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ABSTRACT

Parameterizations of feedback controllers are. derived in a unifying
way, using polynomial matrix internal descriptions, and the important
design issues of causality and hidden modes are clarified.

1. TINTRODUCTION

The .design of multivariable control systems can often be simplified if
an appropriate parameterization of .the feedback controller is used to
incorporate important design objectives such as intermal stability.
Youla et al., [l] were the first to introduce:a parameterization of all
stabilizing controllers for linear multivariable systems. Since then,
knowledge of this parameterization has been increased [2,16] and has
been extended to more general classes of systems [3,4]; alternative
controller parameterizations have alsc been introduced [5-8,17].

If feedback controller parameterizations are to be used effec-
tively to control a system, the issues.of causality and hidden modes
must be clarified. In particular, unote that certain parameteriza-
tions, the ones more closely related to the internal description of
the plant (eg. Youla's), offer good control of the closed loop eigen-
values but might lead to a nonproper controller; other parameteriza-
tions invalving rational matrices can easily solve the properness pro-
blem but they have less direct control over the closed loop eigen-
values. and so¢ can result in hidden modes and high order compensators
(eg. using Zames' parameter (5,9] and proper, stable matrices or gen-
eralized. polynomials [3,4,10].) .

In this. paper, controller parameterizations are derived in a uni-
fying way, using polynomial matrix descriptions. In Proposition 1,
all stabilizing controllers are characterized using parameters K [1]

.and (Dg,Nk) [2]. Alternative internal stability conditions are de-
rived 'in Proposition 2; some of these conditions can be used as alter-
native definitions for internal stability [3,5]. Theorem 3 is funda-
mental in deriving known as well as novel parameterizations involving
rational matrices as parametersj note that the use of internal de-
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scriptions in the analysis allows the detailed study of the internal
structure of the feedback system when rational parameters are used to
characterize all stabilizing controllers. The relation of stabilizing
controllers to observers of the state is established in Proposition 4.
Proposition 5 characterizes all stabilizing controllers using rational
parameters, and Corollaries 5.1 and 5.2 study the special cases of
stable and nonsingular plants; Corollary 5.3 introduces an additional
test for internal stability. Causality of the controller is then dis-
cussed and methods to obtain proper controllers when using parameter-
izations are introduced; proper controllers are obtained in Proposi-
tion 6 working over stable and proper matrices [3,4]. The hidden
modes of the feedback system are fully characterized and they are
identified as the uncontrollable and/or unobservable modes in the case
of the single degree of freedom feedback configurations {G,I;P} and
{I,H;P}; this is done in terms of the transfer matrices of the plant
and the controller, and also in terms of the parameters characterizing
the stabilizing controllers. The discussion on hidden modes makes
possible the characterization of the closed loop eigenvalues in terms
of poles of loop quantities, which in turn leads to additional tests
for internal stability. Finally in Proposition 7 a parameterization
of all stabilizing controllers is employed to achieved desired
command/output-response and command/control-response when {G,I;P} or
{I,H;P} feedback configurations are used to compensate the plant.

2. MAIN RESULTS

Consider

where Sp is the given plant and Sg the controller. Assume Sp, Sc con-
trollable and observable, and let their transfer matrices be given by

¥y
y=Pu , u= [‘Cys Crl (1)
r
where y is the output, u the control input and r the command input.
If the feedback loop is well defined, that is if |I + CyP| # 0, the

closed loop transfer matrix T between y and r 1s given by

T = PM (2)



where
A
M= (I+cyP)~lc, , (3}

Notice that T characterizes the command/ocutput-response y = Tr, while
the command/control-response u = Mr is characterized by M.

We are interested in causal controllers which internally stabil-
ize the system. The input r does not affect internal stability; and
for such studies it will be taken to be zero. In addition, we are in-
terested in the hidden modes of the system. These are affected by C,.
We shall study the hidden modes of the following single degree of
freedom feedback systems:

{G,I;P} where u = Ge, e = r -y (Cy.= G, C¢ = G). This is the error or
unity feedback configuration with compensator G in the feedforward
path.

{I,H;P} where u = -= Hy + r (Cy = H, Cp = 1) with compensator H in the
feedback path.

2.1 Internal Stability. Let u = -Cy (r =0, C = Cy for notational
convenience) and consider the controllable and observable internal op-
erator polynomial matrix descriptions [11]:

Sp : Dz = Nu, y =2z ; (D,N) 4p (4)
8¢ ¢ DezZe = =Ney, u = Ze s (Rc’_l\_}_c) 2p (5)

(%p or rp will be used for left or right prime polynomial matrices).
Then

De

| =

Ze Ze A c
A =0,y=100 1] ; A= (6)
z z -N D
is the closed loop internal description. If the dual descriptioms
Sp : Dz =u , y = Nz ; (D,N) rp {7
S¢ ¢ DpzZpo = =y , u = Nozp 3 (Do,No) rp (8)
are used, then
z z AlD -N.
A =0,y=[N 0] i A= . (9
Zo ze | - N Do

Note that, in transform terms, which we shall use hereafter unless
otherwise noted,

P = D—]'N = ND-I N C = EC—IHC = Nch_l (10)



are prime factorizations of P and C corresponding to the above inter-
nal descriptions. Furthermore,

Dy 0
AA-= (1D
0 Dy
where
A A
Dy = DeD +HC.N y Dk = DD; + NN, . (12)

Notice that other operator systems, such as
Dz =0, y =Nz ; Dyzo =0 , y = -Dez¢ {13)

are also closed loop internal descriptions, equivalent to (6) and (9).
[a], [A], [Dk| and [Dx| are therefore alternative expressions for the
closed loop characteristic polynomial; and they are equal within a
multiplicative constant. Note that similar results can be derived us-
ing matrix identities to evaluate |A| and [A| from (6) and (9).

Definition. The feedback loop is well defined if the closed loop in-
ternal description is well defined, that is if |A| # O.

Notice that
(I + CP) = D.~! DD (14)

which, in view of the assumption that [D.|, |D| # 0 and the fact that
|A] = k[Dk|, directly implies the known result, namely:

The feedback loop is well defined if and only if [I + CP| # O.

Definition. The closed loop system is intermnally stable if éfl exists
and 1s stable.

Since the roots of |A| are the closed loop eigenvalues, the sys-—
tem will be internally stable when all eigenvalues lie in the open
left half of the s-plane (continuous system) or inside the open unit
disc in the z-plane (discrete system).

We shall now parametrically characterize all stabilizing control-
lers C. Here we shall follow the development in [2]:

D I
Congider a unimodular matrix U so that U ]==[' ] and of the form:
N 0

X1 b)) D —X2
U= , U-l = . (15)
-N D N X]




It is known [2,11] that such a matrix U does exist. Postmultiply A of
(6) by U-! and premultiply A of (9) by U to obtain:

Bk Ek I -Ni
AUl = , UA= (16)
0 1 0 Dk

where Ny, Ny are polynomial matrices. In view of the definitions of A
and A, (16) directly implies that

[De Nel = [Dx N¢] U (17)

—Ne N
= Ul . (18)
De Dy
Since U is unimodular, it is clear that (D.,N.) fp ((Ng,D¢) rp) if and

only if (Dg,Ni) 2p ((Ng,Dk) rp). Furthermore, if the product
(AUT1)(UA) 15 determined using (16), then in view of (l1),

Dt = McDy (19)

As it has been shown in [2,12]}, (17) and (18) characterize any and all
solutions of equations (12) where (D,N,Dy), (D,N,Dx) are given and
Ng,Ng are arbitrary polynomial matrices of appropriate dimensionms.
Furthermore, in the system context, Dk and Mg must satisfy |Dx| # O,

| Dyexy 7¥k§| = |Dc| # 0 for the loop and controller to be well defined;
and D~* must be stable for internal stability. In view of (10), it
follows that [2]:

and

Proposition 1. Any and all stabilizing controllers are given by

C = (Dx1-Ne)"1(Dxp+NKD) = (x1-KN) = (x2+KD)

(x2D+DNi ) (x1D-NNi ) 1 = (x2+DK) (31 ~NK)~1 (20)

where (Dp,Ni) ((Nk,Dx)) are an{ polynomial matrices with appropriate
dimensions such that Bk-l (Dp™1) is stable and ‘Ekxl'EkEJ #0 (lEJDk-
NMg| # 0) or, alternatively, K is any stable rational matrix such that
|x1-KN| # 0 (|x)-NK| # 0).

Note that
K = D 1N = Mgy ~) (21)

which shows that the poles of K are the desired closed loop eigen-
values, It should be noted that the parameter K and the expression C
= (x24DK) (xl-NK)'1 were first introduced in [1] using an alternative
method. -



Proposition 1 parametrically characterizes all stabilizing feed-
back controllers. The parameters are either the polynomial matrices
Dy,Nk (Dx,Nk) or the rational matrix K. Note that this parameteriza-
tion requires the knowledge of prime polynomial matrix factorizations
of the plant transfer matrix P. It is clear that using (20), the de-
signer has control over the closed loop internal descriptions; fur-
thermore, complete and arbitrary closed loop eigenvalue assignment is
easy to achieve by appropriately choosing D (Dr) or K. The problem
of causality is addressed in a later section of this paper.

Internal stability in the feedback loop can alsc be determined
directly from the transfer matrices of the plant P and the controller
C without using internal descriptions. In particular, let op, ag de-
note the characteristic polynomials of P, C respectively and

A -1 A -1
{=(IL+PC) , Sp=(L+CP) ,
A (22)

Q=CS; =83 C.

Note that D(I + PC)y = DS)~ly = 0 and D(I + CP)u = DcSp~lu = 0, when
interpreted in an operator sense.

Proposition 2. The following statements are equivalent.

(a) The closed loop system is internally stable.

. (b) oapag |Sl*1| = apag |52'1| is Hurwitz.

I C
is Hurwitz.

{c) The zero polynomial of [
-P I

So -0
(d) is stable.
P59 51

Proof (b) S~ = T + CP = D,7ID,D"! and op = |D|, ag = |De|. Then
apac |85 L = | | = k |A}] which is Hurwitz by deflnitlon. Also
|52"1 = |1+ ET = |1 +78c| = |87,
-1
I ¢ D. O
To show (c), note that = A, which is a 2p factor-
[-P 1] [0 2] B

ization., The zero polynomial is [A| and therefore Hurwitz. (d) The
zero polynomial in (¢) is the characteristic polyncmial of the inverse
-1

1 c (I1+cp)-l  -c(1+pC)-1
system = , Which is the matrix in

P I p(I+cP)~1  (1+pC)~1

(d). AAA



Note that (b) is a well known stability test, while the matrix in (d)
has been used by Zames and Desoer in [3,5] and earlier papers to de-
fine stable feedback systems. Here internal stability is defined us-
ing internal descriptions from which the results of Proposition 2 are
easily derived as alternative tests for internal stability.

The feedback controller parameterizations of Proposition 1 are
closely related to internal system descriptions; and it is clear that
they can be used to solve directly the design problems of eigenvalue
assignment and stabilization. However, if the main design objective
is to obtain desired input/output maps between certain signals in the
loop, then it may be more convenient to use alternative controller
parameterizations directly related to those maps. The following basic
feedback compensation theorem introduces such parameterizations and
establishes their relation to the internal system descriptions.

ND‘I(égflg) prime polynomial
-0y, the closed loop system

Theorem 3. Given a plant y = Pu with P
matrix factorizations, and controller u
is internally stable if and only if

¢ =Ly7lL; (¢ =1ry157D (23)

where Lj, Ly (Lj,Lp) are stable rational matrices with [Lo| (|Lp{) # 0
which satisfy

LD+ L1IN=1 (ELZ + NLy = I) . {24)
Furthermore, if
L2 De
(Lp L1) = o7 [De Ne) (| | = 1) (25)
L Ne

are prime polynomial matrix factorizations, the closed loop internal
description is given in operator terms by

Dxz = 0, y = Nz (Dgze = 0, y = -D¢zc)e (13)

Proof: The part in parentheses will not be shown as it follows in a
similar way. Let [Lo Lj] stable satisfy (23), (24) and write a fp
factorization as in (25). Then DD + NcN = Dy where (Do No) fp, 2;‘1
and Pk_l exist with Ek-l stable. Therefore the feedback loop with
controller C = LQ-;EJ = 2£'¥§£ is well defined, and it is intermally
stable with internal description (13). Assume now that the closed
loop system is internally stable, that is Bk—l in (13) exists and is
stable. (17) implies that Ek“l [Do NoI = [I K] U; note that (Ek’[2£
No1) is 2p since (Dg,Ng) is #p. Let Ly = Dp~1D, Ly = D~ INgs the
rest easily follows. - - AAA

The stable rational matrices Lj, Lz, which satisfy (24) and character-
ize all stabilizing output controllers, also characterize all state
observers,




u
Proposition 4. [Ly Lj] [ ] , where Lj, L2 are stable, is a partial
ot y =
state observer if and only if LpD + LN = I,

Proof: In view of the plant deseription (7) Dz=u y=Nz, Lou + L1y =
(LoD + LiN)z which is equal to the partial state z if and only if
LoD + LN = I, AdA

Observers of linear functionals of the state of the form Fz can also
be easily derived as follows:

Let D be column proper {(reduced) and let F be such that the column
degrees of D, 9,4D > 3.iF; F is a desired state feedback matrix
(u = Fz) [11]. Let Dp = D-F; then in view of (24)

(I - Dglp)D + (-DFL))N = F
which implies
(I - DgLa)u + (-DpL))y = Fz.

This means that [I - D Lo, 'DEEI] is an observer with output ¥z. Fur-
thermore, if

[T - DLy, -DpLj]l = L1 [Ky,Kp]
is a left prime factorization, then
KD + KaN = LF

which is precisely the relation used in [11] to derive linear state
feedback realizations via an observer compensation scheme.

These results establish the exact relation between the factors of
stabilizing compensators C and observers of the state of the plant.
Also note that if Lj is chosen as discussed in a later section to
guarantee C proper, then the corresponding observer of Fz derived
above will also be proper.

If the output feedback configuration {G,H;P}, where u = G(r - HY),
is used to realize linear state feedback then the appropriate choices
for G and H are [13]:

¢ = (L= k)L = (L=l , H = -L71Ky = DpLy.

It is clear that the feedback path compensator H is stable; however,
the feedforward path compensator G is stable if and only if EZ_I is
stable (Dp~! is chosen to be stable) that is, if and only if C, in
Theorem 3, is stable. Therefore, stabilizing the plant P via a stable
controller C is a problem in precisely the same spirit as that of
realizing a state feedback control law via {G,H;P} compensation with G
and H stable. Furthermore note that in view of Theorem 3, the above
choice for G and H stabilize the plant; this is an alternative proof
of the known result, namely that any coprimely represented P can be
stabllized with the ald of an observer.



It is of interest toc notice that any stabilizing controller C of
the plant P can be written, in view of Theorem 3, as a product of two
factors; one of the factors is stable (L) while the other (Lp~ ) has
stable transmission zeros [18]. This observation also implies that
BEZ (or P(DF;Z) 1y can be stabilized by a stable controller Ly
(DpL1).

In view of Theorem 3, a number of controller parameterizatioms
can now be readily derived. In particular, we have the following.

Proposition 5. Any and all stabilizing controllers are given by:

(a) C =Lyl (= 137D (23)

where Lj,Lj (Lp,L}) satisfy (24);

(b) C=35y71q (= qs;7D) (26)
where D~1[S; Q] (5;D~1,0D"1) stable with [Sp| (|S1]) # O
satisfying 89 + QP =1 (S; + PQ = I); (27)
() €= [I-1mp-l] L (28)
where (I - LiN)D"Ll, L; stable with |I - LiN| # 0;
(d) €= oI - Q)1 (29)

where (I - PQ)D~l, qb~l stable with |I - PQ| # 0.

Proof: (a) is clear in view of Theorem 3. Sy + QP = I can be written
as (D‘ISZ)D + (D"1Q)N = I which in view of (a) directly implies (b).

If Ly, 87 are expressed in terms of L;, 0 respectively {(c) and (d) are
derived; note that the dual of (¢) and (d) are also true. AAA

It should be noted that these parameterizations are related to inter-—
nal descriptions of the closed loop system via (25). 1In this way, the
effect of the particular choice for the parameter on the closed loop
eigenvalues and, in general, on the closed loop internal description
can be determined.

When C is expressed in terms of Q, S, S; as above, (22) are
satisfied. These parameters are important design maps related to
.feedback and response properties. For example, S = (I + PC)~ l is the
well known comparison sensitivity matrix which provides a measure of
the effect of the parameter variations in P on the output y. Expres-
sing the internal stability criteria directly in terms of these maps
can provide significant insight in design. Note that the parameter Q
is the parameter introduced by Zames in [S] using an alternative me-—
thod; furthermore L) is in the case of error feedback configuration
the design parameter X discussed by Sain, et., al., [6-8]. Notice that
there is a one-to-one correspondence between L1 or 0 and the stabili-
zing compensators C given by (28) or (29).



In Propositions 1 and 5 all stabilizing controllers have been
parametrically characterized. The parameters involved are of course
related and their exact relation is easily derived to be:

Lo = D'132

x] = KN (Lp = 81071 = x; - NK),

(30)

Ly = D7lQ =xp + KD (L) = @@~ = xp + DK).
In view of these relations, additional parameterizations involving
combinations of these parameters (e.g. S; and K) can also be ob-
tained.

When the plant P is unstable it is clear that the conditions ()
and (d) impose restrictions on the structure of the parameters Lj; and
Q. When the plant is stable, the conditions on the parameters in Pro-

position 5 are simplified [5,8]:

Corollary 5.1. If P is stable, any and all stabilizing controllers
are given by:

-1
(1 - Limp~l] L

(a) C =

where Lj is stable with |I - LiN| # 0; (31)
(b) €= o1 - P!

where Q is stable with {I - PQ] # 0. (32)

Proof: When P is stable, D~! is stable. Note that the dual of (a)
and (b) are also true. AAA

When P is stable, these parameterizations are simple to use because,
for internal stability, the only restriction imposed on the parameter
is that it must be stable; furthermore, as it will be shown in the
section on causality, i1f P is proper and Q or DLj are chosen to be
strictly proper, then C will be proper. Q and (32) are used in [5,9]
where it is assumed that the plant P is proper and stable; 0 is then
chosen to satisfy additional design requirements.

When P is square and nonsingular, that is |P| # 0, additiomal
parameterizations can be derived:

Corollary 5.2. If |[P| # 0O, any and all stabilizing controllers are
given by:

(a) € =Lyl (I - LyDyN-1
where Ly, (I - LpD)N~1 are stable with [Lo| # 0. (33)
(b) €= (51p)"1 (I - 5))

where N-1S;P, N~1(I - S;) are stable with [S]| # O. (34)



Proof: The proof of (a) is similar to (¢) of Proposition 5. (b) can
be shown directly: notice that [N-1S;P]D + [N"I(I - S;))]N =1 and I +
PC =1+ P(SIP)"I(I - 5)) = 81“1 which ‘in view of Theorem 3 implies
the result. The dual of (a) and (b). axe.also true, ABA

If P has no zeros in the closed right half s-plane (or outside the
closed unit disc) then N-l is stable and-stabilizing controllers can
be derived by choosing any stable Lj or Sy, with S)P stable, in (a)
and (b) above; this is true for stable or unstable plants P, However,
using these parameterizations, proper.C is more difficult to obtain.

. Nevertheless, Corollary 5.2 points to the' fact .that if P has stable
zeros then it can be easily stabilized via a, not necessarily proper,
controller C.

Corollaries 5.1 and 5.2 are examples of cases where special pro-
perties of P are used to derive alternative .parameterizations. It is
..clear that for a given plant, additional parameterizations could be
derived depending on the particular properties of P.

In the following corollary an internal stability test is presented:

Corollary 5.3. The closed loop system is internally stable if and
only if L + CB| = [I + PC| # 0 and

(1 + pC)~!
p~1 [(x + ¢cp)-1, (1 + cp)-lc] ( * 1) stable (35)
c(I + pc)~l

Proof: See (d) of Proposition 5 and (22).

Notice that in {(d) of Proposition 2, four raticnal matrices must be

- stable for internal stability. .In.Corollary 5.3,. by.using the denomi-
nator D (D) of the plant P, internal stability depends on the sta-
bility of .only two rational matrices.

2.2 Causality. We are interested in proper controllers C. In view
of. ’

C=0(I - pQ)-1 29)

if Q is proper and (I ~PQ) at (=) is finite and nonsingular (that is
. (1 -PQ) and its inverse are proper, or (I -PQ) is biproper) then C is
proper. If in addition P is proper then any strictly proper Q satis-
fies the.requirements and results, by (29), in a strictly proper con-
troller C.

It is therefore clear that proper stabilizing controllers C are
derived from (d) of Proposition S5 if the additiomnal requirement of Q
proper and (I -PQ) biproper is added. Using the dual of (d) the
equivalent conditions Q proper and (I ~QP) biproper are derived.
These conditions on Q are easily translated into conditions on Ly (L))
using (30) to give DL; proper and (I -NLj) biproper; in this way (c)



of Proposition 5 can also be used to obtain propér stabilizing con-
trollers C.
In view of (30)

K= (L - xz)gfl = (D~1lq - xz)gfl. (36)

For any Q or L] which satisfies the causality conditions or, with
a proper P for simplicity, for anmy Q strictly proper, the correspon-
ding K, if used in (20) of .Proposition 1 will give a proper C. For
stability, K must also be stable or Q must satisfy the conditions in
Proposition 5 unless P is stable, in which case Q stable suffices
{Corollary 5.1). It is apparent that it is more difficult to choose K
(or Dg,Mc), than Q or Lj, to.guarantee causality of the controller.
In general, for C proper, the order of K (or 3|Dx| in (12)) must be
higher than the order of P by an amount which depends on the structure
of N and D [8). This can be seen from the known result [l4] namely
that all closed loop eigenvalues can be arbitrarily assigned with a
.controller C of order min (u-1,v~l) where y and v are the controlla-
bility and observability indices of P; this result implies that for
algkl in (12) large enough proper C does exist. Nate that for par-
ticular (N,D) it might be possible to derive lower order proper C,
that .is proper solution C = 2£'¥§£ of (12) might exist for lower
algkl; this is the case when for example eigenvalue assignment via
constant output feedback is possible.

Proper C can also be achieved if one works over the proper and
stable matrices [3,4]. This is shown here to be a direct consequence
of . Theorem 3.

Proposition 6. Let P be strictly proper. Any and all proper stabil-
izing controllers are given by

¢ =1Lyl 1 (37)

where Ly D' + L{ N' = I, |L3] # 0, P = N* D'~1 with all (') matrices
proper and stable.

Proof: If LaD' + L|N' = I, then Ly + L] P = D'l which implies D'~l
proper, that is D' biproper. Also, if C is proper them D' + CN' =
Lp'~l which implies that Lp'~l is proper, that is L' biproper. Let

o'l |[p
[N] = [N] D;~l [6-7) and let D71 [Ly' Ly'] = {Lg,L1l; then LoD + LN

= I which in view of Theorem 3 implies that the proper C = Lz'”l Ly?

= EZ-%EI is a stabilizing contraoller, Assume that the proper C =‘£2'1
L) satisfies the conditions of Theorem 3. Let D] be a polynomial
-matrix such that Dl“l is stable, D)Ly is biproper and DL is proper.
Note that such a matrix exists because P strictly proper and C proper
imply DLj proper, DLy = I -DL1P biproper (see causality arguments).



Now LyD + L; N = I implies (nlgg}(nol-l) + (D1L))(8D}™1) = I from
which (DjL3} + (DjLy) P = (DDy-1)~! which implfes that (DD;~1) is bi-
proper; in view of P proper, (NDI'I) is also proper. If [Lo',L;'] =
Dy(Lp Lj] and D'= DD;~1, N* = ND|~1 the result is obtained. AAA

All solutions of Lg'D' + Lyj'N' = I over the proper and stable matrices
are given by

[L2'Ly*] = [%]' ~ K'N*  x3" + K'D'] {38)

with K' any proper and stable matrix corresponding to parameter K in
£20) ..[3,4,12]. Proper stabilizing controllers C are easily obtained
by appropriately choosing K'. Note that in view of the above proof
and (25), .the closed loop eigenvalues are the zeros of ngi where

D17l [x)' - K'N'  x3' +K'D'] = D™l [De Ne) (39)
D! D
a left prime polynomial factorization with [ﬂ' = N D1'1 fe-7].

This shows that the closed loop eigenvalues (zeros of |2k|) depend on
x1', x2' in addition to K', .Clearly in this case a desired set of
closed loop eigenvalues cannot be achieved easily wia K'. Note that
similar difficulty is encountered when the parameter Q [5,9] or the
A-generalized polynomials [10] are used. In the latter method, a
transformation A = 1/(s+a) is introduced to transform the prbper
transfer matrices into polynomial matyices in A; in-this way causality
is easily achieved but multiple closed loop eigenvalues at -a tend to
appear. The discussion on hidden modes sheds more light upon this is-
sue,

2.3. Hidden Modes. Hidden modes are those modes of the closed loop
system which do not appear as poles of the closed loop transfer ma-
trix. They correspond to closed loop eigenvalues which are uncontrol-
lable and/or unobservable. If the internal stability counditions are
satisfied, it is clear that unstable hidden modes do nat exist in the
loop. It is possible, however, to have stable hidden .modes which
might cause undesirable signal behavior in the loop; furthermore these
hidden modes unnecessarily increase the order of the controller [8].

. .The unobservable eigenvalues can be determined using the internal
operator description (13) since an output y has already been speci-
fied. They are the zeros of the determinant of a greatest right di-
visor (grd) of (Dk,N) {11]. This grd is equal to a grd of (D.D,N)

since
RN
= (40)
N 0 I N

which implies, in view of N(_Q_CD)'1 = ng"l, that the unobservable




eigenvalues are exactly those poles of C which cancel in the product
PC, : - -

If parameterizations involwing Dk or K and (20) are used, one can
easily control the number of unobservable hidden modes. However, when
parameterizations involving Lj, Q and so forth, as in Proposition 5,
are used, it is not as clear how this can be achieved. This is
studied next. The unobservable eigenvalues are exactly those poles 2£
L) which cancel in NLj. This can be shown- using (25) as follows: The
unobservable eigenvalues are those zeros -of ngl which cancel in Ngk‘l
or in Ngk-l[gc Ne) = N[(I - LiN)D™L L], since (Dk, (D¢,Ne)) are prime
and Dy™* contains all poles of Lj. The only poles which cancel in
N(I = LiN)D~! = (I - NL;)P with N, are the poles of Lj which cancel
NLj. TFurthermore note that in view of (23) all the unobservable
eigenvalues appear as poles..of C.

To discuss uncontrollable eigenwalues we must specify an input r.
Consider first unity or error feedback:

+ e u

r G pb—= P - Y

{G,I1;P}: u = Ge, e = T-Yy.
In view of (1-3), Cy =C=Cp =G and
T=PMg , Mg=(I+GP)"lG (41)

where T (y=Tr) is the closed loop transfer matrix and Mg (u=Mgr)
characterizes the control action u. Using the internal operator de-
seription Dz = u, y = Nz and Doz, = Nee, u = 2z, for the plant P and
the controller G respectively with e = r-y, the closed loop internal
description is

Dgz = Nor , y = Nz {42)

with Dy = DD + NoN as in (12).

The uncontrollable eigenvalues are the zeros of the determinant
of a greatest common left divisor (gfd) of (Dg, No). This gid is
equal to a gfd of (DcD,N;) since

N I

I 0
(D Nel = [DeD Nel (43)



which implies, in view of (D.D)~IN, = D~1G, that in the {G,I;P} feed~-
back configuration the uncontrollable elgenvalues are exactly those
poles of P which cancel in the product PG. Note that, as it was shown
above, the unobservable eigenvalues are exactly those poles of G which
cancel in the product PG,

When (20) and parameters Dy or K are used then one can easily
control the number of uncontrollable hidden modes. However, if para-
meters Lj, Q and so forth are used, the issue becomes quite compli-
cated and it is treated below. First note.that, as it was shown
above, the unobservable eigenvalues are those poles of L which cancel
in NLj. .It is now shown that the uncontrollable eigenvalues are ex-
actly those poles of P which do not cancel in (I - LiN)D™ 1:

In view.of (25), [(I - LiN)D~! L;] = D=1 (D¢,Ne) is 4p. Let Ly =
D;"IN] be a left prime factorization. Then [Dc Nel = Dy D1™ -1
[(D] = NyN)D™1, Nj]. Since N. 1s a polynomial matrix, Dk = Dz 1 and
Ne =.DoNj; also D. = Da(Dj ~ “NN)D-1, Clearly the poles of D1 (of P)
which do not cancel in (Dj ~ NjN) must ‘cancel .D3 completely since D¢
is a polymomial matrix and (Ds,N.) are fp. This shows the result be-
. cause Dy is a gfd of (Dy,N.) and it contains the uncontrollable eigen-
.values, Note that the uncontrollable eigenvalues appear in the nu-
merator.N. of the controller G.

It ie clear that in view of Ly = D" 1Q, the parameter Q can also
be used to characterize the hidden modes. If (25) is expressed in
terms of Q then -

p-l[I - QP .Q),= D"l {D. N.] fp. (44)

It follows that if Q is chosen to be proper and stable as in the case
of stable P [5,9] then at least.all.of the poles of P will tend to ap-
pear as.uncontrollable hidden modes in the loop thus increasing the
complexity of the controller. In order to. eliminate the possibly un=-
desirable stable hidden modes (poles of P) and simplify the control-
ler, the designer must use. the above results on hidden modes, which
impose additional structural restrictions on Q (or Lj) similar to the
ones imposed when P is unstable. This of course reduces the ease of
implementation of this parameterization.

. Notice that if G = Ly~! L) in (41), then Mg = DL} (=Q) and T =
NLj; that is Lj is the design matrix X (z=Xr) introduced in [6,7] and
used in {8) to show similar results.

We consider next another of a variety of possible feedback con-
figurations which have come to be known as single degree of freedom
types. The previous case, of course, which i3 output erreor feedback,
is probably the most frequently studied example in the class. How—~
ever, the case following is alsc of conslderable interest, and has
been commonly studied in the classical literature. In addition, it
- plays. an important role in the applications, due to the use of sensors
in the feedback path. Of course, the two cases under study here do
not exhaust the set of possibilities; but they are representative of
the techniques by which such problems may be approached. Consider,
then, the following diagram:




H

{I,4:P} : u = -Hy + r.

In view of (1-3), Cg=C=H, C =1 and

T=PMy , My=(I+HP)l. (45)
Using the internal operator descriptions Dz = u, y = Nz and D¢z, =
Noy, b = z, for the plant P and the eontroller H respectively with u =
r-b,. the closed loop internal description is

Dz =Der , y = Nz (46)

with Dy as in (12). Proceeding similarly, the uncontrollable eigen-—
values are the zeros of the determinant. of a gfid of (Ek'Eg) or of
(NeN,Dg) which implies, in view of Qc‘¥§£N = HN that they are exactly
those poles of H which cancel in the product HP. Note that, as it was
shown above, the unobservable eigenvalues are those poles of H which
cancel in the product PH.

If parameters (El'EZ) are used, it was shown that the unobserv-
able eigenvalues are those poles of L] which cancel in ‘NLj. It is now
shown that, in the {I,H;P} feedback configuration, the uncontrollable
eigenvalues are those poles of L) which cancel in LjN:

Let Ly = Dl'lNl be a left prime factorization. Then in view of (25),
De = Dkla = DgD)~!N] which implies that Dy = D2Dj and D. = DaNj. D3
is a gld of (Dk,D.) and it contains all the uncontrollable eigen-
values. Note that N. = DyL; = DyDjLj; since No is a polynomial matrix
2p to D¢, the poles of L) must cancel all zeros of |Da{. Now the gtd
of (NoN,D.) contains all the zeros of |D2|. Therefore all the poles
of L) which correspond to the uncontrollable eigenvalues must cancel
with N in N.N = DpDiLiN. Note that the uncontrollable eigenvalues ap-
pear in the denominator D, of the controller H.

It is clear that, in view of L = D~10, the parameter Q can also
be used to characterize the hidden modes. Notice that if H =<_2-;EJ
in (45) then My = DLy and T = NL», that is Ly is the design matrix X
[6-8]; furthermore L} = XH and Q = MyH = DLj. For no hidden modes, L)
must be chosen so that no cancellations take place in LN or in qu:_



In view of the above discussion on hidden modes, the closed loop
eigenvalues can be easily described in terms of poles of certain
transfer matrices in the loop. This provides additional insight and
leads to additional tests for internal stability. The results pre-
sented below can be shown either by using the hidden modes results de-~

.rived above for the single degree of freedom feedback configurations
or by using internal descriptions and derivations similar to the ones
used in the above proofs:

Consider the {G,I;P} feedback configuration, The.closed loop eigen-
values are:
T (1) The poles of PG(I + PG)~l = T and the poles of P and G which
cancel in PG (uncontrollable and unobservable eigenvalues).
(ii) The poles of (I + PG)~! = S; and the poles of P and G which
cancel in PG, Notice chat 5, =1I-T,
(iii) The poles of (I + GP)‘ =,.59 and the poles of P and G which
cancel in GP,
(iv) The poles of G(I + PG)~l = Mg and the poles of P which can-
cel in PG and GP,
(v) The poles of P(I + GP)~ -1 and the poles of G which cancel in
PG and GP,
Notice that (ii) implies that the closed loop system is internally
stable if and only if (I + PG)~! is stable and no unstable cancella-
tions take place in PG' this is the main -result of, [15].
~(vi) The poles of X and the poles of P which cancel in PG (uncon-
_trollable eigenvalues). Note that the poles of X which can-
cel in NX are the unobservable eigenvalues; the poles of P
which cancel in GP are the poles of X which cancel in DX,

As a direct consequence of Theorem 3 and the relation between X and
L}, Ly the following important result is presented, an alternative
proof of which was given in [8].

Proposition 7

T N
[M] = [D:ix can be realized with internal stability via:

(a) {G,I;P} compensation if and only if
X, (I - XN)D~1 stable and |I - XN| # O; (47)
then G = [(I - XN)D~1]-1Xx = M(I - PM)~];
(b {i,H;P} compensation if and only if
X stable, |X| # 0 and there exists stable X such that
XD + XN = I; (48)

then H = X'{E



Proof In (a) X = L) and in (b) X = Ly, X = L} = XH of Theorem 3. This
proves the result. If (25) is used the corresponding internal de-
- scription can be derived. AAA

In (b), if P~l is stable then an appropriate H (not necessarily pro-
per) always exists; also note that H is stable if .and only if X! is
stable. Furthermore, note that in wview of the causality discussion
above, 1f P is proper then for DX strictly proper G is proper and for
DX strictly proper (DX biproper) H is_proper.

It should be noted that the comparison sensitivity matrix is 5| =
S = (I + PG)'1 =1 -T=1~ NX, Notice that the poles of 5 are the
poles of T. The zeros of S are the poles of PG, that is: all of the
poles of P except the uncontrollable hidden modes and all of the poles
of G except the unobservable hidden modes [8].

Proposition 7 is an example of expressing the conditions for internal
stability directly in terms of the design parameter of interest; here
X characterizes the command/output-reponse y = Tr and the command/con-
trol-response u = Mr. The internal stability conditions can also be
expressed in termeg of other design parameters, such as Q or the com-
parison sensitivity matrix S8;, as it was shown above, and the designer
. must choose the parameterization which best fits his or her data and
design objectives. In general, when designing using controller para-
meterizations, constraints must .be imposed on the parameters so that
ather design objectives in addition to imternal stability are at-
.tained. (eg. [1,5,8,9,13]).

3. CONCLUSIONS

In this paper, a number of stabilizing controller parameterizations
were presented. Certain parameterizatioms are. clesely related to
polynomial matrix internal descriptions and they allow complete con-
trol of the closed loop elgenvalues, but they might lead to nonproper
controllers. Other parameterizations involving rational matrices can
easily solve the properness problem but they have less direct control
over the closed loop eigenvalues and so can result in (stable) hidden
modes and high order compensators. Internal polynomial matrix de-
scriptions were used in the analysis and the relation of all the para-
meterizations to the internal structure of the feedback system was es-—
tablished, Tests for internal stability were also presented.through-
out the paper.

The theory of 211 stabilizing controllers as presented here can
be used to derive other parameterizations as well as additional tests
for Internal stability., Having established their strengths and weak-
nesses the designer can choose the parameterization which best suits
the given data and the design objectives.
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