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Abstract

In this paper, a class of discrete-time uncertain linear
hybrid systems, which is affected by both parameter
variations and exterior disturbances, is considered. The
goal here is to synthesize a hybrid control law, which
includes the continuous variable control law and the
discrete event control signal, so as to guarantee the
controlled invariance for a specific region in the hybrid
state space. It turns out that the continuous variable
control law is a piecewise linear state feedback control
based on the partition of the given region’s continuous
variable state space projection. A numerical example
is given for illustration.

1 Introduction

Most physical systems are subject to state and in-
put/output constraints due to safety requirements or
physical limitations. Furthermore, a required certain
level of performance might be translated into additional
constraints on the controlled system. Invariant set the-
ory is important in analysis and synthesis of such con-
strained systems, since state and control constraints
can be satisfied if and only if the initial state belongs
to some proper invariant set for the closed-loop sys-
tem [12]. Invariant set theory has been studied in
the literature for decades, see for example [5, 7, 12]
and references therein. [5] gave a comprehensive re-
view of the invariant set theory. [12] brought together
some of the main ideas in set invariance theory and
placed them in a general, nonlinear setting. In [7], a
discrete-time linear system with polyhedral state, con-
trol and disturbance constraints was considered, and
the controlled invariant set was geometrically and ana-
lytically characterized. The authors of [20] considered
a class of discrete-time hybrid systems with piecewise
linear time-invariant flow function and polyhedral con-
straints. They also discussed two special classes which
made the computation of controlled invariant set de-
cidable. The invariant sets for piecewise affine sys-
tems have also been studied in [9] based on convex
optimization techniques and linear matrix inequalities.
In the literature of hybrid systems, a similar concept,
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maximal safety set, has been studied for example in
[3, 1, 13]. In addition, controller design and verifica-
tion based on invariant sets has been studied in, for
example [19] and [6].
In this paper, we investigate the robust invariant set
for a class of discrete-time uncertain linear hybrid sys-
tems, which is affected by both parameter variations
and exterior disturbances. This model is directly re-
lated to piecewise linear (affine) systems, which have
been widely studied in the literature, see for example
[18, 10, 2, 13] and the references therein. The issues
studied include modeling, stability, observability and
controllability etc. Piecewise linear systems arise of-
ten from linearization of nonlinear systems. However,
a large class of practical nonlinear systems with pa-
rameter variations are often of interest. To study such
uncertain nonlinear systems in a systematic way, we
introduce a bundle of linearizations, whose convex hull
cover the original uncertain nonlinear dynamics within
a region. This explains one of the motivations for our
study of uncertain linear hybrid systems.
Another motivation for studying parameter uncertain-
ties and exterior disturbances in hybrid systems comes
from the fact that the system parameters are often sub-
ject to unknown, possibly time-varying, perturbations
and that the real processes are often affected by distur-
bances. The dynamic uncertainty and robust control
of hybrid/ switched systems is an under-explored and
highly challenging field [16]. Some reachability analysis
results for uncertain hybrid/ switched systems have ap-
peared in [11, 14]; and some work on the induced gain
analysis for switched systems has appeared for example
in [8, 21].
Our goal here is to synthesize hybrid control laws, in-
cluding the continuous variable control law and the dis-
crete event control signal, to guarantee the controlled
invariance for a specific region. In our earlier work on
controlled robust invariance for such hybrid systems
[15], we gave a formulation of the maximum permis-
sive controller, which, however, was not constructive.
Here we will synthesize an implementable, state feed-
back based hybrid control law to guarantee the con-
trolled invariance.
The organization of the paper is as follows. The next
section defines uncertain linear hybrid systems, and
Section 3 formulates the “robust invariant control prob-
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lem”. The synthesis procedure of hybrid invariant con-
troller is given in Section 4, and a numerical example is
given in Section 5 for illustration. Finally, concluding
remarks are made.

2 Uncertain Linear Hybrid Systems

We are interested in the following discrete-time uncer-
tain hybrid dynamical systems:

Definition 2.1 The discrete-time Uncertain Linear
Hybrid Systems are defined by

x(t + 1) = Aq(t)(w)x(t) + Bq(t)(w)u(t) + Eq(t)d(t)
q(t) = δ(q(t − 1), π(x(t)), σc(t), σu(t))

where q ∈ Q = {q1, q2, · · · , qs} and Q is the collection
of discrete states (modes); x ∈ X ⊆ R

n and X stands
for the continuous variable state space. For mode q,
the continuous variable control u ∈ Uq ⊂ R

m, and the
continuous variable disturbance d ∈ Dq ⊂ R

p, where
Uq, Dq are bounded convex polyhedral sets. Denote
U =

⋃
q∈Q Uq, D =

⋃
q∈Q Dq. And

• Aq(w) : W → R
n×n, Bq(w) : W → R

n×m, and
Eq ∈ R

n×p are the system matrices for the discrete
state q. And that the entries of Aq(w) and Bq(w) are
continuous function of w ∈ W , where W ⊂ R

v is an
assigned compact set.
• π : X → X/Eπ partitions the continuous variable
state space X ⊂ R

n into polyhedral equivalence classes;
• q(t) ∈ act(π(x(t))), where act : X/Eπ → 2Q defines
the active mode set;
• δ : Q×X/Eπ×Σc×Σu → Q is the discrete state tran-
sition function. Here σc ∈ Σc denotes a controllable
event and Σu the collection of uncontrollable events;
• The guard G(q, q′) of the transition (q, q′) is defined
as the set of all continuous variable states x, where
q′ ∈ act(π(x(t))), such that for every uncontrollable
event σu ∈ Σu there exist controllable events σc ∈ Σc

s.t. q′ = δ(q, π(x), σc, σu). The guard of the tran-
sition describes the region of the continuous variable
state space where the transition can be forced to take
place independently of the disturbances generated by
the environment.

Remark: Note that in the above definition, we do not
consider “state jumps” (reset) for continuous variable
state x explicitly. However, the reset function can be
easily included in our model by adding some auxiliary
modes.
Remark: It is known that often in practice uncertain-
ties enter linearly in the system model and they are
linearly constrained. To handle this particular but in-
teresting case, we consider the class of polyhedral sets.
Such sets have been considered in previous papers in
the literature concerning the control of systems with
input and state constraints. Their main advantage is
that they are suitable for computation. Therefore, we

assume that

[Aq(w), Bq(w)] =
Nq∑
k=1

wk[Ak
q , Bk

q ],

where wk ≥ 0 and
∑Nq

k=1 wk = 1. The pair
(Aq(w), Bq(w)) represents the model uncertainty which
belongs to the polytopic set Conv{[Ak

q , Bk
q ], k =

1, · · · , Nq}, which is referred to as polytopic uncer-
tainty and provides a classical description of model
uncertainty. Notice that the coefficients wk are un-
known and possibly time varying. Similar hybrid sys-
tem model with polytopic uncertainty was considered
for hybrid tracking and regulation control problems,
see [14] and references therein.
In the following we assume the existence of the solu-
tion for such uncertain hybrid systems under given ini-
tial conditions. And we assume that exact state mea-
surement (q, x) is available. An admissible control in-
put (or law) is one which satisfies the input constraints
(Σc,Uq). The elements of an allowable disturbance se-
quence are contained in (Σu,Dq).

3 Controlled Robust Invariance Problem

Given a set Ω = (q, P ) ⊂ Q × X and an initial state
(q0, x0) ∈ Ω, it is of interest to determine whether there
exist admissible control laws such that the evolution of
the system will remain inside the set for all time, de-
spite the presence of structured dynamic uncertainties
and disturbances.

Definition 3.1 The set Ω ⊂ Q×X is controlled robust
invariant for the uncertain hybrid systems of Definition
2.1 if and only if ∀(q0, x0) ∈ Ω, ∀(σu, d(t)) ∈ Σu ×Dq(t)

and ∀[Aq(t)(w), Bq(t)(w)] ∈ Conv[Ai
q(t), B

i
q(t)] there ex-

ist admissible control inputs (σc, u(t)) ∈ Σc × Uq(t),
such that the system evolution satisfy (q(t), x(t)) ∈ Ω,
∀t ≥ 0.

Note that the continuous variable part P of the region
Ω = (q, P ) does not necessarily coincide with the par-
titions of π in Definition 2.1, and this gives us more
flexibility. However, it is required that the following
consistency condition holds.

P ⊆
⋂

qi∈q

Inv(qi)

where Inv(qi) = {x ∈ X : qi ∈ act(π(x))}. Inv(qi)
is similar to the concept of invariant set of mode qi in
hybrid automata.
A natural question is how to check whether a given set
Ω ⊂ Q×X is controlled robust invariant or not. In [15],
we gave a necessary and sufficient geometric condition
to check the controlled robust invariance for a given set
Ω:

Lemma 3.1 The set Ω ⊂ Q×X is a controlled robust
invariant set if and only if Ω ⊆ pre(Ω).
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The set pre(Ω) is called the one step predecessor set for
Ω. In particular, pre(Ω) is the set of states in Q × X ,
for which, despite disturbances and dynamic uncertain-
ties, admissible control inputs exist and guarantee that
the system will be driven to Ω in one step. To calcu-
late pre(Ω), we first calculate the predecessor set for
Ω either purely by discrete event transition, pred(Ω),
or purely by continuous variable transition at mode
q, preq

c(P ). Then an algorithm is given for pre(Ω) in
[14] by considering the coupling between pred(Ω) and
preq

c(P ), which is based on linear programming tech-
niques.
Here we recall some notations necessary for the devel-
opment of the feedback invariant controller in the next
section. The continuous variable predecessor operator
under mode q, which is denoted as preq

c : 2X → 2X ,
computes the set of continuous variable states for which
there exist control inputs u ∈ Uq so that the continuous
variable state will be driven into the set P through the
transition Aq(w)x + Bq(w)u + Eqd despite the distur-
bance d ∈ Dq and uncertainty w ∈ W . The action of
the operator is described by

preq
c(P ) = {x ∈ Inv(q)|∀d ∈ Dq, ∀w ∈ W , ∃u ∈ Uq,

s.t. Aq(w)x + Bq(w)u + Eqd ∈ P}
In general, a given set Ω is not controlled robust in-
variant. However, some subsets of Ω are likely to be
controlled robust invariant. In addition, it follows im-
mediately from the definition that the union of two
controlled robust invariant sets is controlled robust in-
variant. However, the same statement cannot be made
about the intersection of two controlled robust invari-
ant sets, even in the absence of disturbances and un-
certainties. So we have the following definition.

Definition 3.2 The set C̃∞(Ω) is the maximal con-
trolled robust invariant set contained in Ω ⊂ Q × X
for the uncertain hybrid systems of Definition 2.1 if
and only if C̃∞(Ω) is controlled robust invariant and
contains all the robustly controlled invariant sets con-
tained in Ω.

It can be shown that the maximal controlled robust
invariant set is unique [15]. Then the next question is
how to find the maximal controlled robust invariant set
C̃∞(Ω). In [15], a procedure was given to determine the
maximal controlled robust invariant subset in Ω.
After checking the controlled robust invariance and cal-
culating the maximal controlled robust invariant sub-
set, we know whether there exist admissible control
laws such that the specific region (or subset of the
region) is invariant with respect to a given uncertain
piecewise linear hybrid systems. However we do not
know the controller itself. So another interesting prob-
lem is to construct a control law, c : Q × X → 2Σc×U ,
which guarantees that the states remain within the re-
gion (assume proper initial conditions) despite the un-
certainties and disturbances, while it satisfies certain

input/output constraints. The problem can be formu-
lated as the following “Robust Invariant Control Prob-
lem”.

Problem 1 Given a controlled robust invariant set
Ω ⊂ Q × X with respect to polytopic uncertain linear
hybrid systems of Definition 2.1, construct a control
law, c : Q × X → 2Σc×U , that guarantees the robust
invariance of Ω.

In our earlier work [15], we gave a formulation of the
maximum permissive controller for such purpose, which
was not easy to construct for implementation. Here we
will develop a systematic way to design implementable,
state feedback based hybrid control laws to guarantee
the controlled invariance for a specific region Ω.

4 Hybrid Invariant Control

In this section, we present a systematic procedure for
hybrid invariant controller design. It is assumed that
the given region Ω = (q, P ) ⊂ Q × X is controlled in-
variant (if not, we turn to consider its nonempty maxi-
mal invariant subset), and assume that the initial con-
dition is within Ω. Our objective is to build a control
law, c : Q × X → 2Σc×U , which robustly drives the
system to guarantee that the states remain within Ω
despite the uncertainties and disturbances.
In general, the discrete part of Ω = (q, P ), q, con-
tains more than one mode, that is q = {q1, q2, · · · , qr}.
In this case, we first calculate the one step continu-
ous variable predecessor set of P under mode qi, i.e.
preqi

c (P )
⋂

P , which is denoted as P 1
qi

. Then we can
derive the relationship of P 1

qi
and P as the following

proposition.

Proposition 4.1
⋃

qi∈q P 1
qi

= P

Proof : Because P 1
qi

= preqi
c (P )

⋂
P , so P 1

qi
⊆ P for all

i = 1, · · · , r. So
⋃

qi∈q P 1
qi

⊆ P .
On the other hand, assume that

⋃
qi∈q P 1

qi
6= P , and let

E = P − ⋃
qi∈q P 1

qi
. For the continuous variable state

x(t) ∈ E, because x(t) /∈ ⋃
qi∈q P 1

qi
, therefore x(t) /∈ P 1

q

for any possible q ∈ q. Then, for x(t) ∈ E, there does
not exist a continuous variable control signal u(t) ∈
Uq to guarantee that the next step continuous variable
state x(t+1) = Aq(w)x(t)+Bq(w)u(t)+Eqd(t) remains
in P , i.e. x(t + 1) /∈ P (from the definition of preq

c(·))
for some d ∈ Dq, w ∈ W , and for all possible modes
q. Therefore, for such initial hybrid state (q, x(t)) ∈
Ω, there does not exist hybrid control signal (σc, u) to
make the next state (q′, x(t + 1)) remains in Ω. This
leads to a contradiction to the assumption that Ω =
(q, P ) is controlled invariant. Therefore,

⋃
qi∈q P 1

qi
=

P holds. 2

In other words, the continuous variable part of the re-
gion Ω = ({q1, q2, · · · , qr}, P ) is partitioned into r sub-
sets P 1

qi
, i = 1, · · · , r. For simplicity, we first assume
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that P is a convex polyhedron and P = {x : Fx ≤ g},
while the case when P is not convex will be discussed
later in this section. When P is convex, it is straightfor-
ward to show that P 1

qi
= preqi

c (P )
⋂

P is convex poly-
hedral set as well. Denote its vertex set as vert{P 1

qi
}.

For the finite number of its vertices xj
qi

∈ vert{P 1
qi
}, we

define the cost functional, J : Q × [0, 1]Nq × Uq → R
+

J(qi, w, u) = ‖F [Aqi(w)xj
qi

+ Bqi(w)u(t)]‖∞

= ‖F
Nqi∑
l=1

[wlA
l
qi

, wlB
l
qi

]
(

xj
qi

u(t)

)
‖∞

where ‖ · ‖∞ stands for the infinite norm. The con-
trol signal for the vertex xj

qi
∈ vert{P 1

qi
} is selected

as the solution to the following minmax optimization
problem:

min
u∈Uqi

max
w∈[0,1]Nqi

J(qi, w, u)

s.t.

{
Aqi(w)xj

qi
+ Bqi(w)u(t) + Eqid(t) ∈ P

u ∈ Uqi , d ∈ Dqi

The optimal action of the controller is one that tries
to minimize the maximum cost, and try to counteract
the worst disturbance and the worst model uncertainty.
It should be pointed out that the above optimization
problem must be feasible for the vertices of P 1

qi
. This

claim comes from the predecessor definition and the
construction of P 1

qi
= preqi

c (P )
⋂

P . For the case of
polytopic uncertainty, the constraints can be equiva-
lently transformed into the following form because of
linearity and convexity.

min
u∈Uqi

max
w∈[0,1]Nqi

J(qi, w, u)

s.t.




F [A1
qi

xj
qi

+ B1
qi

u(t)] ≤ g − δqi

F [A2
qi

xj
qi

+ B2
qi

u(t)] ≤ g − δqi

· · · · · ·
F [A

Nqi
qi xj

qi
+ B

Nqi
qi u(t)] ≤ g − δqi

u ∈ Uqi

where δqi is a vector whose components are given by
δqi(j) = maxd∈Dqi

FjEqid, and Fj is the j-th row of the
matrix F . The above minmax optimization problem
can be equivalently transformed to the following linear
programming problem [4].

min
u∈Uqi

ζ

s.t.




F [A1
qi

xj
qi

+ B1
qi

u(t)] ≤ ζ
F [A2

qi
xj

qi
+ B2

qi
u(t)] ≤ ζ

· · · · · ·
F [A

Nqi
qi xj

qi
+ B

Nqi
qi u(t)] ≤ ζ

F [A1
qi

xj
qi

+ B1
qi

u(t)] ≤ g − δqi

F [A2
qi

xj
qi

+ B2
qi

u(t)] ≤ g − δqi

· · · · · ·
F [ANqi

qi xj
qi

+ B
Nqi
qi u(t)] ≤ g − δqi

u ∈ Uqi

Because of the guaranteed feasibility of the above lin-
ear programming problem for each vertex of the poly-
tope P 1

qi
, the admissible control for each vertex xj

qi
ex-

ists, and it is denoted as uj
qi

. In the next step, we
will construct the continuous variable control signals
for the continuous variable state contained in region
P 1

qi
through convexity. Note that any x ∈ P 1

qi
can be

(not uniquely) written as the convex combination of
the vertex of P 1

qi
, x =

∑
j αj

qi
(x)xj

qi
, where the convex

combination coefficients αj
qi

(x) ≥ 0 and
∑

j αj
qi

(x) = 1.
We set the control signal uqi(x) for state x simply as
the convex combination of the control signals at the
vertex uj

qi
. In particular,

uqi(x) =
∑

j

αj
qi

(x)uj
qi

(4.1)

and uqi(x) ∈ Uqi comes from the convexity of Uqi . And

F [Aqi(w)x + Bqi(w)uqi ]

= F [Aqi(w)
∑

j

αj
qi

xj
qi

+ Bqi(w)
∑

j

αj
qi

uj
qi

]

=
∑

j

αj
qi

F [Aqi(w)xj
qi

+ Bqi(w)uj
qi

]

≤
∑

j

αj
qi

[g − δqi ]

= g − δqi

for all [Aqi(w), Bqi (w)]. In other words, for any x ∈ P 1
qi

,
the control signal uqi(x) will drive the next state re-
maining in P despite the uncertainty and disturbance.
Therefore, it is easy to show that the control law of the
form (4.1) solves the invariance problem. Then the can-
didate control input is selected as (σc(t), u(t)), where
σc makes q(t) = qi and u(t) is of the form (4.1).
When P is not convex, we know that the non-convex
piecewise linear set P can be written as finite union of
convex piecewise linear sets Pj , that is P = ∪m

j=1Pj

[17]. From the definition of the continuous vari-
able predecessor operator preq

c(·), we have preq
c(P ) =

preq
c(∪m

j=1Pj) = ∪m
j=1preq

c(Pj). Note that the set Pj

and preq
c(Pj) are both convex polyhedral sets. Define

the set

P qi

j,k = Pk ∩ preq
c(Pj), for j, k = 1, · · · , m

obviously, P qi

j,k is convex polyhedral. Consider the
polytopic subregion as (qi, preqi

c (Pj) ∩ Pk), for j, k =
1, · · · , m, then the controller synthesis method devel-
oped previously in this section can be used directly to
the subregion Ωqi

j,k = (qi, P
qi

j,k). In particular, the con-
trol signal for each vertex of P qi

j,k can be solved by the
following minmax optimization problem.

min
u∈Uqi

max
w∈[0,1]Nqi

‖Fj

Nqi∑
l=1

[wlA
l
qi

, wlB
l
qi

]
(

xr
qi

u(t)

)
‖∞

s.t.

{
Aqi(w)xr

qi
+ Bqi(w)u(t) + Eqid(t) ∈ Pj

u ∈ Uqi , d ∈ Dqi
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where it is assumed that Pj = {Fjx ≤ gj}. Similarly,
the above minmax optimization problem can be trans-
formed into a linear programming problem, and the
feasibility of which is guaranteed from the definition of
the predecessor operator preq

c(·) and the construction
of P qi

j,k = Pk ∩ preq
c(Pj). And we have

m⋃
j,k=1

(preqi
c (Pj) ∩ Pk) = preqi

c (∪m
j=1Pj)

⋂
(∪m

k=1Pk)

= preqi
c (P )

⋂
P = P 1

qi

According to the previous proposition, we conclude
that

⋃
qi∈q(

⋃
j,k(preqi

c (Pj) ∩ Pk)) = P . In other
words, the continuous variable part of the region Ω =
(q, P ), P is partitioned into a finite number of poly-
topic subregions P qi

j,k, for j, k = 1, · · · , m, qi ∈ q =
{q1, q2, · · · , qr}.
In summary, the invariant controller for the region Ω =
({q1, q2, · · · , qr}, P ) is given as follows. For x(t) ∈ P qi

j,k,
the discrete control signal σc is selected as the one
that makes q(t) = qi. Because of the controlled in-
variance assumption of Ω and the definition of guard
set, the existence of σc can be shown. Secondly, the
continuous variable control signal, uqi(t), is of the form
uqi(t) =

∑
r αr

qi
(x)ur

qi
. In this expression, αr

qi
(x) is the

convex combination coefficients of x(t) by the vertices
of P qi

j,k, and ur
qi

is the control signal for the correspond-
ing vertices of P qi

j,k. It has been shown that the vertex
control signal ur

qi
can be derived by solving a linear

programming problem. A control of the above form
can be implemented as a piecewise linear state feed-
back controller as follows. Let Xqi

j,k be a matrix whose
columns are formed by the vertex vector of P qi

j,k. The
columns of matrix U qi

j,k are the calculated continuous
variable control vector, ui

q, corresponding to each ver-
tex of P qi

j,k. A piecewise linear state feedback controller
is then obtained by applying the control

uqi(x) =
∑

r

αr
qi

(x)ur
qi

= U qi

j,k(XqT
i

j,kXqi

j,k)−1X
qT

i

j,kx

(4.2)
where (·)T stands for transpose, and (·)−1 inverse of
matrix. The convex combination coefficients αr

qi
(x) can

be calculated as (XqT
i

j,kXqi

j,k)−1X
qT

i

j,kx if (XqT
i

j,kXqi

j,k) is in-
vertible. Otherwise another procedure is needed to gen-
erate the convex combination vector coefficients αqi(x).
Note that all the calculations to derive the matrix Xqi

j,k

and U qi

j,k can be done off line, which can be efficiently
calculated by linear programming techniques. And the
implementation of the control law only needs to calcu-
late the convex combination coefficients vector αqi(x),
which can be easily done by solving some linear equa-
tions. Therefore, this computational advantage makes
the above method a good candidate to deal with high
dimensional hybrid systems.
There still exist one point to be clarified, namely the
case when some states (q(t), x(t)) ∈ Ω may have more

than one permissive control law. Then some criteria
should be designed for the selection of (σc(t), u(x)), e.g.
the magnitude or energy of u(x) etc. And this kind
freedom may also lead to optimization with respect to
some kind of cost function of the control signals.

5 Numerical Example

Consider the following discrete-time uncertain linear
hybrid systems:

x(t + 1) =

{
A0(w)x(t) + B0(w)u(t) + E0d(t), q = q0

A1(w)x(t) + B1(w)u(t) + E1d(t), q = q1.

q(t) = δ(q(t − 1), π(x(t)), σc(t), σu(t))

where

A0(w) =

[
1 + w 1

0 1

]
, B0(w) =

[
0
1

]
, E0 =

[
1
1

]

A1(w) =

[
0 1

w − 1 −1

]
, B1(w) =

[
0
1

]
, E1 =

[
1
1

]

We assume that the time varying uncertain parameter
w is subjected to the constraint −0.1 ≤ w ≤ 0.1. For
simplicity, we assume that act(q0), act(q1) and all the
guard set for discrete modes transition are the whole
R

2. Assume u ∈ U = [−1, 1], d ∈ D = [−0.1, 0.1].
First, consider the region Ω = {q0, q1} × {x : Fx ≤ g},
where

F =




−0.3547 −0.9350
−0.7214 −0.6925
−0.6892 −0.7246
0.7214 0.6925
0.3547 0.9350
0.6892 0.7246




, g =




0.5165
0.1587
0.1516
0.1587
0.5165
0.1516




The above hybrid region Ω turns out to be controlled
invariant, which, in fact, is a maximal controlled in-
variant set contain in the polytopic region

Ω0 = {q0, q1}×{x :

[ −0.225
−0.225

]
≤

[
1 0.9
1 1.1

]
x ≤

[
0.225
0.225

]
},

calculated by the procedure for C̃∞(Ω0) described in
[15]. Notice that the continuous variable part P =
{x : Fx ≤ g} in this example is a convex polyhedron.
Our next step is to design the invariant controller. For
such purpose, we calculate the one step predecessor set
P 1

q0
= preq0

c (P )∩P for mode q0 and P 1
q1

= preq1
c (P )∩P

for mode q1. We have P 1
q0

⋃
P 1

q1
= P . Then we calcu-

late the vertices control vectors for each subregion, P 1
qi

,
by solving the above induced linear programming prob-
lem. The coordinate of vertices and their corresponding
control vector for P 1

q0
may be used to form the matrices

Xq0 and Uq0 respectively. Similarly, we get the matri-
ces Xq1 and Uq1 from P 1

q1
. For example, the coordinate

of vertices and their corresponding control vector for
P 1

q1
is calculated, and we obtain the matrices Xq1 and

Uq1 for the calculation of the feedback gain matrix in

5225
Proceedings of the American Control Conference

Denver, Colorado June 4-6, 2003

Hai Lin, Panos J.Antsaklis, “Robust Invariant Control Synthesis for Discrete-Time Polytopic Uncertain Linear 
Hybrid Systems,” Proceedings of the 2003 American Control Conference, pp. 5221-5226, Denver, Colorado, 
June 4-6, 2003.



(4.2) for the subregion P 1
q1

as follows.

XT
q1

=




−0.2200 0.0000
0.2200 0.0000
−0.6355 0.4328
0.6355 −0.4328
−0.2350 0.4328
0.2350 −0.4328




, UT
q1

=




−0.2200
0.2200
−0.5820
0.5820
−0.1815
0.1815




In summary, for any state (q, x) ∈ Ω, the hybrid control
law is designed as follows:

• Case q = q0:

– If x ∈ P 1
q0

, then the u is given by Equation
(4.2) with Xq = Xq0 and Uq = Uq0 . And
the discrete control signal σc is selected in
such a way that q0 = δq(q0, π(x), σc(t), Σu).

– If x /∈ P 1
q0

, then x must be contained in P 1
q1

.
In this case, the u is given by Equation (4.2)
with Xq = Xq1 and Uq = Uq1 . And the
discrete control signal σc is selected in such
a way that q1 = δq(q0, π(x), σc(t), Σu).

• Case q = q1:

– If x ∈ P 1
q1

, then the u is given by Equation
(4.2) with Xq = Xq1 and Uq = Uq1 . And
the discrete control signal σc is selected in
such a way that q1 = δq(q1, π(x), σc(t), Σu).

– If x /∈ P 1
q1

, then x must be contained in P 1
q0

.
In this case, the u is given by Equation (4.2)
with Xq = Xq0 and Uq = Uq0 . And the
discrete control signal σc is selected in such
a way that q0 = δq(q1, π(x), σc(t), Σu).

6 Conclusion

In this paper, we put our group’s recent progress in
the analysis and synthesis of uncertain piecewise lin-
ear hybrid systems into the framework of invariant set
theory. We developed an implementable procedure to
synthesize the robust invariant controller. The contin-
uous variable controller designed is a piecewise linear
state feedback control law, based on the partition of the
given controlled invariant region into finite polytopic
subregions. The state feedback gain matrix is constant
within each subregion. The matrix was determined by
the vertex coordinates of the subregion’s polytope and
their corresponding control vectors, which could be de-
termined off-line by solving some linear programming
problems. Therefore, the online implementation of the
state feedback control law only needs to first deter-
mine which subregion the current state belongs to and
then multiply the state coordinate with the correspond-
ing gain matrix. Comparing with the online optimiza-
tion based controller design for tracking and regulation
problems in [14], this method has the advantage of less
online computational burden. And this computational
benefit makes the method developed here a promising

candidate to deal with high dimensional hybrid sys-
tems.
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