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Abstract

In this paper, optimal control problems for hybrid au-
tonomous systems with state jumps are studied. In particular,
we focus on problems in which a prespecified sequence of ac-
tive subsystems is given and propose an approach to finding
the optimal switching instants. Specifically, the derivatives
of the cost with respect to the switching instants are derived
and nonlinear optimization techniques are used to locate the
optimal switching instants. Using the approach, accurate nu-
merical values of local optimal solutions can be obtained. An
example illustrates the approach.

1 Introduction

A hybrid system is a dynamic system that involves
both continuous and discrete event dynamics. The contin-
uous dynamics is usually described by subsystem differen-
tial/difference equations and the discrete event dynamics is
described by switching laws. Discontinuous jumps of con-
tinuous states may occur when the system switches from one
subsystem to another. Examples of hybrid systems can be
found in chemical processes, automotive systems, and elec-
trical circuit systems, etc.

In this paper, we study optimal control problems for
a class of hybrid systems in which each subsystem is au-
tonomous and state jumps are present at switching instants.
We develop an effective approach for finding accurate nu-
merical values of local optimal solutions for such problems.
In particular, we focus on problems in which a prespecified
sequence of active subsystems is given. Such problems arise
naturally in multimodal control and in logic-based control
systems whose controllers are switched among given con-
trollers. Nonlinear autonomous subsystems and performance
costs which are not necessarily quadratic are considered in
the paper. We note that the cost is actually a function of the
switching instants and use constrained nonlinear optimiza-
tion to locate the optimal switching instants. To apply non-
linear optimization techniques, we need to determine the val-
ues of the derivatives of the cost with respect to the switching
instants. An approach is proposed for their derivations and is
presented in detail. One of the main results of the paper is
Theorem 3.1 which makes possible the calculation of accu-
rate values of the derivatives. Some related computational
issues are also addressed in the paper.

1The partial support of the National Science Foundation (NSF ECS99-
12458 & CCR01-13131), and of the DARPA/ITO-NEST Program (AF-
F30602-01-2-0526) is gratefully acknowledged.

This paper extends our earlier results in [8]. In this paper,
we focus on hybrid autonomous systems with state jumps
which are an important class of hybrid systems, as opposed
to switched systems without jumps in [8]. It is worth not-
ing that most of the available literature results on numeri-
cal solutions of hybrid systems optimal control problems are
for discrete-time hybrid systems [1, 6], or based on the dis-
cretizations of time and/or state spaces [5, 7]. However, the
discretization approaches may lead to combinatoric explo-
sions and the solutions obtained may not be accurate enough.
Unlike these results, the problems we consider here are for
continuous-time systems and our approach is not based on
discretizations; hence our approach can provide us with accu-
rate values of local minimums. The closest literature result to
ours, as far as we are aware of, is [4] which presents closed-
loop solutions to infinite horizon optimal control problems
for switched linear autonomous systems. However, we point
out that our approach can deal with finite horizon problems
with nonlinear subsystems, and with costs that are not neces-
sarily quadratic, as opposed to infinite horizon problems with
linear subsystems and quadratic costs in [4]. In view of the
above, we believe our results are new and contribute to the
understanding and the solution of optimal control problems
of hybrid systems.

2 Problem Formulation

We consider the following hybrid autonomous systems
with state jumps. The hybrid system consists of autonomous
subsystems (i.e., without continuous input)

ẋ � fi�x�� fi : �n � �
n
� i � I � �1�2� � � � �M� (2.1)

and whenever the system dynamics switches from subsystem
ik to subsystem ik�1, a discontinuous jump of the state x will
occur, which are described by a function

x�t�k � � γik�ik�1
�
x�t�k �

�
(2.2)

where x�t�k � and x�t�k � are the righthand limit and lefthand
limit of the state x at tk, respectively.

The state trajectory evolution of such a system can be
controlled by choosing appropriate switching sequences. A
switching sequence in �t0�t f � is defined as

σ �
�
�t0� i0���t1� i1�� � � � ��tK � iK�

�
� (2.3)

with 0�K �∞, t0 � t1 � �� � � tK � t f , and ik � I, k � 0�1� � � � �K.
σ indicates that subsystem ik is active in �tk�tk�1�.

In the following, we assume without loss of generality
that a prespecified sequence of active subsystems is given
as �1�2� � � � �K�K � 1�, i.e., subsystem k is active in �tk�1�tk�.
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We can always do this by relabeling the subsystem indices
and even expanding the collection of subsystems (i.e., two
subsystems may refer to the same actual subsystem). Under
this assumption, we denote the state jump function at the k-th
switching as γk.
Problem 2.1 (Optimal Control Problem) Consider a hy-
brid autonomous system with state jumps, which consists of
subsystems fi�x�� i � I. Assume that a prespecified sequence
of active subsystems �1�2� � � � �K�K �1� is given. Find optimal
switching instants t1� � � � �tK�t0 � t1 � �� � � tK � t f � such that
the corresponding continuous state trajectory x departs from
a given initial state x�t0� � x0 and the cost

J�t1� � � � �tK� � ψ
�
x�t f �

�
�

� t f

t0
L�x� dt �

K

∑
k�1

ψk�x�t�k �
�

(2.4)

is minimized. Here t0�t f are given. �

Problem 2.1 is an optimal control problem in Bolza form.
Unlike conventional optimal control problems, here J in-
cludes the costs ψk’s for discontinuous jumps at tk’s. In the
sequel, we assume that fk’s, L, ψ, ψk’s, and γk’s are smooth
enough. Under these assumptions, it can be shown that J is a
continuously differentiable function of �t 1� � � � �tK�.

2.1 An Algorithm
Note that Problem 2.1 is actually a constrained multivari-

able optimization problem
mint̂ J�t̂�

subject to t̂ � T
(2.5)

where T
�
� �t̂ � �t1�t2� � � � �tK�T �t0 � t1 � t2 � �� � � tK � t f �. We

propose the following algorithm for (2.5).
Algorithm 2.1
(1). Set the iteration index j � 0. Choose an initial t̂ j.
(2). Find J�t̂ j�, ∂J

∂t̂ �t̂
j� and ∂2J

∂t̂2 �t̂ j�.
(3). Use the gradient projection method or the constrained
Newton’s method [2] to update t̂ j to be t̂ j�1 � t̂ j �α jdt̂ j. Set
the iteration index j � j�1.
(4). Repeat steps (2), (3) and (4), until a prespecified termi-
nation condition is satisfied (e.g. 	 ∂J

∂t̂ �t̂
j�	2 � ε where ε is a

given small number). �

3 Differentiations of the Cost Function

In order to apply the above algorithm, one needs to find
the values of the derivatives ∂J

∂t̂ and ∂2J
∂t̂2 (step (2)). In this

section, we propose an approach based on the direct differ-
entiations of the cost function to finding the values of ∂J

∂t̂ and
∂2J
∂t̂2 . This extends the results in [8].

Given a nominal t̂ � �t1� � � � �tK�T and the corresponding
nominal trajectory x�t�, we can compute the cost J by using
(2.4). Since x0 and t0 are fixed, J is not a function of them.
Next we define the value function at the k-th switching instant
as

Jk
�
x�t�k ��tk� � � � �tK

� �
� ψ

�
x�t f �

�
�
� t�k�1

t�k
L�x� dt

� � � ��
� t f

t�K
L�x� dt �∑K

j�k�1 ψ j
�
x�t�j �

�
�

(3.1)

Unlike J, Jk’s for k 
 1 are functions of tk and the initial
state x�t�k � which depends on the trajectory before t k. Also
note that JK does not have the state jump cost and it is

JK
�
x�t�K ��tK

� �
� ψ

�
x�t f �

�
�

� t f

t�K
L�x� dt. In the sequel, we de-

note ∂Jk

∂x for the function Jk as a row vector Jk
x , ∂2Jk

∂x2 as an n�n
matrix Jk

xx and so on.

3.1 Single Switching
Let us first consider the case of a single switching. Given

a nominal t1 and the corresponding nominal trajectory x�t�,
we denote by x̂�t� the trajectory after a variation dt1 has
taken place. In the sequel, we write f and f x with a su-
perscript 1� (resp. 1�) whenever the corresponding active
vector field at t1� (resp. t1�) is used for evaluation at x�t�1 �

(resp. x�t�1 �). Examples are f 1� �
� f1

�
x�t�1 �

�
, f 1� �

� f2
�
x�t�1 �

�
,

f 1�
x

�
� ∂ f1

∂x

�
x�t�1 �

�
, f 1�

x
�
� ∂ f2

∂x

�
x�t�1 �

�
. Also, we simply write

a function’s name with a superscript 1� (resp. 1�) when-
ever it is evaluated at x�t�1 � (resp. x�t�1 �). Examples are

J1� �
� J1

�
x�t�1 ��t1

�
, J1�

x
�
� ∂J1

∂x

�
x�t�1 ��t1

�
, L1� �

� L
�
x�t�1 �

�
, L1� �

�

L
�
x�t�1 �

�
, L1�

x
�
� ∂L

∂x

�
x�t�1 �

�
, ψ1� �

� ψ1
�
x�t�1 �

�
,� � � (be careful to

distinguish the values J1�, J1�
x , L1�, L1�

x ,� � � from the func-
tions J1

�
x�t�1 ��t1

�
, J1

x
�
x�t�1 ��t1

�
, L�x�, Lx�x�,� � � ). We also sim-

ply denote the lefthand (resp. righthand) limit of �t 1 �dt1� as
t1 �dt�1 (resp. t1 �dt�1 ).

Now consider J�t1� which can be expressed as

J�t1� �
� t�1

t0
L�x� dt �ψ1�x�t�1 �

�
� J1�x�t�1 ��t1

�
� (3.2)

For a small variation dt1 of t1, we have

J�t1 �dt1� �
� t1�dt�1

t0 L�x̂� dt �ψ1
�
x̂�t1 �dt�1 �

�
�J1

�
x̂�t1 �dt�1 ��t1 �dt1

�
�

(3.3)

There are three terms in (3.3). Let us consider the sec-
ond order Taylor expansion of each term. In the follow-

ing derivations we denote dx�t�1 �
�
� x̂�t1 � dt�1 �� x�t�1 � and

dx�t�1 �
�
� x̂�t1 �dt�1 �� x�t�1 �.

Consider the first term
� t1�dt�1

t0 L�x̂� dt in (3.3), for either
dt1 
 0 or dt1 � 0, we have� t1�dt�1

t0 L�x̂� dt �
� t�1

t0 L�x� dt �L1�dt1
� 1

2 dt1L1�
x dx�t�1 ��H.O.T.

(3.4)

where H.O.T. stands for Higher Order Terms.
For the second term in (3.3), we have

ψ1
�
x̂�t1 �dt�1 �

�
� ψ1

�
x�t�1 ��dx�t�1 �

�
� ψ1�

�ψ1�
x dx�t�1 �� 1

2

�
dx�t�1 �

�T ψ1�
xx dx�t�1 ��H.O.T.

(3.5)

For the third term in (3.3), we have the second order ex-
pansion

J1
�
x̂�t1 �dt�1 ��t1 �dt1

�
� J1�� J1�

x dx�t�1 �� J1�
t1 dt1

� 1
2

�
dx�t�1 �

�T J1�
xx dx�t�1 �� 1

2 J1�
t1t1 dt2

1 �dt1J1�
t1x dx�t�1 ��H.O.T.

(3.6)

In order to express (3.3) into second order expansions
with respect to dt1, we need to find the second order expan-
sions of dx�t�1 �, dx�t�1 � in terms of dt1. Note that

dx�t�1 �
�
� x̂�t1 �dt�1 �� x�t�1 � � f 1�dt1 �

1
2

f 1�
x f 1�dt2

1 �o�dt2
1 ��

(3.7)
where o�dt2

1 � refers to a column vector with each element be-
ing o�dt2

1 �. We will not explicitly mention this later since it
will be clear from the context. Next we have

dx�t�1 �
�
� x̂�t1 �dt�1 �� x�t�1 � � γ1

�
x̂�t1 �dt�1 �

�
�γ1

�
x�t�1 �

�

� γ1�
x dx�t�1 �� 1

2

�
�����

�
dx�t�1 �

�T ∂2γ1
�1�

�
x�t�1 �

�
∂x2 dx�t�1 �

...�
dx�t�1 �

�T ∂2γ1
�n�

�
x�t�1 �

�
∂x2 dx�t�1 �

�
������H.O.T.

(3.8)
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where γ1
� j� refers to the j-th element of the vector-valued func-

tion γ1. Since�
�����

�
dx�t�1 �

�T ∂2γ1
�1�

�
x�t�1 �

�
∂x2 dx�t�1 �

...�
dx�t�1 �

�T ∂2γ1
�n�

�
x�t�1 �

�
∂x2 dx�t�1 �

�
������ ξ1� f 1�dt2

1 �o�dt2
1 � (3.9)

where

ξ1� �
�

�
�����

� f 1��T ∂2γ1
�1�

�
x�t�1 �

�
∂x2

...

� f 1��T ∂2γ1
�n�

�
x�t�1 �

�
∂x2

�
����� � (3.10)

we can then rewrite (3.8) as

dx�t�1 � � γ1�
x f 1�dt1 �

1
2
�γ1�

x f 1�
x �ξ1�� f 1�dt2

1 �o�dt2
1 � (3.11)

Substituting (3.7) and (3.11) into (3.4), (3.5) and (3.6)
and summing them, we obtain

J�t1 �dt1� � J�t1��L1�dt1 �
1
2 dt1L1�

x dx�t�1 ��ψ1�
x dx�t�1 �

� 1
2

�
dx�t�1 �

�T ψ1�
xx dx�t�1 �� J1�

x dx�t�1 �� J1�
t1 dt1

� 1
2

�
dx�t�1 �

�T
J1�

xx dx�t�1 �� 1
2 J1�

t1t1 dt2
1

�dt1J1�
t1x dx�t�1 ��H.O.T.

� J�t1���L1��ψ1�
x f 1�� J1�

x γ1�
x f 1�� J1�

t1 �dt1
� 1

2

	
L1�

x f 1��ψ1�
x f 1�

x f 1��� f 1��T ψ1�
xx f 1�

�J1�
x �γ1�

x f 1�
x �ξ1�� f 1��� f 1��T �γ1�

x �T J1�
xx γ1�

x f 1�

�J1�
t1t1 �2J1�

t1x γ1�
x f 1�



dt2

1 �o�dt2
1 �

�
� J�t1�� Jt1 dt1 �

1
2 Jt1t1 dt2

1 �o�dt2
1 ��

(3.12)
Note that the following dynamic programming equation

holds for J1
�
x�t�1 ��t1

�
J1�

t1 ��J1�
x f 1��L1�

� (3.13)

(3.13) can be derived similarly to the HJB equation. How-
ever, the difference between it and the HJB equation is that
(3.13) holds for any trajectory that is not necessarily optimal
(for more details see [3]).

By differentiating (3.13), we obtain
J1�

t1x ��� f 1��T J1�
xx � J1�

x f 1�
x �L1�

x � (3.14)

J1�
t1t1 ��J1�

t1x f 1� � � f 1��T J1�
xx f 1���J1�

x f 1�
x

�L1�
x � f 1��

(3.15)

Substituting these into (3.12) we have
Jt1 � L1��L1��ψ1�

x f 1�� J1�
x �γ1�

x f 1�� f 1��� (3.16)

Jt1t1 � �L1�
x �L1�

x γ1�
x � f 1��ψ1�

x f 1�
x f 1�

�� f 1��T ψ1�
xx f 1�� J1�

x �γ1�
x f 1�

x �ξ1�� f 1�
x γ1�

x � f 1�

��J1�
x f 1�

x �L1�
x ��γ1�

x f 1�� f 1��
��γ1�

x f 1�� f 1��T J1�
xx �γ1�

x f 1�� f 1���
(3.17)

3.2 Two or More Switchings
Now consider the case of two switchings. Assume that a

system switches from subsystem 1 to 2 at t1 and from sub-
system 2 to 3 at t2 (t0 � t1 � t2 � t f ). Then

J�t1�t2� �
� t�1

t0
L�x� dt �ψ1�x�t�1 �

�
� J1�x�t�1 ��t1�t2

�
(3.18)

�
� t�1

t0
L�x� dt �ψ1�x�t�1 �

�
�
� t�2

t�1
L�x� dt

�ψ2�x�t�2 �
�
� J2�x�t�2 ��t2

�
� (3.19)

Using (3.18), by holding t2 fixed, Jt1 , Jt1t1 can be derived
similarly to that in subsection 3.1. In the similar manner, Jt2 ,
Jt2t2 can be derived using (3.19). However, to derive J t1t2 , we
need to use arguments from the calculus of variations. Let us
first define the important notion of incremental change which
will be used later.

Definition 3.1 (Incremental Change) Given variations dt1

and dt2, we define the incremental change δx�t��min�t�1 �t1 �
dt�1 � � t � max�t�2 �t2 �dt�2 � as

x(t)

1 t 1 t 1+ d

x̂(t)δ x(t 1)+

+ dt 1δ x(t 1 )+

t 2+ dt t2 2

y (t)2

δ x(t) δ x(t )2
-

(t)z 2

δ x(t )+ dt2 2
-

,d 0t 1 d t=>(b). 2< 0

x(t)

δ x(t )+ dt2 2
-

t 1 =>,d 0 d 0t 2<(c).

t 1 t 1+ d t 1 + dt t2 2t 2

x̂(t)

y (t)3
(t)z 3+ dt 1δ x(t 1 )+

δ x(t 1)+

δ x(t)

δ x(t )2
-

x(t)

t 1 t 1 t 1+ d

t 1=>d 0 =>d 0t 2(a). ,

x̂(t)
y 1(t)

1(t)z

δ x(t 1)+
δ x(t )+ dt2 2

-

δ x(t)

δ x(t )2
-+ dt 1δ x(t 1 )+

+ dt t2 2t 2

x(t)

t 2+ dt t2 2

t 1 ,d 0 d 0t< 2<(d).

t 1t 1 t 1+ d

x̂(t)

y (t)4

(t)z 4

δ x(t)
δ x(t )2

-

+ dt 1δ x(t 1 )+

δ x(t 1)+

δ x(t )+ dt2 2
-

t

Figure 1: The incremental change δx�t�.

Case 1: dt1 
 0�dt2 
 0 (see figure 1(a))
In this case, δx�t� is defined to be

δx�t� �

��


x̂�t�� x�t�� t � �t1 �dt�1 �t�2 �
y1�t�� x�t�� t � �t�1 �t1 �dt�1 �
x̂�t�� z1�t�� t � �t�2 �t2 �dt�2 �

(3.20)

where y1�t� the solution of�
ẏ1�t� � f2

�
y1�t�

�
� t � �t�1 �t1 �dt�1 �

y1�t1 �dt�1 � � x̂�t1 �dt�1 �
(3.21)

and z1�t� is the solution of�
ż1�t� � f2

�
z1�t�

�
� t � �t�2 �t2 �dt�2 �

z1�t
�
2 � � x�t�2 ��

(3.22)

Case 2: dt1 
 0�dt2 � 0 (see figure 1(b))
In this case, δx�t� is defined to be

δx�t� �

��


x̂�t�� x�t�� t � �t1 �dt�1 �t2 �dt�2 �
y2�t�� x�t�� t � �t�1 �t1 �dt�1 �
z2�t�� x�t�� t � �t2 �dt�2 �t�2 �

(3.23)
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where y2�t� is the solution of�
ẏ2�t� � f2

�
y2�t�

�
� t � �t�1 �t1 �dt�1 �

y2�t1 �dt�1 � � x̂�t1 �dt�1 �
(3.24)

and z2�t� is the solution of�
ż2�t� � f2

�
z2�t�

�
� t � �t2 �dt�2 �t�2 �

z2�t2 �dt�2 � � x̂�t2 �dt�2 ��
(3.25)

Case 3: dt1 � 0�dt2 
 0 (see figure 1(c))
In this case, δx�t� is defined to be

δx�t� �

��


x̂�t�� x�t�� t � �t�1 �t�2 �
x̂�t�� y3�t�� t � �t1 �dt�1 �t�1 �
x̂�t�� z3�t�� t � �t�2 �t2 �dt�2 �

(3.26)

where y3�t� is the solution of�
ẏ3�t� � f2

�
y3�t�

�
� t � �t1 �dt�1 �t�1 �

y3�t
�
1 � � x�t�1 �

(3.27)

and z3�t� is the solution of�
ż3�t� � f2

�
z3�t�

�
� t � �t�2 �t2 �dt�2 �

z3�t
�
2 � � x�t�2 ��

(3.28)

Case 4: dt1 � 0�dt2 � 0 (see figure 1(d))
In this case, δx�t� is defined to be

δx�t� �

��


x̂�t�� x�t�� t � �t�1 �t2 �dt�2 �
x̂�t�� y4�t�� t � �t1 �dt�1 �t�1 �
z4�t�� x�t�� t � �t2 �dt�2 �t�2 �

(3.29)

where y4�t� is the solution of�
ẏ4�t� � f2

�
y4�t�

�
� t � �t1 �dt�1 �t�1 �

y4�t
�
1 � � x�t�1 �

(3.30)

and z4�t� is the solution of�
ż4�t� � f2

�
z4�t�

�
� t � �t2 �dt�2 �t�2 �

z4�t2 �dt�2 � � x̂�t2 �dt�2 ��
(3.31)

�Remark 3.1 In �min�t�1 �t1 � dt�1 ��max�t�2 �t2 � dt�2 ��, at least
one of x̂�t� and x�t� evolves along subsystem 2. δx�t� is the dif-
ference between x̂�t� and x�t� in this interval (by possibly ex-
tending x̂ and x under subsystem 2 to it). �

Lemma 3.1 The expressions of δx�t�2 � and δx�t2 �dt�2 � are as
follows

δx�t�2 � � A�t�2 �t
�
1 ��γ1�

x f 1�� f 1��dt1 �o�dt1�� (3.32)

δx�t2 �dt�2 � � A�t�2 �t�1 ��γ1�
x f 1�� f 1��dt1

� f 2�
x A�t2�t1��γ1�

x f 1�� f 1��dt1dt2
��terms in dt2

1 �dt2
2 and H.O.T.��

(3.33)

where A�t�2 �t
�
1 � is the state transition matrix for the varia-

tional equation ẏ�t� �
∂ f2

�
x�t�
�

∂x y�t� for y�t��t � �t�1 �t�2 �; here x
is the current nominal state.

Proof: See [9]. �

In fact, from the proof of Lemma 3.1 (see [9]), we can
obtain the following important the forward decoupling prin-
ciple, which reveals some intrinsic relationship among dif-
ferent switching instants.

The Forward Decoupling Principle:
(a) The value of the incremental change δx�t�1 � at t�1 does not
depend on dt2.
(b) The value of the incremental change δx�t �2 � at t�2 does
depend on dt1. �

The forward decoupling principle tells us that a variation
of an earlier switching instant will affect the value of δx) at a
later switching instant, but not vice versa.

Lemma 3.2 The expressions of dx�t�2 � �i.e., x̂�t2 � dt�2 � �
x�t�2 �� and dx�t�2 � �i.e., x̂�t2 �dt�2 �� x�t�2 �� are

dx�t�2 � � A�t�2 �t�1 ��γ1�
x f 1�� f 1��dt1

� f 2�
x A�t�2 �t�1 ��γ1�

x f 1�� f 1��dt1dt2 � f 2�dt2
��terms in dt2

1 �dt2
2 and H.O.T.��

(3.34)

dx�t�2 � � γ2�
x A�t�2 �t�1 ��γ1�

x f 1�� f 1��dt1
��γ2�

x f 2�
x �ξ2��A�t�2 �t�1 ��γ1�

x f 1�� f 1��dt1dt2
�γ2�

x f 2�dt2 ��terms in dt2
1 �dt2

2 and H.O.T.�
(3.35)

where ξ2� is defined similarly to ξ1� in (3.10) as ξ2� �
��

�����
� f 2��T ∂2γ2

�1�

�
x�t�2 �

�
∂x2

...

� f 2��T ∂2γ2
�n�

�
x�t�2 �

�
∂x2

�
����� with γ2

� j� referring to the j-th element

of the vector-valued function γ2.

Proof: See [9]. �

Equipped with Lemmas 3.1 and 3.2, we are ready to de-
rive the coefficient for dt1dt2 in the expansion of

J�t1 �dt1�t2 �dt2� �
� t1�dt�1

t0 L
�
x̂�t�

�
dt �ψ1

�
x̂�t1 �dt�1 �

�
�
� t2�dt�2

t1�dt�1
L
�
x̂�t�

�
dt �ψ2

�
x̂�t2 �dt�2 �

�
�J2

�
x̂�t2 �dt�2 ��t2 �dt2

�
�

(3.36)

There are five terms in (3.36). From the forward de-
coupling principle, we conclude that none of δx�t �1 �, δx�t�1 �,
dx�t�1 �, and dx�t�1 � depends on dt2. Consequently the expan-
sions of the first two terms have no terms in dt2, dt2

2 and dt1dt2
and will not contribute to the coefficient of dt1dt2. For the
third term in (3.36), we have
Lemma 3.3 The contribution of

� t2�dt�2
t0 L�x̂� dt to the coeffi-

cient of dt1dt2 is
L2�

x A�t�2 �t�1 ��γ1�
x f 1�� f 1��� (3.37)

Proof: See [9]. �

The fourth term in (3.36) can be expanded as
ψ2
�
x̂�t2 �dt�2 �

�
� ψ2

�
x�t�2 ��dx�t�2 �

�
� ψ2��ψ2�

x dx�t�2 �� 1
2

�
dx�t�2 �

�T ψ2�
xx dx�t�2 ��H.O.T.

(3.38)
Therefore the contribution to the coefficient of dt 1dt2 by the
fourth term is�

ψ2�
x f 2�

x �� f 2��T ψ2�
xx
�
A�t�2 �t�1 ��γ1�

x f 1�� f 1��� (3.39)

For the fifth term in (3.36), similar to the single switching
case, we can obtain its Taylor expansion as

J2�x̂�t2 �dt�2 ��t2 �dt2� � J2�� J2�
x dx�t�2 �

�J2�
t2 dt2 �

1
2

�
dx�t�2 �

�T
J2�

xx dx�t�2 �� 1
2 J2�

t2t2 dt2
2

�dt2J2�
t2x dx�t�2 ��H.O.T.

(3.40)

In (3.40), the terms that will possibly contribute to the co-
efficient of dt1dt2 are those containing dx�t�2 �. They are
J2�

x dx�t�2 �, 1
2

�
dx�t�2 �

�T J2�
xx dx�t�2 �, dt2J2�

t2x dx�t�2 �. Substituting
the expression of dx�t�2 � into these three terms and summing
them, we obtain the contribution of the fifth term to the coef-
ficient of dt1dt2 as�

J2�
x �γ2�

x f 2�
x �ξ2���� f 2��T �γ2�

x �T J2�
xx γ2�

x
�J2�

t2x γ2�
x
�
A�t�2 �t�1 ��γ1�

x f 1�� f 1���
(3.41)

Summing (3.37), (3.39), and (3.41) and also taking into
consideration the expression of J 2�

t2x which can be obtained
similarly to the expression of J1�

t1x in (3.14), we conclude that
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the coefficient of dt1dt2 (i.e., Jt1t2 in the expansion of J�t1 �
dt1�t2 �dt2� is

Jt1t2 �
�
L2�

x �ψ2�
x f 2�

x �� f 2��T ψ2�
xx

�J2�
x �γ2�

x f 2�
x �ξ2���� f 2��T �γ2�

x �T J2�
xx γ2�

x
�J2�

t2x γ2�
x
�
A�t�2 �t�1 ��γ1�

x f 1�� f 1��
�
�
L2�

x �L2�
x γ2�

x �ψ2�
x f 2�

x �� f 2��T ψ2�
xx

�J2�
x �γ2�

x f 2�
x �ξ2�� f 2�

x γ2�
x ���γ2�

x f 2�

� f 2��T J2�
xx γ2�

x
�
A�t�2 �t�1 ��γ1�

x f 1�� f 1���

(3.42)

The above results can also be similarly generalized to the
case of K switchings as follows.

Theorem 3.1 The cost J in Problem 2.1 satisfies
J�t1 �dt1�t2 �dt2� � � � �tK �dtK�

� J�t1�t2� � � � �tK��∑K
k�1 Jtk dtk �

1
2 ∑K

k�1 Jtktk dt2
k

�∑1�k�l�K Jtktl dtkdtl �H.O.T.
(3.43)

where
Jtk � Lk��Lk��ψk�

x f k�� Jk�
x �γk�

x f k�� f k��� (3.44)

Jtktk � �Lk�
x �Lk�

x γk�
x � f k��ψk�

x f k�
x f k�

�� f k��T ψk�
xx f k�� Jk�

x �γk�
x f k�

x �ξk�� f k�
x γk�

x � f k�

��Jk�
x f k�

x �Lk�
x ��γk�

x f k�� f k��

��γk�
x f k�� f k��T Jk�

xx �γk�
x f k�� f k���

(3.45)

for any k � 1� � � � �K, and
Jtktl �

�
Ll�

x �Ll�
x γl�

x �ψl�
x f l�

x �� f l��T ψl�
xx

�Jl�
x �γl�

x f l�
x �ξl�� f l�

x γl�
x ���γl�

x f l�

� f l��T Jl�
xx γl�

x
�
H�t�l �t�k ��γk�

x f k�� f k���

(3.46)

for any 1 � k � l � K. Here H�t�l �t�k � is the state transition
matrix under state jumps

H�t�l �t�k �

� A�t�l �t�l�1�γ
�l�1��
x A�t�l�1�t

�
l�2� � � � γ�k�1��

x A�t�k�1�t
�
k �

(3.47)

where A�t�j�1�t
�
j �, k � j � l � 1 is the state transition matrix

for the time interval �t�j �t
�
j�1� for the variational equation

ẏ�t� �
∂ f j�1

�
x�t�
�

∂x y�t�. Also here ξk� �
�

�
�����

� f k��T ∂γk
�1�

�
x�t�k �

�
∂x

...

� f k��T ∂γk
�n�

�
x�t�k �

�
∂x

�
�����,

k � 1� � � � �K. �

Remark 3.2 Due to discontinuous jumps in �t�k �t�l �,
H�t�l �t�k � appears in (3.46) (instead of A�t�l �t�k �). In the
special case when l � k � 1, H�t�l �t�k � is reduced to be
A�t�k�1�t

�
k �. �

4 Computation of H�t�l � t�k �, Jk�
x , and Jk�

xx

In order to use Theorem 3.1 to compute Jtk , Jtktk and Jtktl ,
we need to know the values of H�t�l �t�k �, Jk�

x and Jk�
xx . In

this subsection, we develop an efficient numerical method
for computing them.

First note that if l � k � 1 then H�t�l �t�k � is equal to
A�t�k�1�t

�
k �, which is the state transition matrix for ẏ�t� �

∂ fk�1

�
x�t�
�

∂x y�t�. To find its value, we can first find the solution
y�1��t�,� � � ,y�n��t� corresponding to initial conditions

y�1��t�k � � e1� � � � � y�n��t�k � � en (4.1)

respectively, where ep is the unit column vector with all 0’s
except that the p-th element being 1, p � 1�2� � � � �n. From
linear systems theory, A�t�k�1�t

�
k � is equal to the square matrix

whose p-th column is y�p��t�k�1�, i.e., in this case H�t�l �t�k � �

A�t�k�1�t
�
k � � �y�1��t�k�1�� � � � �y

�n��t�k�1��.
Now if l � k, the similar method can be adopted to com-

pute H�t�l �t�k �. Instead of solving initial value ODEs for
y�p�’s, y�p��t�’s are now obtained by solve the following ODEs
with jumps with initial conditions (4.1).��

 ẏ�t� �
∂ f j�1

�
x�t�
�

∂x y�t�� for t�j � t � t�j�1�

y�t�j � � γj�
x y�t�j ��k � j � l�

(4.2)

We then have
H�t�l �t�k � � �y�1��t�l �� � � � �y�n��t�l ��� (4.3)

To obtain the value of Jk
x , note that

Jk
�
x�t�k ��tk� � � � �tK

�
� ψ

�
x�t f �

�
�∑K

j�k
� t�j�1

t�j
L
�
x�t�

�
dt �∑K

j�k�1 ψ j
�
x�t�j �

�
�

(4.4)

In (4.4), we regard t f as t�K�1 for simplicity of notation.
If x�t�k � has a variation δx�t�k �, then

Jk
�
x�t�k ��δx�t�k ��tk� � � � �tK

�
� ψ

�
x�t f ��H�t f �t

�
k �δx�t�k ��H.O.T.

�
�∑K

j�k
� t�j�1

t�j
L
�
x�t��H�t�t�k �δx�t�k ��H.O.T

�
dt

�∑K
j�k�1 ψ j

�
x�t�j ��H�t�j �t

�
k �δx�t�k ��H.O.T.

�
� Jk

�
x�t�k ��tk� � � � �tK

�
�
	

ψx
�
x�t f �

�
H�t f �t

�
k �

�∑K
j�k

� t�j�1

t�j
Lx
�
x�t�

�
H�t�t�k � dt

�∑K
j�k�1 ψ j

x
�
x�t�j �

�
H�t�j �t

�
k �



δx�t�k ��H.O.T.

(4.5)

Hence

Jk�
x � ψx

�
x�t f �

�
H�t f �t

�
k ��∑K

j�k
� t�j�1

t�j
Lx
�
x�t�

�
H�t�t�k � dt

�∑K
j�k�1 ψ j

x
�
x�t�j �

�
H�t�j �t

�
k ��

(4.6)

Now if we apply the similar procedure by varying x�t �k � as in
(4.5) to Jk

x
�
x�t�k ��tk� � � � �tK

�
, we can obtain

Jk�
xx � HT �t f �t

�
k �ψxx

�
x�t f �

�
H�t f �t

�
k �

�∑K
j�k

� t�j�1

t�j
HT �t�t�k �Lxx

�
x�t�

�
H�t�t�k � dt

�∑K
j�k�1 HT �t�j �t

�
k �ψ j

xx
�
x�t�j �

�
H�t�j �t

�
k ��

(4.7)

From the above discussion, we find that H�t�l �t�k � can be
obtained by solving ODEs with jumps (4.2) along with initial
conditions (4.1). H�t f �t

�
k � can be obtained in the same fash-

ion. Jk�
x and Jk�

xx are in the forms (4.6) and (4.7) which can
easily be rewritten as

Jk�
x � ψx

�
x�t f �

�
H�t f �t

�
k ��η1�t f �� (4.8)

Jk�
xx � HT �t f �t

�
k �ψxx

�
x�t f �

�
H�t f �t

�
k ��η2�t f � (4.9)

with η1 and η2 satisfying the following ODEs with jumps���
�

η̇1 � Lx
�
x�t�

�
H�t�t�k �� t�j � t � t�j�1�

η1�t
�
j � � η1�t

�
j ��ψ j

x
�
x�t�j �

�
H�t�j �t

�
k ��

η1�tk� � 01�n�

(4.10)

���
�

η̇2 � HT �t�t�k �Lxx
�
x�t�

�
H�t�t�k �� t�j � t � t�j�1�

η2�t
�
j � � η2�t

�
j ��HT �t�j �t

�
k �ψ j

xx
�
x�t�j �

�
H�t�j �t

�
k ��

η2�tk� � 0n�n�

(4.11)

Remark 4.1 (Computational Cost) The main computa-
tional cost for Jtk , Jtktk , Jtk�tl occurs in the computation of
H�t�l �t�k �, Jk�

x , and Jk�
xx , since all other terms in (3.44)-(3.46)

are readily available. The above method we propose reduces
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the computation of H�t�l �t�k � to solving initial value ODEs
with jumps (4.2) for any k � l and the computation of J k�

x

and Jk�
xx to solving initial value ODEs with jumps (4.10)-

(4.11) for k � 1� � � � �K. Hence we altogether need to solve
�K�1�K

2 �K �
K�K�1�

2 sets of ODEs with jumps. With today’s
powerful ODE solvers (e.g., ode45 function in MATLAB),
these equations can be solved efficiently and accurately. �

5 An Example

In this section, we present an example to illustrate the
effectiveness of the approach developed in this paper.

Example 5.1 Consider a hybrid autonomous system consist-
ing of

subsystem 1:

�
ẋ1 � x1 �0�5sinx2
ẋ2 ��0�5cos x1� x2

(5.1)

subsystem 2:

�
ẋ1 � 0�3sinx1 �0�5x2
ẋ2 ��0�5x1 �0�3cos x2

(5.2)

subsystem 3:

�
ẋ1 ��x1 �0�5cos x2
ẋ2 � 0�5sinx1 � x2

(5.3)

Assume that t0 � 0, t f � 3 and the system switches at t � t1
from subsystem 1 to 2 and at t � t2 from subsystem 2 to 3
(0 � t1 � t2 � 3). Also assume that the system has the state
jump �

x1�t
�
1 � � x1�t

�
1 ��0�2

x2�t
�
1 � � x2�t

�
1 ��0�2

(5.4)

when switching from subsystem 1 to 2 and�
x1�t

�
2 � � x1�t

�
2 ��0�2

x2�t
�
2 � � x2�t

�
2 ��0�2

(5.5)

when switching from subsystem 2 to 3. We want to find op-
timal switching instants t1, t2 such that the cost

J � 1
2 x2

1�3��
1
2 x2

2�3��
1
2

� 3
0

�
x2

1�t�� x2
2�t�

�
dt

�∑2
k�1

� 1
2 x2

1�t
�
k �� 1

2 x2
2�t

�
k �
� (5.6)

is minimized. Here x1�0� � 1 and x2�0� � 3.
For this problem, we choose initial nominal t1 � 1, t2 �

1�5. By using Algorithm 2.1 (using constrained Newton’s
method) along with Theorem 3.1, after 8 iterations we find
the optimal t1 � 0�4847, t2 � 1�9273 and the corresponding
optimal cost 18�8310. The corresponding state trajectory is
shown in Figure 2. �

0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

x
1

x 2

state jump at t1 

state jump at t2 

Figure 2: The state trajectory for Example 5.1.

6 Conclusion

In this paper, we propose an approach for solving opti-
mal control problems for hybrid autonomous systems with
state jumps given prespecified sequences of active subsys-
tems. In particular, we derive the derivatives of the cost with
respect to the switching instants and use nonlinear optimiza-
tion techniques to locate the optimal switching instants. It is
also shown how to address the computational issues in ap-
plying the approach. Note that a more detailed version of
this paper can be found in [9]. A further research topic is the
development of methods for searching for optimal switching
sequences when the sequence of active subsystems are not
prespecified.
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