,ex)). The only difference be-
tween stage 1(a) and most of the problems in many
optimal control texts is that in stage 1(a), the system

dynamics changes with respect to different time inter-
vals. However, it is not difficult to use the calculus of
variations techniques to prove the following necessary
conditions.

Theorem 3.1 (Nec. Cond. for Stage 1(a))
Consider the stage 1(a) problem for Problem 2.1.
Assume that subsystem k is active in [tg_1,tr)
for 1 < k < K and subsystem K + 1 in
[tr,tx4+1] where txy1 = ty. Also assume that
z €Ty = {z|y(z) = 0,7 : R* — R*} at the switching
instant ty. Let u € Uy, ¢, be a continuous input such
that the corresponding continuous state trajectory x
departs from a given initial state x(to) = xo and meets
Sy ={z|¢s(z) =0,¢07 : R* = R} at ty. In order that
u be optimal, it is necessary that there exists a vector
function p(t) = [p1(t),--- ,pn(t)]T, t € [to,ts], such that
the following conditions hold

(a). For almost any t € [to,ty] the following state and
costate equations hold

U N ORTONY G CES
dIC’l_Sf) - _[%—I:(a:(t),p(t),U(t),t)]Ta (3-2)

where H(x,p,u,t) 2 L(z,u,t) + pT fiu(z,u,t) for
t € [tp—1,tr) (k=K +1 fort€ [tr,tr]).

(b). For almost any t € [to,ty], the stationarity condi-
tion holds

0=1 ), o0, a0, 0. 33

(c). Atty, the function p satisfies

%
ox

0oy

pltr) = [ (2(t))]" + [W@(W))]TA (3-4)

where X is an ly-dimensional vector.

(d). At any tx, k=1,2,--- , K, we have

pltt) = pt=) + (L @) v =0 (35)

where v, is an l-dimensional vector.

Proof: See Chapter 6 of [10]. i
The above necessary conditions will be used in Sec-
tion 5 in the development of a method for finding 222

ot
2
‘98£J21. In general, it is difficult or even impossible

to find an analytical expression of .J; (£) using the above
conditions. The reason is that conditions (a)-(d) present
a two point boundary value DAE which, in most cases,
cannot be solved analytically. However, the above DAE
can be solved efficiently using many numerical methods
(e.g., shooting methods).

and
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4 An Equivalent Problem Formulation Based
on Parameterization of the Switching Instants

In the following two sections, an approach to stage
1 optimization based on equivalent transcription is pre-
sented (this is an extension of the approach in [11, 12]).
In this section, we transcribe a stage 1 problem into
an equivalent optimal control problem parameterized by
the unknown switching instants. For simplicity of nota-
tion, in the followings, we concentrate on the case of
two subsystems where subsystem 1 is active in the in-
terval t € [0,t;) and subsystem 2 is active in the interval
t € [t1,ty] (t1 is the switching instant to be determined).
We also assume that S; = R™ (for general Sy, we can in-
troduce Lagrange multipliers and develop similar meth-
ods). We consider the following stage 1 problem.

Problem 4.1 For a switched system

z = filz,
& = fQ(:E:
find an optimal switching instant t, and an optimal con-
tinuous input u(t), t € [to,ty] such that x(t) € Int(Xq)

for t € [to,t1), z(t) € Int(Xs) fort € (t1,t2], z(t1) € Iy
and the cost functional

ut), 0<t <t (4.1)
U,t), t1 Stgtfa

T = d(a(ts)) +/t " L(w,u,t) dt (4.3)

is minimized. Here to, t; and x(ty) = xo are given. O

We transcribe Problem 4.1 into an equivalent prob-
lem as follows. We introduce a state variable x,,41 cor-
responding to the switching instant ¢;. Let x4 satisfy

dmn«kl _
It =0 (4.4)
Tnt1(0) = & (4.5)

Next a new independent time variable 7 is introduced.
A piecewise linear correspondence relationship between
t and 7 is established as follows.

Hr) = { o+ (@ne1 —to)T, bsr

Enst + (b — nsr)(r — 1), (4.6)

<r<l1
<r<2
Clearly, 7 = 0 corresponds to t = tg, 7 = 1 to t = t1,
and 7 = 2 to t = ty.

By introducing =1 and 7, Problem 4.1 can be tran-
scribed into the following equivalent problem.

Problem 4.2 (An Equivalent Problem) For a sys-
tem with dynamics

dz(T)

0 o e thEwE) @)

% - 0 (4.8)
in the interval 7 € [0,1) and

O~ - ut@)  (09)

dinii _ (4.10)

dr

in the interval T E [1,2], find an optimal x, 41 and an
optimal u(t), 7 € [0,2] such that z(r) € Int(Xy) for

€ 10,1), z(r) € Int(Xs) for 7 € (1,2], z(7) € Ty for
7 =1 and the cost functional

J o= @)+ / (ns1 — to) Lz, u, t(r)) dr

+/1 (t; — ns1)L(x,u, t(r)) dr (4.11)

is minimized. Here ty, x(0) = 2o are given. i
Remark 4.1 Problems 4.2 and 4.1 are equivalent in the
sense that an optimal solution for Problem 4.2 is an
optimal solution for Problem 4.1 by a proper change
of independent variables as in (4.6) and by regarding
ZTpy1 = t1, and vice versa. O
Remark 4.2 Problem 4.2 is conventional because it
has fixed time instant when the system dynamics
change. In fact, because z,41 is an unknown constant
throughout 7 € [0,2], it can be regarded as a conven-
tional optimal control problem with an unknown pa-
rameter z,41. In the sequel, we regard it as an optimal
control problem parameterized by x,4+1 with cost (4.11)
and subsystems (4.7) and (4.9). i

5 A Method Based on Solving a Boundary
Value Differential Algebraic Equation

In this section, based on Problem 4.2, we develop a
method which can give us the value of ‘;{1 It is based on
the solution of a two point boundary value differential
algebraic equation (DAE) formed by the state, costate,
stationarity, boundary equations and the equations for
the state and the costate at the switching instants for
Problem 4.2, along with their differentiations with re-

spect to the parameter z,41. In the sequel, we denote

%, gi as row vectors and we denote 8f as an n Xn ma-
trix whose (i1, i2)-th element is af-l . Slmllar notations
2

a
apply to %’;{, %ff, 8—5 etc.

Consider the equivalent Problem 4.2, define

Aeuren) £ (@ —to) file,ut(r), (5.1)
folo,u, 7, a001) 2ty —wn) ol u, (7)), (5.2)
Li(@,u,m,20s1) 2 (@ng1 —to)L(z,u,t(r)), (5.3)
Lo u, 7, 2ns1) 2 (t; — @mi1)L(@,u,t(r)). (5.4)

Regarding z,41 as a parameter, we can denote the
optimal state trajectory as z(7,x,+1). We define the
parameterized Hamiltonian as

Li(z,u, 7y @ng1) + p* fr(@,u, Ty o),

s for 7 € [0,1),
Ly(z,u, T, Tny1) +pr2(:E,u, Ty Tntl),

for 7 € [1,2].

H(ﬁ,p, Uy T, $n+1)

(5.5)

Assume that a parameter 1 is given, then we can

apply Theorem 3.1 to Problem 4.2. The necessary con-
ditions (a) and (b) provides us with

State eq: 9z _ (%[:) = fi(z,u, 7, Tni1) (5.6)

or
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8}) 8H _ 8f1 8L1

Costate eq: 2~ = (8:1:) = (8:1:) p— (695) (5.7)
Stationarity eq: 0 = (%—Z)T = (%)Tp-l- (%)T (5.8)
in 7 €]0,1) and
State eq: % (‘ZIZ V= Bo(ayu,mamss)  (5.9)
Costate e 22 = ~(9yr Oy, Oy 5
Stationarity eq: 0 = (90)T = (%%)TH (%—%)T (5.11)

in 7 € [1,2]. Note that the p and u corresponding
to the optimal solution are also functions of 7 and
Zp+1. Therefore, in the following, we denote them as
b= p(Ta mn-ﬁ-l) and u = U(Ta wn+1)-

From the necessary condition (c) of Theorem 3.1, we
obtain the boundary conditions

z(0,2n41) = xo, (5.12)
o) = (LE@r)’ (19)

The necessary condition (d) tells us that p(7, Zp11)
has a discontinuity at 7 = 1 for fixed z,11 (note this is
different from EFS problems), i.e.,

0
P, @n1) = P, 2air) = (G (@1, 200)) v (@),
(5.14)
Moreover, here we also require that
Y1(2(1,Zn+1)) = 0. (5.15)

(5.6)-(5.8), (5.9)-(5.11) along with conditions (5.12)-
(5.15) form a two point boundary value DAE with dis-
continuities which is parameterized by z,41. For each
given z,.1, the DAE can be solved using numerical
methods. Now assume that we have solved the above
DAE and obtain the optimal (7, Zp11), p(T, Tpn4+1) and
u(7T, Zp41), we then have the optimal value of J which
is a function of the parameter x, 1

1
Ji(Tn+1) = Y(@(2, Tnt1)) +/ Li(z,u, 7, Tn41) dr
0

2
+/ Lo(z,u, 7, Tny1) dr. (5.16)
1

Differentiating J; with respect to x,,41 provides us with

oY (z(2,zy, oz (2,z,
di{.lu — ( (Bm +1)) ( +1) +f x ut ))

+(a:n+1 — t0) (55 5 + gg T + TS i L)) dr
+ [P~ Lz, u, (7)) + (tf — Tngr ) (3L 52 2+ e
+(2- T) &) dr.

(5.17)
So we need to obtain the function %ﬁ"fl) and
%ﬁ"fl) (here we assume that x,,; is fixed) in or-

der to obtain the value de11_ By differentiating the

above equations (5.6)-(5.8) and (5.9)-(5.11) with respect
to Zp41, we obtain

a o _ o
5T(8m.f+1) - an+1( ) fl ($n+1_ (5 18)
—to )(Bfl _ Oz of1 _du +T8f1) .

oz 8zn+1 du OTp41 n41 )

B () = g (88) = ~(5)p — (37 ~ (@i
) T f o T To%f 0 T
_to)[(‘%) axnpﬂ + 0 5 EH) +( axa; axnuﬂ)
T8%fI\T 2L 8 8’L 8
+7(p” 5758) " 532 8znz+1 dzou aznuH +7 6z8t )
(5.19)
o) ) )
0=( fl) p+ ( )T + (Tn1 — tO)[(%)T@mnPJr1
il z il u 8
+( Tauglm 5zan+1 )T + (pT Bufl 518 +1 )T + T(pT Buglt)T
%L 8 %L &
+6u8z 6:1::11 + Bu? dx u+1 +7 8u6t]
(5.20)
for 7 € [0,1) and
%(a:z ) = ama (B_i) = _f2 + (tf
"t el 05 ou afs (5.21)
_$n+l)(_z Oz 41 + Bu Ty 1 + (2 - T)W)?
CIAR:) _ 8 (9pN _ (Ofo\T OLN\T
o7 (Gan) = ~ e (ar) = (;a%) p+(5:) —(tf
) o ) o o
_$”+1)[(%)Zax P+1 + ( s Bzfz oz Z+1 )T + (pT 6z£i 6:1:nu+1 )T
5 T 2 u
(2 - T)( g ) + gmg Bmé.)n_*_l + ;zau Bm‘?n_*_l
+2-1)Z ]

(5.22)

0= —(%%)TP - (?,ﬁ)T + (Tp41 — tO)[(%%)Tazaan
+(pT dudz afﬁl )"+ (pTE% axauﬂ '+ 2 -7)p" 8u6t)

’L oz 8%L _du 8L
+8u6:1) 21 t 5z e "y + 2= 7) gl

(5.23)
for r € [1,2].

2
In the above equations, %jg is an n X n X n array

L . 0% .
whose (j1, 2, j3) element is m and the notation
Tt92f1 1930

0z2 Oz,

denotes an 1 x n row vector which has its

9f15, Oy
Jo-th element as 2]1 1 2]3 o 73%23%3 E—

fi,;, is the ji-th element of fi, p;, is the j;-th element
of p and z;, is the jo-th element of z. Other notations
can be interpreted similarly (see [10] for details).

Differentiating (5.12), (5.13) and (5.14) with respect
to Zp41, we obtain

where

Oz (0,z,
) — ), (5.24)
op(2,zy ERIC 2,z, oz (2,z,
pézn+-1;.1) P ( émZ +1)) «igmn.;l) (5_25)
52 +1(1+ $n+1) af—’;l(l— Tpt1)
~ (T (1) G (2(1, Tnt1)) i) (5.26)

—(F (anﬂ)))Td;i;H (nt1)

T 5% Y1 _ Oz
Ui 2% Bamit denotes an

which  has its  js-th

%1, 9"m1,4y Oy . . s
2]1 1 2]3 L VLt By, Ba gy Danat The differentiation of

(5.15) is

where 1 X n row

vector element as

(9’)/1 or _
%(i(lwnﬂ))m(l,fmtl) =0.

(5.27)
It can now be observed that
(5.11) and (5.18)-(5.20), (5.21)-(5.23) along with the
boundary conditions (5.12), (5.13) and (5.24), (5.25)
and with the equations for the costate and the
state at the switching instant (5.14)-(5.15), (5.26)-
(5.27) form a two point boundary value DAE

(5.6)-(5.8), (5.9)-
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for l‘(T, $n+1)7 p(Ta $n+1)7 U(Ta -Tn+1)7 14! (anrl) and

Oz(7,zn op(r,2n ou(r,n d n H
w(g;ir:rl) pé;i;rl) u((9‘;:+1+1) leiiJ:l . By solving

them and substitute the result into (5.17), we can obtain
dJ

dmnil .

Remark 5.1 The approach developed in this section

can be extended in a straightforward manner to the case

of several subsystems and more than one switchings.

) ) )

The value of % can also be similarly obtained. See
1

Chapters 8 and 9 of [10] for details. O

Remark 5.2 Note that in the solution process of the
two point boundary value DAE, we have not enforced
the requirement (7, 2,41) € Int(X;) for 7 € [0,1) and
(T, Tny1) € Int(Xy) for 7 € (1,2]. However, after a so-
lution has been found, we need to verify these conditions
for the result. This is the second step of Method 3.1 in
Section 3 which verifies the validity of the solution. O

6 An Example

Now we illustrate the effectiveness of the approach
proposed in this paper using an example.

Example 6.1 Consider a switched system with IFS
consisting of

subsystem 1: ¢ =z + 2u, (6.1)

subsystem 2: ¢ = 0.5z + u. (6.2)

Assume that to = 0, ty = 2 and the system state starts
at z(0) = 1 following subsystem 1 (X; = {z € Rjz < e}
and Xo = {z € Rlz > e}). Assume that upon hit-
ting the set v1 = {z € Rjz = e}, the system switches
from subsystem 1 to 2. Also assume there is only one
switching which takes place at time #; (0 < #; < 2).
Find an optimal input » such that the cost functional
J=1(z(2)—e?)? + %fOZ u?(t) dt is minimized.

We use the approach developed in this paper and
solve this stage 1 problem. Choose an initial nominal
t; = 1.3. We find that the optimal switching instant
is t; = 0.9997 and the corresponding optimal cost is
1.0092 x 10~ 7 after 6 iterations. The corresponding v; =
9.7655 x 10~°. The corresponding continuous control
and state trajectory are shown in Figure 1. Note that
the theoretical optimal solutions for this problem are
u’?* = 0 and JoP' = 0 (the corresponding t°*" = 1), so
the result we obtain is quite accurate. O

7 Conclusion

In this paper, an approach to optimal control of
switched systems with IFS is proposed. We extend our
earlier approach for EFS problems to IFS problems. The
approach is based on solving a two point boundary value
DAE formed by the state, costate, stationarity, bound-
ary equations and the equations for the state and the
costate at the switching instants, along with their differ-
entiations. Derivatives of the optimal cost with respect
to the switching instants can be obtained accurately and
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Figure 1: Example 6.1: (a) The control input. (b) The
state trajectory x(t).

therefore nonlinear optimization algorithms can be used
to find the implicitly-generated optimal switching in-
stants along with the corresponding continuous input.
Further research topics include the incorporation of the
state constraints in stage 1(a) in our approach, so as to
guarantee the validity of the method (therefore elimi-
nate the verification process).
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