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Abstract

In this paper, we consider the controller synthesis prob-
lem for a class of uncertain hybrid dynamical systems.
The goal is for the closed loop system to exhibit desired
behavior under dynamic uncertainty and exteriors dis-
turbances. The main question is whether there exists a
controller such that the closed loop system satisfies the
specification. The notion of aftainability is introduced
to refer to the specified behavior that can be forced to
the plant by a control mechanism. We give a method
for attainability checking by employing the predeces-
sor operator and backward reachability analysis, and a
procedure for controller design by using finite automata
and linear programming technigues.

1 Introduction

In this paper, a novel methodology for analysis and
synthesis of uncertain piecewise linear hybrid dynem-
ical systems based on backward reachability analysis
is presented. Piecewise linear (affine) systems have
been widely studied in the literature, see for exam-
ple [10, 5, 3, 4, 6] and the references therein. The is-
sues studied include modeling, stability, observability
and controllability etc. Piecewise linear systems arise
often from linearization of nonlinear systems. Note
that a large class of systems with uncertainty or pa-
rameter variations, or systems with strong nonlineari-
ties are often of interest. If we use ordinary piecewise
linear systems to approximate and study such nonlin-
ear systems, we have to shrink the operating region
of the linearization. And this results in a large num-
ber of linearizations (modes) which makes the subse-
quent analysis and synthesis computationally expen-
sive or even untractable. So we propose to introduce
a bundle of linearizations, whose convex hull cover the
original (maybe uncertain) nonlinear dynamics, instead
of approximating with just a single linearization. This

In our earlier work [7], we formulated and analyzed a
class of uncertain, or parameter-variant piecewise lin-
ear systems®. Here we consider the controller synthesis
problem for uncertain piecewise linear hybrid dynami-
cal systems with polytopic continuous dynamics uncer-
tainty. The control objective is for the closed loop sys-
tem to follow a desired behavior. The main question is
whether there exists a controller so that the closed loop
system follows the specification. The notion of aftain-
ability is introduced to refer to the specified behavior
that can be forced to the plant by a control mechanism.
We give a method for attainability checking by employ-
ing the predecessor operator and backward reachability
analysis, and a procedure for controller design by using
finite automata and linear programming techniques.

The structure of this paper is as follows. Section 2
defines the uncertain hybrid dynamical systems. Sec-
tion 3 considers the predecessor operator and back-
ward reachability analysis. Section 4 deals with con-
trol specifications. The regulator problem for piecewise
linear hybrid dynamical systems is formulated in Sec-
tion 5. The controller design methodology is described
and simulation results of a temperature control sys-
tem is presented to illustrate the validity of the design
methodology. Finally, concluding remarks are made.

2 Model

In the following, we define a class of piecewise lin-
ear hybrid dynamical systems with polytopic uncer-
tainty. The discrete dynamics are described by finite
automata, and the interaction between the continu-
ous and the discrete part is defined by piecewise linear
maps. The exact definition is as follows,

Definition 2.1 Consider the Uncertain Piecewise Linear
Hybrid Dynamical Systems (uncertein PLHDS) defined by

way, we may keep the operating region from shrink =(t+1) = Aqu(t)Jqumu(t)+Eqmd(t) (2.1
oy y Keep R ppetanng Tegion. gt+1) = 8qt),mz®) 0t ou®)  (22)
ing, and so we may study uncertain noniinear systems

y(t) = gla(t),=(t)) (2.3)

in a systematic approach and with less computational
burden.
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where ¢ € @ = {q1,q2,--- ,4:} and @ is the collection of
discrete states (modes); x € X C R"™ and X stands for the
continuous stale spece, y € Y C R™ and Y stands for the

1This work can be seen as extensions of our group’s previous
work [6] to uncertain systems and to more general cases.
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continuous outpul space, the continuous control u € U C
R™, the continuous disturbance d € D C R?, and U, D are
bounded convex polyhedral set; and

e A, € R™*". The entries in A, are unknouwn, but A, can
be expressed as a conver combination of Ny, R™*™ matrices
{AL, A2, ., AJ9), that is

Ny
A,;=ZA{A;, Ai 201

t=1

(2.4)

Ng
Z Ap=1
i=1

¢ By € R"*™, and E; € R"™P qgre the system matrices for
the discrete state q, )

o 7: X — X/E, partitions the continuous state space R"
into pelyhedral equivalence closses.

e g(t + 1) € act(m(x(t))), where act : X/Er — 29 defines
the active mode set,

¢ 6:Q x X/E: X . x Tu — @ is the discrete state tran-
sition function. Here . € . denotes a controllable event
aend I, the collection of uncontroliable events.

e g:Q x X =Y is the output function.

e The guard G{g,q") of the transition {g,q") is defined
as the set of all states (¢,x) such that ¢’ € act(n(z(t)))
and there exist controllable event 0. € . such that ¢’
8(g, m(x), 00, 00) for every uncontrollable event oy € Xy

3 Backward Reachability Analysis

The main mathematical tool to be used for backward
reachability analysis is the predecessor operator applied
recursively to subsets of the hybrid state space.

3.1 The Predecessor Operator

A region of the state space is defined as R C ) x X.
We are interested in computing the set of all the states
that can be driven to R by either continuous or discrete
transitions. We assume that the region is represented
by R = (q, P) where g € Q and P C R" is a piecewise
linear set. Let’s assume that P can be represented by
P = {z € R*|Gz < w} %. The dynamic evolution of
the system is defined by discrete and continuous tran-
sitions.

Discrete Transitions. The predecessor operator for
discrete transitions is denoted by pregy : 29%X
29%X and it is used to compute the set of states that
can be driven to the region R by a discrete instanta-
neous transition ¢’ — g that can be forced by the con-
troller for any uncontrollable event. The predecessor
operator in this case is defined as follows:

preq(RY = {(d',z) € @ x X| 30, € B, Vo, € Ty,
q = a(qfamwaﬂsa'u)}

For every discrete transition that can be forced by a
controllable event we have that

U s@anddr=p)

g'cact(P)

preg(R) =

?Please note that a < b means that all entries in the vector
{a — b} are all non-positive.
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where G(q’,q) is the guard of transition ¢’ — q.

Continuous Transitions. In the case of continuous
transitions, given the region R = (g, P) we define the -
predecessor operator pre, : 29%% — 2@%X t5 compute
the set of states for which there exists a control input so
that the continuous state will be driven in the set P for
every disturbance, while the system is at the discrete
mode g. The action of the operator is described by
pred(R) = {q} x {z € X|3u € U,Vd € D,VA, € Conv.5(A}),

Az + Bgu+ E,d € P)

Let's denote pref (R) for 1 < i < N, as prel ,(R) =
{g} x{xre X|Fuel,vde D, ALz + Bju+ Eyd € P}?,
and assume that the piecewise linear set P = {z €
R™Gz < w}, where G € RY*®, w € R¥. Then, we
have a proposition:

Proposition 3.1

prel(R)= [) prel (R)
i=1,- N

Remark: The significance of the proposition is that
the caleulation for the continuous predecessor for the
polytopic uncertain PLHDS can be boiled down to the
finite intersection of continuous predecessor set of the
polytope vertices PLHDS. The algorithm for calculat-
ing the robust predecessor set can be found in |7, 8].
Remark: Please note that the set pre(R) is piece-
wise linear and is described using a finite set of linear
inequalities. Therefore, we can apply the predecessor
operator to compute the set of all states that can be
driven to pre(R) to get pre{pre(R)). Following the
same procedure, we define successive applications of
the predecessor operator as:

preM(R) = prel...pre(R))
———

Mtimes

(3.5)

Remark: For a given region R,we define the coreach-
able set C R(R) as the set of all states that can be driven
to R. The coreachable set for a region of the hybrid
state space can be computed by successive application
of the predecessor operator

CR(R) = pre*(R) (3.6)
In general, the proposed procedure is semi-decidable
and its fermination is not guaranteed. We will return
to this matter in the reachability problem shortly after.

4 Control Specifications

In this section, we present a modeling formalism for
control specifications based on finite automata mod-
els, called the ezosystem. We consider both static and

3The pred ;(R) is nothing but continuous predecessor set of
the i-th vertex Az.
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dynamic specifications. Stafic specifications describe
desired outputs that do not change as time progresses.
For example, safety and reachability are static specifi-
cations. Dynamic specifications involve sequencing of
events and eventual execution of actions. In a manu-
facturing system, for example, the assembly of a com-
ponent may reguire that a set of tasks is executed in a
specific crder. Our control objective is that the closed
loop system exhibits the same behavior as the exosys-
tem. The main question is whether there exists a con-
troller so that the closed loop system follows the behav-
jor of the exosystem. This question is directly related
to the existence of appropriate control resources in or-
-der for the plant to achieve the desired behavior. We
formalize this notion using the attainability of the spec-
ified behavior. In this work, attainable behavior refers
to behavior that can be forced to the plant by a control
mechanism.

4.1 Static Specifications

Typical control specifications investigated in this pa-
per are formulated in terms of partitions of the state
space of the system. Examples include safety problems,
where the controller guarantees that the plant will not
enter an unsafe region.

Safety. At first, we focus on the safety problem and
we show how the refinement of the state space partition
can be used to formulated conditions for safety. Givena
set of states described by the region R C @ x X and an
initial condition {go, zg) € R, we say that the system is
safe if (g(t},z{t)) € R for every t > t;. The conditions
that guarantee that a given region of the hybrid state
space is safe can be described as following.

Theorem 4.1 ¢ An uncertain PLHDS is safe with re-
spect to the region R C @x X if and only if R C pre(R).

Reachability. Secondly, we study the reachability
problem for uncertain piecewise linear hybrid dynami-
cal systems. It should be emphasized that we are inter-
ested only in the case when reachability between two
regions i) and K> is defined so that the state is driven
to Ry directly from the region R; in finite steps without
entering a third region. This is a problem of practical
importance in hybrid systems since it is often desirable
to drive the state to a target region of the state space
while satisfying constraints on the state and input dur-
ing the operation of the system.

The problem of deciding whether a region R, is di-
rectly reachable from R; can be solved by recursively
computing all the states that can be driven to R; from
R; using the predecessor operator. As we have dis-
cussed, the proposed procedure is semi-decidable and
its termination is not guaranteed. In order to formulate
a constructive algorithm for reachability, we consider

4The proof is analogous to proof for the corresponding theo-
rem on [§].
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two approaches. First, we consider an upper bound
on the time horizon and we examine the reachability
only for the predetermined finite horizon. Second, we
formulate a termination condition for the reachability
algorithm based on a grid-based approximation of the
piecewise linear regions of the state space [6].

Theorem 4.2 * Consider an uncertain PLHDS de-
scribed by definition 2.1 and the regions Ry = (qu, P)
and Rz = (qq, Pa) then the region Ry is directly reach-
able from Ry if and only if By C CR(R,).

4.2 Dynamic Control Specifications

In this section, we present a modeling formalism for
control specifications based on finite automata models,
and we consider dynamic specifications.

Exosystem. We consider specifications that are de-
scribed with respect to regions of the hybrid state
space. We define the set X, as X. = {Ry, Ry, ..., Rar}
where R; = (q;, ;) are piecewise linear regions of the
hybrid state space. Since we assume that the primary
partition is fine enough to describe the specifications,
for every region we can write R; C @ x X/F,. In the
following, we use a formal automaton model to repre-
sent the specifications of interest as [6}.

Definition 4.1 The control specifications are modelled
by an inpui-ouiput (I/0) deterministic finite euioma-
ton described by £ = {X., Ve, Ye, 6e, Ao, Rp) where X,
is the set of states, V. is the input alphabet, Y, is the
output alphabet, . : X. x V. — X, is the state tran-
sition function, Ae : X. — Y. is the ouiput function
returning the output associated with each state, and Rp
5 the initial stale.

We assume that the function 8, is non-total, which
means that not every input can be applied to every
state of the automaton. We also assume that every
state is reachable and therefore, there exists appropri-
ate input sequences so that every state can be reached.
The I/0 finite automaton which describes the specifica-
tions is a deterministic Moore automaton and is called
the exosystem.

Attainability. Our control objective is that the closed
loop system consisting of the plant and the controller
exhibits the same behavior * as the exosystem. And the
main question is if there exists a controller so that the
closed loop system follows the behavior of the exosys-
tem. We formalize this notion using the ettainability of
the specified behavior. In the following we present the
necessary and sufficient condition for attainability. In
this work, attainable behavior refers to behavior that
can be forced to the plant by a control mechanism.

5A dynamical system can be described as a triple (T, W, B)

where T is the time axis, W is the signal space, and B ¢ WT
(the set of all functions f : T — W) the behavior{11].
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Theorem 4.3 * The specification behavior Bgp 15 at-
tainable if and only if the following conditions hold:
First, Every terminating state yn corresponds to a
region Rnthat is safe; and secondly for every non-
terminating stale yy, there exists yr+1 S0 that, for the
corresponding regions we have that Ryq1 is reachable
Jfrom Ry.

Furthermore, if By, is attainable then there exists a
controller C so that the regulator problem hos a solu-

* tion.

5 Hybrid Systems Controller Design

In this section, we present a systematic procedure for
controller design. Assume that exact state measure-
ment (g, ) is available. An admissible control input (or
law) is one which satisfies the input constraints (I, ).
In this section, we present a systematic procedure for
coniroller design. It is assumed that the desired be-
havier is attainable and therefore there exists a control
policy so that the plant will follow the output of the
exosystem. The design of the controller is based on
the regions {R1,---,Rar} that are used to define the
control specifications, which means starting from re-
gion R the state (g(¢), z(t)) directly reaches region Ro
and son on, until it enters the region Ry, then the
state (g(t), z(t)} should stay within Ras. Follows [6],
the proposed representation for the controller is shown
below.

A d y
: Exosystem
H Plant .

Iy
ctuator |
u.o L___*_n I (gx)
LY. -
b‘“’ Automata l‘u—lEVcnl Gcnml.vr!

Figure 1: Hybrid systems controller diagram.

The controller consists of three agents. The event gen-
erator receives the discrete-time measurement signal of
the hybrid plant, and issues appropriate events when
the state {g(t), z(t)) enters a new region R; of the hy-
brid state space. The control aufomaton is a finite
automaton whose states correspond to the regions R;
and its main purpose is to select an appropriate cost
functional based on the control objective. Finally, The
actuator determines the control input to be applied to
the plant using an optimization algorithm based on the
desired output provided by the exosystem. The con-
trol input consists of a continuous compenent u € I
and a discrete component o, € £, which triggers fea-
sible discrete transitions. At every time step, the con-
trol input is selected as the solution to a mathematical
programming problem. In the following, we formulate

the optimization problem that is used by the actua-
tor, considering the specification behavior described by

{R1,---,Rum}.

Safety Controller. First, we consider terminating
output symbols that represent safety conditions for the
corresponding region, Rar, of the state space. We de-
fine the cost functional Jus : @ x [0,1]Vs x BR™ x R™ x
R =R

Nq
Jag (g Az, u, d) = €T [3(Midb)a(t) + Byu(t) + Eqd(t)]

i=1

where ¢ € R™ a coeflicient vector, which is constructed
by the matrix of the constrained region Pps. Assume
Py = {z € R"|Guyx < war}, then ¢ may be selected
of the form w’ Gy, where w? € R™ called a weighted
vector. Without loss of generality, w is selected in such
a way that make wT Gz < 0 for all z € Py, The
control signal is selected as the sclution to the following
optimization problem:

min max

ucll Agln,1]¥e, deD

sit. Agz(t) + Bou(t) + Eq.d(t) € Py

JM'(Q: A: T, u, d)

The optimal action of the controller ‘is one that tries
to minimize the maximum cost, and try to counter-
act the worst disturbance and the worst model uncer-
tainty. Here, the disturbance and uncertainty is given
the advantage: the control plays first and disturbance
and uncertainty play second with the knowledge of the
controller’s play. This kind of solution is referred to as
Stackelberg solution.

By following similar arguments as in the proof of
Proposition 3.1{7], the above optimization problems
can be boiled down into a linear programming prob-
lem,
T
Bault
i B

Gu[Alz(t) + Byu(t) + Egd(t) < was
GalAZz(t) + Byu(t) + Egd(t)] < wpr
St ......
G [AF2(t) + Byu(t) + Eqd(t)] < wn
weld, deD

The above problem can be solved very efficiently. The
following algorithm describe the procedure for the syn-
thesis of safety controller for an given initial condi-
tion (go,zg) containing in a specified region Rps =
{(am, Par).

Algorithm 5.1 Safety Controller

INPUT: Rp = (qar, Pu), (go,%0);
if min, maxy Jas(go, zo, A, u) feasible
u* = arg miny Jar(go, o, XA, o)

7" =q
else
for ?":1! ] %CIM‘I.-
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g = qp{2)
if 2o € G¥
Jii= miny maxy Jas (Q‘ir o, /\’ ?.L)
end
end
g* = argmingeqy Jit
u* = argmin, J9}
end
OUTPUT: u*, ¢*
In the procedure, we first try to remain the mode and
avoid switching, simply because switching maybe costy.
However, sticking to mode ¢p may be not a good choice,
and there may not exist feasible control signal. So the
procedure try to take possible mode switching into con-
sideration and choose the mode that can make the next
continuous state farthest from the boundary. We claim
that there must be at least one optimization problem
be feasible®. Here g* stands for the mode that corre-
sponds to the minimum cost value Jas, then the can-
didate control input is selected as (g.(t), u*(t)) where
q* = 8{g(t), 7(x(i)),0.(t),€) and =* is the solution of
the above optimization procedure.

Reachability Controller. Next, we consider tweo
non-terminating output symbols yx and yx41 which de-
scribe a reachability specification between the regions
By = (qx, Pr) and Riy1 = (Qi+1, Pet:). The control
objective is to drive every state in Ry to Hyy,. Let
the convex polyhedral set By = {z : Gr < w}. For
a pair of modes qr € qx and ¢, € qu+1, assume the
intersection of the guard set for (g, ¢;), qu, with the
common region of P, and Py, is not empty. Let’ s de-

note this polytope as P(q"'q") P.N P qu
{z : Gexr £ wel- We define the cost functional,
Jo:Qx @ x 0, 1]qunxmmx1mr—>ﬂ

JC(Q:', Qin I, )‘) u, d) =c [Z(APA: )r(t)_l-BQI H.(t)-{’E%d
i=1

Where the vector c¢ is selected in the same way as de-
scribed above from polytope Pé.q"’q"). The control sig-
nal is selected as the solution to the following minmax

optimization problem:
min  max Jeo(g, ¢, T, A u,d)

u€U Aglp,1] Ve
st Aga(t) + Bou(t)+ E,d{t) e P
ueld, deD

Similarly, this optimization problem can be reduced to

the following linear programming problem:
mlgc Bg,ul(t)
u€

GlAg,

G[Ag x(t) + Bgu(t) + Egd(f)] < w

z(t) + Bgu(t) + qud(t)] <w
GLAL 2(t) -+ By ult) + Epd(t)) < w
ueld, deD

SPlease turn to (8] for proof.

s.t.

o)
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The following algorithm design the controller to guar-
antee the directly reachability.

Algorithm 5.2 Reachability Controller

INPUT: £k = (G, Fe), Qo1 = (Aot Fraa)s
(qo, z0), feasibility = &;

for j:j,..., |9e+1],
¢ = dr+1(J)
if mlnu ma.xA JC (qO, q-;” o, A 'LL) feasible

J(qﬂ QJ = mlnu maxy JC(QD, qu g, ’\) u)

feaszbility =1
end
end
if feasibility ==1
ind = arg mmq Cart1
sind)

J(qo Aa5)

u* = argmin, J(q"
=%
else
for i=1,---, |qx/,
Cn (1)
if Ty € G
for j Lo, [9k1l,
;= Qk+1(.7)
Jg}‘ q}) = mll’lu max)\ JC(Qqul'O: A ﬂ‘)
end
end
end

. (g:.4%)
* o 3
Iq 7‘7] =arg mmq:Eq::;tI;ECIkH JM

u* = argmin, Jir
end
OUTPUT: u*, g

*

Attainability Controller. The following algorithm
design the controller to guarantee the directly at-
tainability for the specification behavior described by

{Rls e :R]U}-
Algorithm 5.3 Attainability Controller
INPUT: {Ry, -+, Rar}, (g0, %0);

forn =1, ---, M-1,
while 20 € R, and g ¢ Rpia
Design Reachability Controller from R, to Ruqa
end

end -

Design Safety Controller for R

OUTPUT: v*, ¢*

Proposition 5.1 ¢ Consider the controller shown in
Figure 1 with the event generator, control automaton,
and actuator as defined above. If the specification be-
havior is atiainable, the output behavior of the closed
loop system follows the specified behavior of the exosys-
tem, that is By = Bgp

Example 5.1 {TEMPERATURE CONTROL SYSTEM)
The system consists of a furnace that can be switched on
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and off. The control objective is to control the temperature
at a point of the system by applying the heat input at a
different point. So, the discrete mode only contains two
states, that is the furnace “off ", qo, and the furnace is
“on”, qu. The continuous dynamics is described as *

s+ 1) = | AoV)+ Bou(®) + Eod(t), a=m
Avz(t) + Biu(t) + E1d(t), g=q.
where
4l = (0825 0135) . (1 0.35
¢ = L0068 1 /777 \0.068 0.555
1.8179 _ {0.0387
B = (0.0773 ) s Fo = (0.3772 ) ,
A o (0664 0199 . (0.7 032
o 0199 0.264 /° 71T 1L0.32 0.44
0.8101 _ {0.1369
B = (0.1369 ) » B = (0.5363 )

The partition of the state space is obtained by considering
the following hyperplane

h1(:17) =T — 20, hz(z) =Tz — 5, hs(r) = Iz,h4(:ﬂ) =I

Assume w € U = [-1,1], d € D = [-0.1,0.1] Consider
region K1 = ({qo,qu}, PA) and Re = ({go,q }, F2), where
Po={z c RO <z < 200A(~20 € 22 £ 0)}, and
Po={z e R0 <z £20A(0 € 22 <5)}. Our con-
trol object is that for every initial saie (go, To) within region
Ry there exist control u € U and g, € T, so that from
(g0, zc) the state can be driven to R2 withoul entering o
third region, then the stote will stay inside Ry 8 no mat-
ter what the dynamic uncertainty, continuous and discrete
disturbances are. .Let’s check the attainability. We first
calculate pre(Rz), whick cover the region Rz, so Rz is sofe.
By recursively using pre(.), we find that R can be driven
te Ry in three steps, i.e. reachable. So the attainability of
the specification is satisfied. Then, we design the controlier
and plot the simulation result for nominal plont (here we
choose the epicenter of the state matriz , i.e. (Al + A2))
in Figure 2. Also the control signal output (0., u) of the
controller is plotted in Figure 2.

Figure 2: Lefi: Simulation for closed locp nominal plant

(assuming d = 0). Right: The control signals
output {o., u} of the Controller.

Tusing zero-order hold sampling with T = 1s.

80f cause we can build an automata, exosystem, to describe
such simple specification.
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6 Conclusion

In this paper, we consider controller synthesis for a
class of uncertain hybrid systems, in which the contin-
uous dynamics are described by linear difference equa-
tions with polytopic uncertainties, the discrete dynam-
ics by finite automata, and the interaction between the
continuous and discrete part is defined by piecewise lin-
ear maps. The existence of a controller such that the
closed loop systems follow desired output of exosys-
tem under uncertainty and disturbance is analysis first.
Then, based on the proposed notion of attainability for
the desired behavior of piecewise linear hybrid systems,
we present a systematic procedure for controller design
by using finite automata and linear programming tech-
nigues. However, in this paper we only consider the
uncertainty in A, matrix, our next step is consider the
uncertainty in both A, and B, as in [8}.
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