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Abstract 

In this paper we study the stochastic stability properties of certain 
networked control system. Specifically we study the stability of 
the Model-Based Network Control System introduced in [9] 
under time-varying communication. The Model-Based Network 
Control System uses knowledge of the plant to reduce the number 
of packet exchanges and thus the network traffic. Stability 
conditions for constant data packet exchange rates are analysed in 
[9, 10, 11]. Here we concentrate on the stochastic stability of the 
networked system when the packet exchange times are time 
varying and have some known statistical properties. Conditions 
are derived for Almost Sure and Mean Square stability for 
independent, identically distributed update times. Mean Square 
stability is also studied for Markov chain driven update times. 

1 Introduction 

The use of data networks in control applications is rapidly 
increasing. Advantages of using networks in a control system 
include low cost installation, maintenance, and reconfigurability. 
In spite of the benefits, a networked control system also has some 
drawbacks inherent to data networks. Data networks are discrete 
systems that move information from one point to another at 
discrete times. Their impact on the system is that the controller 
will not have a continuous flow of information from the plant; in 
addition the information might be delayed.  

In [9] a model-based networked control system was introduced. 
The model-based networked control system architecture is shown 
in Figure 1. This control architecture has as main objective the 
reduction of the data packets transmitted over the network by a 
networked control system. To achieve this, the model-based 
networked control system uses knowledge of the plant. A model 
of the plant is used to predict the plant’s state vector dynamics 
and generate the appropriate control signal in between packet 
updates. In this way the amount of bandwidth necessitated by 
each control system using the network is minimized.  

The packets transmitted by the sensor contain the measured value 
of the plant state and are used to update the plant model on the 
actuator/controller node. These packets are transmitted at times tk. 
We define the update times as the times between transmissions or 
model updates: h(k)=tk+1-tk. In [9] we made the assumption that 
the update times h(k) are constant. This might not always be the 
case in applications. The transmission times of data packets from 
the plant output to the controller/actuator might not be 
completely periodic due to network contention and the usual non-
deterministic nature of the transmitter task execution scheduler. 
Soft real time constraints provide a way to enforce the execution 

of tasks in the transmitter microprocessor. This allows the task of 
periodically transmitting the plant information to the 
controller/actuator to be executed at times tk that can vary 
according to certain probability distribution function. This 
translates into an update time h(k) that can acquire a certain value 
according to a probability distribution function. Most work on 
networked control systems assumes deterministic communication 
rates [4, 5] or time-varying rates without considering the 
stochastic behavior of these rates [8, 12]. Little work has 
concentrated in characterizing stability or performance on a 
networked control system under time-varying, stochastic 
communication. 

 
Figure 1. Model-Based Networked Control System 

We will present different stability criteria that can be applied 
when the update times h(k) vary with time. The first case is when 
the statistical properties of h are unknown. The actual update 
times observed will jitter on the range [hmin, hmax]. This criterion 
may be used to provide a first cut on the stability properties of a 
system perhaps for comparison purposes. This is the strongest 
and most conservative stability criterion. This stability type is 
based on the classical Lyapunov function approach and thus will 
be referred to as Lyapunov Stability.  

Next we will present two stochastic stability criteria for systems 
in which the update times are independent, identically distributed 
random variables with probability distribution F(h). The first and 
strongest criterion is called Almost Sure Asymptotic Stability or 
Probability-1 Asymptotic Stability. This is the stochastic stability 
criterion that mostly resembles deterministic stability. The second 
and weaker type of stability is referred to as Mean Square 
Asymptotic Stability or Quadratic Asymptotic Stability.  

Finally a sufficient condition for Mean Square Stability for the 
model-based networked control system with update times 
following a finite state Markov chain is presented. 
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We focus our analysis on the Model-Based Networked Control 
System developed in [9], specifically the case where the plant is 
continuous and the states are available (full state feedback). Other 
networked systems (e.g. output feedback, discrete plants, etc) 
studied in [10,11] can be analyzed in a similar fashion. 

2 Model-Based Networked Control System Response 

The dynamics of the system shown in Figure 1 are given by: 
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Where A and B are the matrices of actual plant state-space 

representation, ˆ ˆand A B  are the matrices of plant model state-

space representation, ˆ ˆandA A A B B B= − = −� �  represent the 

modeling error matrices, and ˆ( ) ( ) ( )e t x t x t= −  represents the 
error between the plant state and the plant model state. Define 
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that Equation (1) can be rewritten as z z= Λ� for 1[ , )k kt t t +∈ . 

Proposition #1 

The system described by Equation (1) with initial conditions 

[ ]0 0 0( ) ( ) 0 Tz t x t z= = , has the following response: 
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The proof is similar to the one presented in [9] for constant 
update times and will be omitted here. We observe in Equation 
(2) that the response is given by a product of matrices that share 
the same structure but are in general different. Stability cannot be 
guaranteed even if all matrices in the product are stable or 
equivalently if they have their eigenvalues inside the unit circle. 
Next the stability criteria mentioned above are considered. 

3 Lyapunov Stability 

This is the strongest and most conservative stability criterion. It is 
based on the well-known Lyapunov second method for 
determining the stability of a system. We will not consider the 
statistical properties of h(k). This criterion is not stochastic but 
provides a first approach to stability for cases in which the only 
thing that is known about the update times is that they are time 
varying and are contained within some interval. 

Theorem #1 

The system described by Equation (2) is Lyapunov Stable for 
min max[ , ]h h h∈ if there exists a symmetric positive definite 

matrix X such that TQ X MXM= −  is positive definite for all 

min max[ , ]h h h∈ , where 
0 0
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hI I

M eΛ
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Proof. 

Noted that the output norm can be bounded by 
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That is, since ( )kt teΛ −  has a finite growth rate that will cease at 
most at hmax. Then convergence of the product of matrices M(j) to 
zero ensures the stability of the system. 

It is clear that the range for h, that is the interval min max[ , ]h h , 
will vary with the choice of X. Another observation is that the 
interval obtained this way will always be contained in the set of 
constant update times where the system is stable. That is, an 
update time contained in the interval min max[ , ]h h  will always be 
a stable constant update time. 

4 Almost Sure Asymptotic Stability 

Now we assign to the update times some stochastic properties. 
We will assume that the update times h(j) are independent, 
identically distributed random variables. We now characterize the 
notion of stochastic stability. We will use the definition of almost 
sure asymptotic Lyapunov stability [6] that is the one that 
provides a stability criterion based on the sample path. Therefore, 
this stability definition resembles more the deterministic stability 
definition [7], and is of practical importance. It ensures that the 
system is asymptotically stable. The only weakness might be that 
the decaying rate may vary. But an expected decaying rate can 
still be specified. Since the stability condition has been relaxed, 
we expect to see less conservative results than those obtained 
using the Lyapunov stability previously considered. We now 
define Almost Sure or Probability-1 Asymptotic stability. 

Definition #1 

The equilibrium 0z =  of a system described by ( )ztfz ,=�  with 
initial condition 0 0( )z t z=  is almost sure (or with probability-1) 
asymptotically stable at large (or globally) if for any 0β >  and 

0ε >  the solution of ( ),z f t z=�  satisfies 

 ( )0 0lim sup , , 0
t

P z t z t
δ δ

ε
→∞ ≥

 > = 
 

 (4) 

Whenever 0z β< . 

This definition is similar to the one presented for deterministic 
systems. We will examine the conditions under which a full state 
feedback continuous networked system is stable. Let h=h(j) be 
independent identically distributed random sequence with 
probability distribution function F(h). We now present the 
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condition under which the system described by Equation (2) is 
asymptotically stable with probability 1. 

Theorem #2 

The system described by Equation (2), with update times h(j) 
independent identically distributed random variable with 
probability distribution F(h) is globally almost sure (or with 
probability-1) asymptotically stable around the solution 
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Proof. 

We will represent the system by using a technique similar to 
lifting [2] to obtain a discrete linear time invariant system. The 
system will be represented by  

 1 2, with  and ( ), [0, ).k k k k e k k kL z t t t hξ ξ ξ ξ+ = Ω ∈ = + ∈ (5) 

Here 2eL  stands for the extended 2L . It is easy to obtain from (2) 

the operator kΩ  as:  
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Now we can restructure the definition on almost sure stability or 
probability-1 stability given in Definition #1 to better fit the new 
system representation. We will say that the system represented by 
(5) is almost sure stable or stable with probability-1 if for 
any 0>β  and 0>ε  the solution of 1k k kξ ξ+ = Ω  satisfies
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whenever 0z β< . It is obvious that the norm 
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subscript from now on. Now lets assume that the supremum of 
the norm bracketed is achieved at δ~*≥k , that is 

*sup k k
k δ
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. So now we can use Chebyshev bound for 

positive random variables [13] to bound the probability in our 
definition: 
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Using (2) and basic norm properties, we proceed to bound the 
expectation on the right hand side 
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The last equation follows from the independency of the update 
times h(j). Analyzing the first term on the last equality we see that 
is bounded for the trival case where 0Λ = . When 0Λ ≠ , the 
integral can be solved, and can be showed to be equal to 
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 which by assumption is 

bounded. The second term can also be bounded by using the 
independency property of the update times h(j).  
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We can now evaluate the limit over the expression obtained. 
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It is obvious that the right hand side of the expression will be 
identically zero (note that δ~*≥k ) if the averaged maximum 
singular value [ ] [ ] 1<= MEME σ . ♦ 

It is important to note that if this condition is applied directly 
over the test matrix M, we may end up with very conservative 
values. To correct this problem we can apply a similarity 
transformation over the test matrix M so to obtain a less 
conservative conclusion.  

An observation over the condition  on the matrix N is that it 
ensures that the probability distribution function for the update 
times F(h) assigns smaller occurrence probabilities to 
increasingly long destabilizing update times. That is F(h) decays 
rapidly. In particular we observe that N can always be bounded if 
there exists hm such that F(h)=0 for h larger than hm. We can also 
bound the expression inside the expectation to obtain 

( )1/ 22 ( ) ( )1h hE e E eσ σΛ Λ   − <    
 and formulate the following 

corollary. 
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Corollary #1 

The system described by Equation (2), with update times h(j) that 
are independent identically distributed random variable with 
probability distribution F(h) is globally almost sure (or with 
probability-1) asymptotically stable around the solution 

[ ] [ ]0 0T Tz x e= =  if ( )hT E eσ Λ = < ∞   and the 

expected value of the maximum singular value of the test matrix 
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Figure 2. Average Maximum Singular Value for [ ]MEM =σ  
for h~U(0.5,hmax) as a function of hmax. 

Example 

We use an unstable plant, the double integrator 
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� . Our feedback law is 

given by u=Kx with [ ]1 2K = − − . We have seen in [9,10, 11] 
that the maximum constant update time h for which this system is 
stable is 1 second. We now assume a uniform probability 
distribution function U(0.5,hmax). The plot of averaged maximum 
singular value of a similarity transformation of the original test 
matrix M is shown in Figure 2. The similarity transformation 
used here was one that diagonalizes the matrix M for h=1. 

We see that the maximum value for hmax is around 1.3 seconds 
(maximum constant update time for stability is h=1 second.) So 
we see that, for example, a system with uniformly distributed 
update time from 0.5 to 1.2 seconds is stable, while a system with 
a constant update time of 1 second is unstable.  

5 Mean Square Asymptotic Stability 

We now present a weaker type of stability, namely Mean Square 
Asymptotic Stability that is defined next. 

 

Definition #1 
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A system that is mean square stable as defined previously will 
have the expectation of system states to be driven to zero with 
time. It is clear that this does not prevent the system states to be 
zero the whole time. For example, a system can have non-zero 
values at times that are separated in time by periods that increase 
with time can still satisfy the mean square stability condition 
since its average is converging to zero. So it is clear that this 
definition of stability is not as strong as probability-1 stability, 
but it is still attractive since many optimal control problems use 
the squared norm in their calculations. So we will present the 
conditions under which the networked control system described 
in (2) is mean square stable and how to these relate to the ones 
for probability-1 stability.  

Theorem #3 
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probability distribution F(h) is globally mean square 

asymptotically stable around the solution [ ]0 0 Tz =  if 

( )( )2hK E eσ Λ = < ∞  
 and the maximum singular value of the 

expected value of MTM, 











=



 MTMEMTME σ , is 

strictly less than one, where 






Λ








=

00
0

00
0 Ihe

I
M . 

Proof. 

Lets start by evaluating the expectation of the squared norm of 
the output of the system described by (2). 
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Now that the expectation is all in terms of the update times, we 
can use the independently identically distributed property of the 
update times and the assumption that K is bounded: 

( )( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

2( 1)
0 0

1 1

1 1

0 0
1 1

1 1

0 0
1 1

1

0
1

( ) ( )

T
k k

h k T

j j

T
k k

T T

j j

T
k k

T T

j j

k
TT

j

E e z M j M j z

K z E M j M k M k M j z

K z E M j E M M M j z

K E M M z E M j

σ

σ

Λ +

= =

− −

= =

− −

= =

−

=

                
     = ⋅            
      = ⋅             

 ≤ ⋅  

∏ ∏

∏ ∏

∏ ∏

( )
1

0
1

T
k

j
M j z

−

=

    
            
∏ ∏

   (10) 

We can repeat the last 3 steps recursively to finally obtain. 

( ) ( )( )
2

( )
0 0 0

1

k

k k
Tt t T

j
E e M j z K E M M z zσΛ −

=

     ≤        
∏

  (11) 

So now it is easy to see that if 

1<











=



 MTMEMTME σ  then the limit of the 

expectation as time approaches infinity is zero, which concludes 
the proof.♦ 

The first thing we note is the similarity between the conditions 
given by Theorems #2 and #3. For the first and strongest one we 
require the expectation of the maximum singular value of the test 
matrix to be less than one. While for the second weaker stability 
it is required to have the maximum singular value of the 
expectation of MTM to be less than one.  

6 Mean Square Asymptotic Stability for Markovian 
Update Times 

Sometimes it is useful to represent the dynamics of the update 
times as driven by a Markov chain. A good example of this is 
when the network is susceptible to experience traffic congestion 
or has queues for message forwarding. We now present a stability 
criterion for the model-based control system in which the update 
times h(k) are driven by a finite state Markov chain. Assume that 
the update times can take a value from a finite set: 

 { }1 2( ) , ,..., Nh k h h h∈  (14) 

Lets represent the Markov chain process by { }kω with state 

space {1,2,..., }N  and transition probability matrix Γ  and NxN 

matrix with elements ,i jp . The transition probability matrix is 

defined as , 1{ | }i j k kp j iω ω+= Ρ = = .  So now we can 

represent the update times more appropriately as ( )
k

h k hω= . 

We now present a sufficient condition for the mean square 
stability of the system under markovian jumps. 

Theorem #4 

The system described by Equation (2), with update times 
( )

k
h k hω= ≠ ∞  driven by a finite state Markov chain{ }kω with 

state space {1,2,..., }N  and transition probability matrix Γ  

with elements ,i jp  is globally mean square asymptotically stable 

around the solution [ ] [ ]0 0T Tz x e= =  if there exists 
positive definite matrices P(1), P(2), …, P(N) such that 

( ) ( ) ( )( ) ( ),
1

0
N

T
i j

j
p H i P j H i P i

=

 
− < 

 
∑  , 1,...,i j N∀ =  

with ( ) 0
0 0

ih I
H i eΛ

 
=  

 
. 

Proof. 

We know that since the Markov chain has a finite number of 
states, and thus that the update times are bounded, we can 
analyze the system’s stability by sampling it at a certain time 
between each update time. We will evaluate the response of the 
system described by (2) at times kt

− : 

 ( ) ( )1
1

0
0 0

kh
k k

I
z t e z t+Λ− −

+
 

=  
 

 (15) 

Lets define ( )1( ) kk z tς −
−=  and ( ) 0

0 0
kh

k

I
H e ωω Λ  

=  
 

. Now 

we can represent the sampled networked control system as: 

 ( )( 1) ( )kk H kς ω ς+ =  (16) 

To ensure mean square stability we will make use of a Lyapunov 
function of quadratic form and analyze the expected value of its 
difference between two consecutive samples. We will use the 
following Lyapunov function: 

 ( ) ( )( ), ( ) ( )T
k kV k k P kς ω ς ω ς=  (17) 

Now we can compute the expected value of the difference: 

[ ]
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

1

1

1

| ,

( 1), ( ), | ( ) ,

( 1) ( 1) | ( ) ,

|

k k k

T T
k k

TT T
k k k k

E V i

E V k V k k i

E k P k k i P i

E H P H i P i

ς

ς ω ς ω ς ς ω

ς ω ς ς ς ω ς ς

ς ω ω ω ς ω ς ς

+

+

+

∆

 = + − = = 
 = + + = = − 
 = = − 

 

 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

,
1

,
1

N
TT T

i j
j

N
TT

i j
j

p H i P j H i P i

p H i P j H i P i

ς ς ς ς

ς ς

=

=

= −

 
= − 

 

∑

∑
 (18) 

From this last equality is it obvious that to ensure mean square 
stability we need to have: 
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 ( ) ( ) ( )( ) ( ),
1

0
N

T
i j

j
p H i P j H i P i

=

 
− < 

 
∑  (19)♦ 

This type of stability criteria depend on our ability to find 
appropriate P(i) matrices. Several other results in jump system 
stability [1, 3] use a similar procedure that can be extended to 
obtain other conditions on stability of networked control systems. 
Note that most of the results available in the literature deal with 
similar but not identical type of systems. The relationship with 
Almost Sure stability can be studied by closely analyzing the 
implications of such simplification. 

7 Conclusions 

In this paper four types of stability criteria for model-based 
networked control systems were presented. The first one ensures 
deterministic stability for an update time that can vary within an 
interval. The second stability criterion, called Almost Sure (or 
Probability-1) Stability, is a true stochastic stability criterion that 
ensures deterministic-like stability of a system. It assumes that the 
update times are independent identically distributed random 
variables. A weaker type of stochastic stability, Mean Square 
Stability, is also presented. It assumes independent identically 
distributed update times. Both stochastic stability criterion have 
similar structures and can be equivalent depending on the nature 
of the probability distribution function and the structure of the 
test matrix, as is the case for example when F(h)=0 for h>hm and 
the test matrix is diagonal. Finally, the case where the update 
time is governed by a Markov chain is studied and a sufficient 
condition for Mean Square Stability is derived. 

The stability types presented here only represent some of the 
different stochastic stability types available on the literature. We 
consider that the insight provided by the stability analysis studied 
here can be used to determine conditions for other stability types. 
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