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Abstract 
In this paper the control of a continuous linear plant 
where the state sensor is connected to a linear 
controller/actuator via a network is addressed. The 
work focuses on reducing the network usage using 
knowledge of the plant dynamics. Specifically, the 
controller uses an explicit model of the plant that 
approximates the plant dynamics and makes 
possible the stabilization of the plant even under 
slow network conditions. Necessary and sufficient 
conditions for stability are derived in terms of the 
update time h and the parameters of the plant and of 
its model. The deterioration of behavior when 
either h or the modeling error increase is explicitly 
shown. 

1 Introduction 
The use of networks as a media to interconnect the 
different components in an industrial control 
system is rapidly increasing. For example in 
geographically distributed systems the number 
and/or location of different subsystems to control 
make the use of single wires to interconnect the 
control system prohibitively expensive. In addition, 
the flexibility and ease of maintenance of a system 
using a network to transfer information is 
appealing. Systems designed in this manner allow 
for easy modification of the control strategy by 
rerouting signals, having redundant systems that 
can be activated automatically when component 

failure occurs, and in general they allow having a 
high level supervisor control over the entire plant. 

A network introduces bandwidth restrictions. To 
overcome these bandwidth constraints several 
approaches have been proposed. In [6] Brockett 
introduces the notion of minimum attention control 
that attempts to reduce the time and state feedback 
dependence of the control law. This can be viewed 
as a tradeoff between open loop and closed loop 
control. 

Bauer et al. analyze the problem on a network with 
random delays in [3]. The paper proposes the use of 
a Smith predictor in a discrete framework to 
eliminate the delay induced by the network. The 
Smith predictor uses knowledge about the plant to 
propagate forward the delayed information from the 
sensor and make it accessible to the controller. 

 In [24, 21], Walsh et al. introduces the notion of 
maximal allowable transfer interval, MATI, to 
place an upper bound on the time between transfers 
of information from the sensor to the controller. In 
this case the controller is designed without taking 
the network into account, a desirable feature. 
However, serious behavior degradation can result if 
the MATI is too large and the network slow. 

In [5] Beldiman, Walsh and Bushnell extend the 
results in [24] to include a state predictor, for LTI 
systems, to estimate the state in between updates.  

In [20] synthesis and existence of a networked 
optimal controller for nonstationary linear 
parameter varying (LPV) systems are shown. 

Other approaches include the study of networked 
systems with transport delays [13], and under noise 
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disturbances [4, 17], quantization effects and 
algorithms [8, 10, 11, 16], and scheduling 
algorithms [9, 18, 12, 22, 23]. 

2 A State Feedback Networked Control 
System 

It is clear that the reduction of bandwidth 
necessitated by the communication network in a 
networked control system is a major concern. This 
can perhaps be addressed by two methods: the first 
is to reduce the number of data packet exchanges 
between the sensor and the controller/actuator. The 
second method is to compress or reduce the size of 
the data transferred at each transaction. 

Actually deployed and popular networks in the 
industry include CAN bus, PROFIBUS, DeviceNet, 
ControlNet, Fieldbus Foundation, and Ethernet 
among others. Each of these protocols and 
standards has very different characteristics such as 
network contention resolution or scheduling 
schemes, transmission media, etc. Among the 
shared characteristics are the small transport time 
and big overhead (network control information 
included in the packet). For example, an Ethernet 
frame with 1 byte of data will have the same length 
as one with 46 bytes of data. Similarly, the CAN 
bus, usually associated with the DeviceNet protocol 
has an overhead of 47 bits or 6 bytes approximately 
for a maximum data size of 8 bytes. This means 
that data compression by reducing the size of the 
data transmitted has negligible effects over the 
overall system performance. So reducing the 
number of packets transmitted brings better 
benefits than data compression. The reduction of 
the number of packets transmitted through the 
network can translate into larger minimal transfer 
times between the components. It is also to be 
noted that any delay in an information transaction is 
usually due to network access contention. This 
translates into what has been already noted in [23]: 
that a sensor with a fast sampling rate can send 
through the network the latest data available 
resulting in a negligible information transfer delay. 
But there will still be contention in the network so 
that, even though the delay is small, the sensor data 
would not be available at all times to the 

controller/actuator. This brings us again to the idea 
of reducing the data transfer rate as much as 
possible. In this manner more bandwidth will be 
available to allocate more resources without 
sacrificing stability and ultimately performance of 
the overall system. 

We will consider the case where the controller and 
the actuator are combined together into a single 
node. That is, the network is between the sensor 
and the controller/actuator nodes. Assuming that 
the controller and the actuator physically coexist is 
reasonable since embedded microprocessors are 
usually incorporated into the actuator to process the 
data received by the network and execute the 
commands received. 

In this paper we will concentrate on characterizing 
the transfer time between the sensor and the 
controller/actuator, which is the time between 
information exchanges. Our goal will be to identify 
the maximum transfer time between the sensor and 
the actuator while keeping the system stable. This 
will reduce the bandwidth required from the 
network and will free it for other tasks such as other 
control loops using the network and/or non-control 
information exchange. In order to increase the 
transfer time we will use the knowledge we have of 
the plant dynamics. The plant model is used at the 
controller/actuator side to recreate the plant 
behavior so that the sensor can delay sending data 
since the model can provide an approximation of 
the plant dynamics. The main idea is to perform the 
feedback by updating the model’s state using the 
actual state of the plant that is provided by the 
sensor. The rest of the time the control action is 
based on a plant model that is incorporated in the 
controller/actuator and is running open loop for a 
period of h seconds. The control architecture is 
shown in Figure1.  

This idea of a tradeoff between open loop and 
closed loop control is related to the minimal 
attention control proposed by Brockett in [6]. One 
of the main differences resides in that minimal 
attention control makes this tradeoff in a 
continuous way. The resulting controller works 
similarly to a sampled data system. The lack of 
awareness of the controller of the intersampling 
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plant behavior usually results in performance 
degradation. In our control architecture the tradeoff 
between open loop and closed loop control is done 
in a “discrete” manner. Having knowledge of the 
plant at the actuator side enables us to run the plant 
in open loop, while the update of the model state 
provides the closed loop information needed to 
overcome model uncertainties and plant 
disturbances. 

 
Figure 1: Proposed configuration of networked 

control system. 

Walsh et al. in [24] uses a similar setup to that in 
Figure 1 except that the controller is a dynamic 
system that receives the output of the plant as a 
direct input to it. The controller can be 
implemented such that it includes knowledge of the 
plant, but it doesn’t implement a state update in the 
same manner the control architecture presented 
here does. The input to the controller is maintained 
the same way as a zero order hold does. If the 
controller were designed without taking into 
account the network it would not achieve the same 
performance which it was designed for. More over, 
the results presented in [24] are only sufficient and 
conservative as it is shown latter on this report. 

Our approach is novel in that it incorporates a 
model of the plant, the state of which is updated 
with the plant’s state. We present a necessary and 
sufficient condition for stability that results in a 
maximum transfer time which depends solely on 
the model inaccuracies. In the absence of plant 

disturbances arbitrarily long transfer times can be 
achieved depending on modeling errors. 

If all the states are available, then the sensors can 
send this information through the network to update 
the model’s vector state. For our analysis we will 
assume that the compensated model is stable and 
that the transportation delay is negligible, which is, 
completely justifiable in most of the popular 
network standards like CAN bus or Ethernet. We 
will assume that the frequency at which the 
network updates the state in the controller is 
constant. The idea is to find the smallest frequency 
at which the network must update the state in the 
controller, that is, an upper bound for h, the update 
time. Usual assumptions include requiring a stable 
plant or a smaller update time than the sampling 
time in the case of a discrete controller. Here we do 
not make any of these assumptions and the plant 
may be unstable. 

This paper is organized as follows: in Section 3 
necessary and sufficient conditions are developed 
for the control architecture showed in Figure 1. 
This is the case where the state vector is directly 
measurable and sent through the network to the 
controller/actuator. It is shown that the networked 
control system depicted in Figure 1 is globally 
exponentially stable if and only if the eigenvalues 
of a test matrix M are inside the unit circle. This 
matrix M depends on the plant dynamics, the model 
uncertainties and the model update time. A numeric 
example with simulations is given in Section 4. 
Existing and future extensions to the results are 
summarized in Section 5. Conclusions are 
presented in Section 6. The Appendix contains the 
proof for the main result in Section 3. 

3 Main Results 
Consider the control system of Figure 1 where plant 
is given by BuAxx += , the plant model by 

uBxAx ˆˆˆˆ += , and the controller by xKu ˆ= . 

Since the sensor has the full state vector available, 
its function will be to send the state information 
through the network every h seconds. The state 
error is defined as ,x̂xe −=  and represents the 
difference between the plant state and the model 
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state. The modeling error matrices 
BBBAAA ˆ~ andˆ~ −=−= represent the difference 

between the plant and the model. Finally, the 
update times are kt , where htt kk =− −1  for all k. 
Since the model state is updated every kt seconds, 

0)( =kte  for ...,2,1,0=k . This resetting of the state 
error every update time is a key factor in our 
control system. 

Now for ),[ 1+∈ kk ttt , we have that: 
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We will now express z(t) in terms of the initial 
condition x(t0). Then we will show under what 
conditions the system will be stable. 

Proposition #1 
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Proof. 

On the interval ),[ 1+∈ kk ttt , the system response is 
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In view of Equation (4) it is clear that we can 
represent the system response as: 
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A necessary and sufficient condition for stability of 
the networked system will now be presented. For 
this the following definition for global exponential 
stability [1] is needed. 

Definition #1 

The equilibrium 0=z  of a system described by 
),( ztfz =  with initial condition 00 )( ztz =  is 

exponentially stable at large (or globally) if there 
exists 0>α  and for any 0>β , there exists 

0)( >βk  such that the solution 

0
)(

000 ,)(),,( 0 ttezkztt tt ≥∀≤ −−αβφ  

whenever β<0z . 

With this definition of stability we state the 
following theorem characterizing the necessary and 
sufficient conditions for the system described by 
Equation (1) to have global exponential stability 

around the solution 0=z . The norm used here is 
the 2-norm but any other consistent norm can also 
be used. 

Theorem #1 

The system described by Equation (1) is globally 
exponentially stable around the solution 
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Proof – See Appendix. 

It can be shown (as in [15]) that the eigenvalues of 
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only if the eigenvalues of 
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inside the unit circle. One can gain a better insight 
of the system by observing the structure of I. To 
start with, we observe that the eigenvalues of the 
compensated model appear in the first term of I. In 
that sense we can see the term 

τττ deKBAee KBAh AAh )ˆˆ(

0
)~~( +− +=∆ ∫  as a 

perturbation over the desired eigenvalues. Even if 
the eigenvalues of the original plant were unstable 
the perturbation ∆ can be made small enough by 
having h and KBA ~~ + small and thus minimizing 
their impact over the eigenvalues of the 
compensated plant. We also observe that if the 
update time h is driven to zero, then ∆=0. Also it is 
possible to make ∆=0 by having a model that is 
exact. This agrees with the intuition that if the 
model has exactly the same dynamics as the plant 
then the system will have the desired behavior 
regardless of how long is the update time h. 

4 Example 
Consider the following unstable plant (double 
integrator): 
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We will use the state feedback controller given by 
Kxu = with [ ]21 −−=K . 

Usually it is assumed that the actuator/controller 
will hold the last value received from the sensor 
until the next time the sensor transmits and a packet 
is received. Under this assumption the 
controller/actuator’s model acts as a zero order hold 
when updated. We will first analyze this situation. 
To do so, we will transform the plant model so that 
it holds the last state update presented to it by the 
network. So the model designed to behave as a zero 
order hold when updated is given by: 

.
0
0ˆ,

00
00ˆ,ˆˆˆˆ 








=








=+= BAuBxAx  

So now we need to search for the biggest h such 

that 














 Λ

00
0

00
0 I

e
I h  has its eigenvalues inside the 

unit circle. In this case Λ  is given by: 



















−−

−−
=








−+

−+
=Λ

2121
0010
2121
0010

~ˆ~~ KBAKBA
BKBKA

 

To do so we plotted the maximum eigenvalue 
magnitude versus the update time. The plot is 
shown in Figure 2. 

From Figure 2 we see that the condition for stability 
is to have h < 1 second. In fact the test matrix M 
will have one eigenvalue with magnitude 1 for h=1 
second. If we use the results by [23] or [24] we 
would have obtained that, in order to stabilize the 
system, we would need to have h<2.1304E-4, 
which is very conservative.  

Simulations of the system with update times of 
2.1304E-4, 0.5, 1 and 1.5 seconds are in Figure 3, 
4, 5, and 6. Note that the plant was initialized with 
an initial condition of [1 1]T. 

 
Figure 2: Maximum eigenvalue magnitude of the 

test matrix M versus the update time h. 

 
Figure 3: System response with h=2.1304E-4 sec. 

 
Figure 4: System response with h=0.5 sec. 
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Figure 5: System response with h=1 sec. 

 
Figure 6: System response with h=1.5 sec. 

It can be seen that for h=1 second the system is 
marginally stable, and for h=1.5 seconds is 
completely unstable. It is also clear that the 
performance obtained with h=0.5 seconds is not too 
different to the one obtained with h=2.1304E-4 
seconds, but the difference in the amount of 
bandwidth used is large. If we were to use Ethernet 
that has a minimum message size of 72bytes 
(including preamble bits and start of delimiter 
fields) the data rate would be 2.7Mbits/sec for the 
case of h=2.1304E-4 seconds, and 1.2Kbits/sec for 
the case of h=0.5 seconds. 

Now using our control architecture, we will use a 
plant model that has a similar structure to the actual 
plant. We will use the randomly perturbed plant 
model: 
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This plant model gives a test matrix M with 
maximum eigenvalue magnitude of 0.7986 for an 
update time of h=1 which was our actual boundary 
for our previous example. The system response is 
pictured in Figure 7. 

 
Figure 7: System response with h=1 sec. and 

improved plant model. 

Comparing this response with the one obtained 
with an update time of 0.5 seconds, we only see a 
slight degradation of performance: the settling time 
has been increased from 7 seconds to 
approximately 16 seconds. This has been obtained 
even though the plant model barely resembles the 
original plant and that the update time has been 
increased by 50%. 

5 Extensions 
These results have been extended for the output 
feedback case where a state observer is placed at 
the plant output. The state observer estimates the 
value of the plant state, which is then send to the 
controller actuator to update the plant model. 
Additionally, similar results have been obtained for 
the case of discrete plants. Finally, sufficient and 
necessary conditions have been found for the case 
of networks with a constant delay smaller than the 
update time. These conditions also require the 
eigenvalues of a test matrix to be inside of the unit 
circle. Details can be found in [15]. 
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6 Conclusions 
The presented setup represents a natural way of 
placing critical information about the plant on the 
network so to reduce the data traffic load. By 
making the sensor and actuator more “intelligent” 
the networked control system is able to predict the 
future behavior of the plant, and send the precise 
information at critical times so to ensure the plant 
stability. The presence of computational load at any 
end of the feedback path is not considered a 
limitation of the applicability of the presented 
setups given the advances in microcomputing. Most 
of the sensors and actuators available in the market 
have a microcontroller embedded that is in charge 
of a number of tasks. For our case it is clear that at 
least they should implement network services. So it 
seams reasonable to have them perform operations 
such as state feedback control input generation. 

An interesting extension would be one in which the 
update time can vary with time. Time varying 
matrix stability tests can be performed over the test 
matrix. But, given the special structure of these 
matrices, simple and direct conditions should be 
obtained. 

Performance is of main concern also and it is 
currently under investigation. The techniques used 
in this report are very similar to the ones known as 
lifting operators [2, 7, 14]. It can be shown that 
plant induced norms are invariant under these 
lifting operators. The resulting system is very 
similar to a digital plant and therefore allows the 
use of well-known techniques to ensure system 
performance. ∞H  and 2H  control optimization can 
be used to obtain optimal controllers and observer 
gains. Although these methods could have been 
used for the results showed here, the method here 
used provides more insight into the proposed 
algorithm. 
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Appendix 
Proof of Theorem #1. 

Sufficiency. 
Taking the norm of the solution described as in 
Theorem #1: 

0
)(

0
)(

00
0

00
0

00
0

00
0

)(

z
I

e
I

e

z
I

e
I

etz

k

htt

k

htt

k

k

⋅























⋅≤

























=

Λ−Λ

Λ−Λ

 

(7) 

Now lets analyze the first term on the right hand 
side of Equation (7): 
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where )(Λσ  is the largest singular value of Λ . In 
general this term can always be bounded since the 
time difference ktt − is always smaller than h. In 
other words even when Λ  has eigenvalues with 
positive real part, )( ktte −Λ  can only grow a certain 
amount. This growth is completely independent of 
k . 

We now study the term 
k
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with 0, 12 >αK .  

Since k is a function of time we can bound the right 
term of Equation (9) in terms of t: 
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with 0,3 >αK . 

 So from Equation (7), (8), and (10) we can 
conclude: 
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Necessity. 
We will now prove the necessity part of the 
theorem by contradiction. Assume the system 
described by Equation (1) is stable and that 
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I h has at least one eigenvalue outside 

the unit circle. Since the system is stable, a periodic 
sample of the response should be stable as well. In 

other words the sequence product of a periodic 
sample of the response should converge to zero 
with time. We will take the sample at times −

+1kt , 
that is, just before the update. We will concentrate 
on a specific term: the state of the plant )( 1

−
+ktx , 

which is the first element of )( 1
−
+ktz . We will call 

)( 1
−
+ktx , )(kξ .  

Now assume τΛe  has the following form: 
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then we can express the solution )(tz  as: 
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Now the values of the solution at times −
+1kt , that is 

just before the update, are 
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eigenvalue outside the unit circle, which means that 
those unstable eigenvalues must be in )(hW . This 
means that the first element of )( 1

−
+ktz , which we 

call )(kξ , will in general grow with k. In other 
words we can’t ensure )(kξ  will converge to zero 
for general initial condition 0x . 
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this clearly means the system cannot be stable, and 
thus we have a contradiction. 
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