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ABSTRACT: In Lhir paper, practical stabilization problems for integeator swilched
systems are studied. In such class of switched systems. no subsysiem has an aquilibriony.
However, Lhe system can slill exhibit interesling Lehaviors around » given point under
appropriate swilching laws, Sueh hehaviors are similar Lo those of a conventional stable
system neat an oquilthriom. Some practical stahility notions are formally introdueed
to define such behaviors. A necessary and sufficient condition for practical asymptotic
stahilizahility of auch systema is then proved  For practicallv asymptotically stabiliz-
able svatems, a minimum dwell time switching law which can easilv he implemented is
proposed.

AMS(MOS) subject elasvification: 34HO%, 11009, 93C15, 93099

1. Introduction

A switched system is a particular kind of hybrill svstem that consists of geveral subsysteins
and o switching law orchestrating the active subsystem at each time instant. Many
results on stability analysis and siabilization of switched systems have been reported
{see. e.g., |1.2,7.8] and the references therein). Most of them consider switched svstemy
whose subsystems share a common equilibrium. Methods hased on single or mnultiple
Lvapunov functions have been reported for the stubility analvsis and design of such
systems. Methods based on geometric properties of the subsystein vector lields linve also
heen teported |12}

In our recem research, we found that the assumplion that all subsysiems share a
common equilibrium may not hold for all switched systemns and may limit the applicability
of switched systems stability results. In the case that such an assumption does not holl,
i.¢.. when subsystems have different or no equilibria, under appropriate switching laws
a system may still exhibit interesting hehaviors. Such hehaviors are similar 1o {hose of
a conventional stable system near an equilibriumn. In this paper. we formally introduce
some practical stability notions to define sich hehaviors. Such notions are extensions of
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the traditional coneepts on practicat stability [1.5) which are coneerned witlh bringing
1he system trajectories 1o he within a given hownd.

Similar houndedness bebaviors luwve adsa been observed by other resenrchers teeently,
Lin and Antsaklis in [ stueies] the stabilization problem for switched linear svstems
with wneertainties. Such systems. though still having A comnon equilibrivm. cannor. he
usympiotically stabilized.  [lence nltimate houndedness problem is were reasonable to
comsider, Zhai aned Michel in |13 introduced the notion of practical seability for a class
of switehod systems. ‘The notion in {13] eoncerns the baundedness property of the system
trajeelory with respect tooa given bound. Sufficient comlitions based on Lyapunov-like
functions are proposed. As opposed to [D.13]. the uolions and results we will propose
in this paper voncern necessary and sufficient conditions for houndedness property with
respect Lo any bound Jor a class of switched systems without a common equilibrium.

[it this paper. we focus on practical stabilization problems for a simple vet. important.
cluss of switched svstems  integrator switched systems.  Many read-world processes
inchuding chemical processes §6.10] can be modeled as such systems. After introducing
some practical stability notions. we prove a necessary and sufficient condition for the
pravtical asymptotic stabilizability of such systems (Theorem 303 Aduditional feasible
ways for checking the condition are also preposed. Moreover. for practically asyvimnplot-
ially stabilizable systems, we propose a minimun dwell time switching law which can
easiby be implemented 1o achieve c-practical asymptotic stability. The switching law is
applicd to a thyee tank problem in chemical hateh process (o illustrate s cffectiveness.

2. Practical stability notions for switched systems
2.1. Switched systems. A swilched system is a dynamic system which congists of sub-
svslems
(1) =Ly, LR =R" del={1.2.--- At}
anel a switching law orchestrating the active subsystem at each time instant, The state
trectory of i switclied svstenis determined by the initial state and the timed sequence
of active subsystems. X swilching sequence in £ € {ty. 1] regulates the timed sequence of

active subsystems and is definedeas follows,
Definition 2.1 {(Switching Scquence). A switching sequence o in [, t7] is defined as
(2.2) 7= ((fooda) (b by ik}
whac 0 € K < ta € € i St i€ flork 0.1 K.
We also dletine Yo g = {swilching sequence ¢'s in [y, 1]} and Vg o0 = [ @ defined

an fy. ) satisfving gy € Yo, VI >ty where oy, ) s the truncated version of ¢
m |to. 4} a
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o indicales thal subsysiem iy is active in |fx. by 1) (subsystem iy € g 1yl
switched system to be well-hehaved, we only consider nonZeno sequences which -
at most a finite nwnber of times in any finite time interval |to.ty]. though di:
sequences may have different numbers of switchinga. Note that the continnous sta
switched system does not exhibit jumps at switching instants.

In this paper, we pay particular attenlion lo switching sequences over (he
interval [0, 20). Such switching sequences are usually generated by switching laws o

helow.

Definition 2.2 (Switching Law over [0, 5¢)). For switched system {2.1). a switchi
& over [0,00) is defined to be u mapping 5 : R® — Lp . which specilies u swe
sequence ¢ € Yig.o0) for any initial point x(0).

Remark 2.3. & over [0, oo} is often described by some rules or algorithmns, which de
how 10 generate a swilching sequence for a given x(0), rather than mathematical for
In Lhis paper, we will specily switching taws using such descriptions.

2.2. Some practical stability notions. Many results have appeared on stahilits
ysis and stabilization of switched systems. Most of them assume thal a common ¢
rium exists for all subsystems. However. this assumption may not be true for all aw
systems and may limil the applicability of switched systems. In the case when subs
have different or no equilibria, a system may still exhibit interesting behaviors ¢
a given point under appropriate switching laws. The behaviors are similar 1o tho
conventional stable system near an equilibrium. The following example illustrate
behaviors.

Example 2.4, Consider a switched system consisting of: subsystem 1: & |-,
subsystem 2: & = [~2.5, -3|7; subsystem 3: # = [3. —2.5]" subsystem 4: & = [2.
If we apply the switching law which makes subsystem | active in quadrant §. sube
2 in quadrant §l. subsystem 3 in quadrant 11, and subsystem 4 in quadrant V. tF
systemn will exhibit “convergent behaviors™ around the origin. Figure | shows o :
Lrajectory starting from 1o = |2, 11" under this law in a finite time duration.

In Example 2.4, under the given switching rule the origin exhibits bebhaviors
to those of an asymptotically stable system. [lowcver, as the trajeclory becomes
and closer to the origin, the system needs Lo switch faster and [aster. ‘'his viola
nonZenoness requiremenl for valid switching sequences. In practicn, a lower bound
time hetween awitchings will usually be imposed that prevents Zenoness. Such :
bound is called the minimum dwell time |3} and its value may lwe differemt for d
application objectives. If we incorporate a minimum dwell Lime ino the switching
Example 2.4, system trajectories starting from any point in R? will be attructed
the origin and eventually oscillate near the origin within certain bound.
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FIGURE L. A sample trajectory slarting from 5 - [2, 1] lor Example 2.4,

The concept of bringing the system trajectories to be within a given bound is quite
useful in practice. For example, in Lemperature control systems, we are more interested
in keeping the temperature within certain bounds, rather than in stabilizing the system
asymptotically to a set-point. In fact, such concept hag been formally termed practical
gtability in |4,5] for ordinary differential equations. In the following, we adapt and expand
some practical stability notions to switched systems and formally define the notion of
practical asymptotic stabilizability. We will use §| - || to denote the 2-norm of a vector,
Without loss of generality, we only discuss the case of the origin and let the initial time
hety - 0.

Definition 2.5 (c-Practical Stability). Assume a switching law § aver [0, 20) is given for
the switched svstemn (2.1). Given ¢ > 0, the switched system is said to be c-practically
stable under & il Lhere exists § = d(¢) > 0 such that x(?) < ¢, ¥t > 0. whenever z(0)
satisfies ()] < 6. o

Definition 2.6 (e-Attractivity). Assume n switching law & over [0,00) is given for the
switched systemn (2.1}, Given ¢ > 0, the origin is said to be e-attractive if for any
(D) € R™, there exists a 1" = T{x(0)} > 0 such that |lr()| < ¢ for any ¢ > 1. o

Remark 2.7. Note that r-practical stability is related to the boundedness behavior of
the system Irajectory and c-atlraclivity is related to the convergent behavior. However,
c-attractivity docs not imply e-practical stability, because it is possible that for any § < ¢,
a trajectory cxists that starts at £(0) with |£(0})] < é and viclates |lz(8)|| < ¢ for some
time and finally settles down with {r{f}{| < ¢. This still satisfics e-attractivity; however.
e-practical stability is nol satisfied. [u}

Definition 2.8 (¢-P’ractical Asymptotic Stability). Assune a switching law S over |0, 20)
is given for the swilched system (2.1). Given ¢ > 0. the switched system is said 1o be
e-practically asymptotically stable under S if it is e-practically stable and the origin is
e-uttractive. a
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Definition 2.9 (Practical Asymplotic Stabilizability). The switched system (2.1)
to be practically asymptotically stabilizable if for any ¢ > 0, there exists a switchr
S = 8{¢) such that the system is e-practically asymptotically stable under S.

Remark 2.10. [n the definition of practical asympiotic stabilizahility, the ¢
varied as opposed to the fixed ¢ in the previous several definitions. 1lence a prac
asymplotically siabilizable system has Lhe property that, for any given hound,
switching law can be constructed which hrings the system trajectory into the by
keeps it within the bound.

3. Practical stabilization results for integrator switched systems

In the sequel, we focus on a special class of switched systems  integrator v
systems. which consist of subsystems

(3.1) d=a i€l ={12.-- . M}

where a; € R? {a; # 0). i € 1 are conslant veclors and r € R is the com
state.  Such systems roceives particular attention due to the followings. Firs:
can model many real world processes, such as chemical hatch processes [6.10] €
the simple structure of such systems makes possible rigorous analysis which le
nice theorctical and practical results. Third, the complete exploration of such s
is the first step toward the study of practical stability properties of general no
switched systems, hecause a nonlincar switched system may he approximated o
an integrater switched systems around a given point when Lhis point is nol an equil
for any subsystem.

3.1, Conditions for practical asymptotic stabilizability. In the following. w
help of some convex analysis notinns and results (see [11]), we prove some necessa
sufficient conditions for practical asymptotic stabilizability of system (3.1). It
3.1 provides a necessary and sufficient condition for practical asymplotic stabiliz
Lemma 3.2 provides a feasible way of verifying the condition in 'Fleorem 3.1
Theorem 3.4 and three corollaries are proposed which illustrate some implications
necessary and sufficient condition and emphasize more on systems with n + 1 subs:
in R™. In order to make the main resilts stand out, we have put all the proofs in Ap
A.

Theorem 3.1 {Necessary and Sufficient Condition). An integrator switched systen
inR" is prclically asymplotically stabilizable if and only if C = R™, where 15 the
cone C = (M, Al 2 0.+ . day 2 0}

Proof: See Appendix A.
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in order ta apply Thearem 3.1, we need 1o verify Lhe validity of the condition (¢ R".
Exhaustively checking whether r € € for any r € R™ is not an option due (o 1he mfinite
manber of £ to chieck. The following lemma provides a necessary and suflicient condition
which is equivalent ta €7 = R" amd computational feasible to verily.

Lemma 3.2. (7 = R" if and only if there exists a subset {ay,.--- @, } of {m.--- _aa}
which salisfies the followtng conditions;

(a). spanfe, - - .u,} - R and
{h). there st Ay >0, 3 = 1, - L, such that Zi_IAJa‘. = 0.

Proof: See Appendix A, [m]

Remark 3.3. Lemma 3.2 provides as with a feasible way of cliecking whether ¢ = R”
or not. By exhaustively checking all possible subsets of {a). -+ (ay} for the validity of
conditions (a) and (b), we can determine whether a given system is praclically asymp-
tatically stabilizable or not. Because there are at most 2% subsets, the computation can
finish in finite time and therelore is feasible. m}

Furthermore, from Lemma 3.2, we can immediately conclude that the number of
subsystems in a practically asymptotically stabilizable system should be on less than
n 1 1. The following thearem confirms it.

Theorem 3.4.

(). if an mtegmtor swilched system (3.1) in R™ 1s pructically asymptotically stabilizable,
then there are af lenst n + | subsysiems.

(). Moreoear, for cvery n, there exusts an tntegmior surtched system consisting of o+ 1
subsystems which ts prachically asypaptotically stabihzahle,

Proof: See Appendix A. a]

The case of # + | subsystems that forn a pracuically asymptotically stabilizable sys.
tem is important, beeanse in many practically stabilizable systems such 7 1 | suhsyvstemns
ey exist. The followity, three m’mlluries refuted to such case cun e inferred from the

whove theorems and lemma,

Corallary 3.5. An mteymtor switched systemn (4.4) in B* consisting of n + | subsyse-
tems anth vector fields ay. - ey ds pchonlly axymptofically stabizable if and only of
spun{er. - ey b oo R and there exist A > 0.6 = b ont 1 such that 0 Aa, = 0

1

Proof: See Appendix A o
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Corollary 3.6. An integrator swilched system (2.1) in R with 1 1 | subsysicr
vector fields @1,--- 4y ts praclically asymplolically stabilizable if and only 1
veclors in the set {ay.-- ,auy1} are hnearly independent and there enist A, >
Lo yn 4 1 such that T da; = 0.

1331
Proof: See Appendix A.

In many cases, even thaugh a system has wany subsysiems. we can bl
subsystems which can be used for determining the practical asymptotic stabilizat
Lhe system. 'The following corollary provides a sufficient condition for doing so.

Corollary 3.7 (A Sufficient Condition). An integrator switched system (3.1 Jind
Al (M > n+1) subsystems is pmetically asymptotically stabilizable i there ersts «
of # + | subsystems which, if regarded as a switched system with n + | subsys!
practically asymptotically stabilizable.

Proof: Sce Appendix A.

3.2, A miniraum dwell time switching law. Now we construcl an casy-lo-imp
switching law that makes the system c-practically asymptotically stable il the sy:
determined to be so by the conditions in Section 3.1. Note thal in the proof ol '
part of Theorem 3.1 {see Appendix A), a valid switching law is constructed How:
is not casy to implement in practice duc 1o the need to solve the convex crmbina
each . (see equation {AJ) in Appendix A).

Here we focus on practically asymptotieally stabilizable integrator switched s
in R” with n 4 1 subsyslems and propesc a valid minimum dwell vime switching b
mentioned in Section 3.1, the case of a + | subsystems is important because in man
such n |- 1 subsystems do exist. Hence the switching law proposed here can acln
applied to many switched gystems with more than n | 1 subsystems. Let us first. ill:
the idea of our switching law by ihe following example.

Example 3.8. Consider a switched system in R? consisting of three subsystems
system 1: +  a I, 0.5]T; subsystem 2 & 0z [=1. 15T, aubsys
¥ - ay |-05, =17 (sec figure 2(a)). By Corollary 3.6, the svsiem is pra
asymptotically stabilizable.

Denote by €) the convex cone generated by the vectors —ay, —ay; by € the
cone generatexd by —a;. —aa; by 3 the convex cone generated by —ay, —ay (see
2(b)). Note that ). C3, and 4 have mutually disjoint interiors and (1, U € L
R?. For a given ¢ > 0. we now propose a valid switching law to achieve ¢- prac
asymptotic stability as follows.

A smingpaum dwell time switching law: Let subsystem 2 be active in Int{Cy). ¥
temn 3 be active in Int{Cy). subsystem 1 be active in Int{Cy). When te state is
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FiGURE 2. Example 3.8: (a) Vector lields ay. az. a3, {b)} Convex cones Cy.
('-;. C‘g

common boundary of any two convex cones, choose the active subsystern to be the vne
corresporuding to the convex cone that the trajectory has the potential to enter next. if
the: system still evolves according to the current active subsystem (e.g., il T evobves in
¢y following snbsystem 2 and intersects the ray in the same direction as =ag. then sub-
system 3 will become active). Moreover, in order to eliminate the Zenoness plicnomenon
near the origin, besides the above rules, we also impose o minimam dwell time 7 (ie.
the minimum time duration that any subsystem must be active before the system ean
swilch again).

The choice of a -minimum dwell time 7: In geaeral. the smaller the 7 is. the smaller
the « cum be, 5o that the system can be made e-practically asymplotically stable. As
r — 0. we find that « can also go to 0. {lowever when r - 0, Zenoness problem will
acenr, therefore 7 cannot be infinitesimally small either. For this example in R?, some
goometric observations suggest that we can choose a 7 satisfving the lollowing incquality

& 1 & 1 & ] 1] &
") ol 0 ool s Vel Tl sk
where @i i8 the angle extended by —ay and ~ay (0 < f4y < 7). Similar definitions apply
foor fis anrd Bsr. The 4 in (3.2} corresponds (o the § in Definition 2.5 and can be chosen

(3.2) 7 < min {ﬁ-r‘l.-—"-(t

{1 he a value that satisfies
{1.3) & < min {e sinfly.e sin gy e sindy, ).

The details af the derivation of (3.2} and (3.3) are given in Appendix B,

Fauipped with the switchitty law and (3.2), we return Lo our example. We choose
+ =03, and 4 = 0.1 which satisfies (3.3) for this example, it can then be determined
from (3.2) that 7 < 0.0555 will lead to a valid switching law that makes the system
+-practically asymptolically stable. Figure 3 shows a Irajectory starting from |1, 1]"
with r = 0.05. Figure 4 shows x;(t) and 12(1). Note that when time becomes lurge, the
maximum deviation from 0 is —0.1165 for .y, and 0.075 for 1. So the state is actually
within a ball with radius 0.1386 which is smaller than 0.3. The requirement is therefore
saktislind. a
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FiGure 3. Example 3.8: A trajectory starting from {1, 1|7
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FiGuRrE 4. Example 3.8: i (f) and r3(t).

The switching law proposed in Fxample 3.8 can be extended to the ease of prac
asymptotically stabilizable systems in R" with n | | subsystems. Denote by € the ¢
cone gencrated by the veelots —aq.- - L =fe_ ), —gg ). -+ . —figey (iTk 21V ihent
sithsystern | as subsystem £ £, 1) forall 1 < k < n+ 1. It can he shown that €.«
have mutually disjoint interiors and Oy U --- UGy, = R™.

A minimum dwell time switching faw: Let subsystem k | 1 be active whenev
stalcis in Int(Cy), 1 <& < n 1 1. When the state is on the common houndary of ¢
cnnes. choose the active subsysten Lo he the one corresponding to the convex con
the trajectory has the potential to enter next. i the system still evolves necard
the current active subsystem. Moreaver. in order Lo eliminate Lhe Zenoness pheno
near the origin. hesides the above rules, we also impose a minimum dwell time 7

The choice of a minimum dwell time 7 For syslems in R, geometric obsery
as those in Example 3.8 are currently still under our research. because direct exte
of results R? inta higher dimensional space are not readily available. However, w:
that given any ¢ > 0. the above switching law will behave a3 e-practically asvmpto
stable if we choose T small enough. In practice. we usually specify an ¢ and then
the value of r and test the resulting trajectory until the e-practicabtly asymptotic st

i« achieved.
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Remark 3.9. The switching law proposed above enjovs the henefit of easv implementa-
Lion, as opposed to the Lhearetically sound valid Switehing Law Cin the prool of Theorem
11. Given ¢ we rigorously derive bounds lor 7 aud ¢ for R? case {see Appendix B}, Sim-
ilar boneds for B n 2 3 are oot readily available and are still ander our mvestigation,
However, we point out that this does net hinder the usefulness of the above proposed
switehing, law, In nemy practieal problems, by adpusting © several times, we G achisve

e-practically asvinpotic stubility (see Lxutmple L1 in Section 4). [m]

1. A three tank example

Now we apply the practical stabilization results developad in Section 3 to a chemical

hatch process example

Farik 3

FiGURE 5. Example 4.1: The three tanks system.

Example 4.1. (A Three Tank Example) Consider the three tanks system in figure
5. All three tanks are identicnd and all flows canse the tank-levels 1o rise or decrease by
0.1 tnitfsee. There are Tour allowable operating modes: Mode 1@ Valve 0 is on. Valves
1,23 are off. the corresponding dviinies & = g = [0.1. 0.5 0.1]7: Mode 2: Valve |
on. Valves 0.2.3 off. the dynamics £ 1y [=(1, 0.1 075 Mode 3: Valve 2 on, Valves
0.t off. the dvnamics & @y (0. =01, 6.1)7: Mode & Valve 3 on. Vaives 0.1,2 off,
the dynamics & a, [0, 0, 50.1)T. We want to develop a switching law such that the
water levels in the tanks are driven toward the destred value [80, 50. 70]" and cach tank
level is then kept within -2, 12] range around the desired level.

By Corollary 3.6, this svstem with 4 subsystems in R? is practically asvinptotically
stabilizable. For tlus problemn. we can choose ¢ = 2 amd apply 1he switching law proposed
in Section 3.2 1o make 1he system e-practically asympiotically stable around the point
J60. 50. 70" {although the point is not the origin, but with state shift. the stabilization
result catt bee applied}). We choose T o 6 see. Figure 6 shows the three tank levels starting,
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from [90. 45, 737, Note that when tinie becomes large. the maximum deviatic
Lhe desired point are 0.4999 for 1y, 0.9999 for . and 14999 for &y, They sal
requirenients.

o o )
L) » I " E ne ] » - - -
S — —
u i

b S s A
| ¥
B I R T e Y
; f

FiGURE 6. Example 4.1: ‘The three tank levels starting from [90, 45, 75)

5. Conclusion

This paper reports some results for practical stabitization problems of integrator s
systems. Some practical stability notions were introduced, and a necessary and 1
condition for practical asymptotic stabilizability of integrator switched systems w
proved. Moreover, an casy-to-implement niinimum dwell time switehing law f
tically asymptotically stabilizable systems in R” consisting of » + 1 subsyste
proposed ta achieve «-practical asymptotic stability. The research in Lhis paper i
step toward the studies of general nonlinear subsystems. Fulure research inclu
extensions of the results to the studies of loval behaviors of switched systens wi
integrator subsysiems, and the estimation of bound for minimum dwell Lisme for

in R™.
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Appendix A. Some proofs for section 3

Proof of Theorem 3.1: “Only if” part. Assume that system (3.1} is globally pra
stabilizable, but €' # R® ‘Then there exists o vector b# 0 and & ¢ €. {t wnst
that 0= -b+b¢g -b+ (.
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FiGURE 7. ‘There exists o hyperplane H which strictly separates —b + C
anel {0}

Note that —b | 7 is a translation of the set €. So =b | €' is a closed convex set
heeanse €2 is so. Sinee 0 is not in = 1 €', there exists a hyperplane [f which strictly
separates —b 1 € ane {0} (see gure 7). Tt can be seen Lhat under any switching sequence,
the trajectory starting from r{0) - —b mmst be within the set —b 1 . Therefore the
trajectory cannot enter the open halfspace Int(H=) where 0 is in. Hence 3¢ > 0 such
thay f2{th.¢) & {r € R*|lr — 0] < ¢} iz all in the open halfspace k(™). Consequenthy
the trajectory starting from r{0)  —b cannot enter B(0.¢) under any valid switching
law. This leads to a contradiction because 0 should be r-attractive under some switching
comtral taw due Lo Lhe practical asymptotic stabilizability assumption.

I part; \We prave this by constructing a valid switehing law S = S(e) thal renders
the system ¢-practically stable and the origin e-uttractive, given any ¢ > 0.

Civen an ¢ > 0. ket us first construet a switching law for the c-practical stability. [n
order to o so, we first claim that we can find a switching law such that 3G > 0 and for
any initial point in B 1} & {r & RYl|lz - 0] < 1}. the trajectory satisfies [|r(e}} < &
for any ¢ 2 T This switching law is constructed g foliows. First let us consider the unit
veetors ¢y - Lo, i R™ and their negatives —ey. -+, —a,. Wo denote them as &y ey,

Cfn O Bupy =01 e 6o = =0g Since € = R". they have Lhe representations
] af
(A1) B =3 Mt b = 3 Ammatin,
=1 i=1

with Ae; = 0. Furthermore. we note Lhat every vector .+ € f3[0. 1] can be represented as

r T, me where ap € R.YSF 03 < 1. By using the &s. r can he represented as

m
(A2) x Z Py,
k=l
trp, ife €0 O, HWag_q >0
vhere f) for 1 < k < d 7
where fi {O.ifm‘:»ﬂ or 1 €< k < r and ik {0 g <0 or

n4 1<k <2 Note that every i <0 a\lei'_', B=Y e, nt=l
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Substituting (A1} inle (A2). we can write T as

2n T M Al m Af
(A3) r=Y Bér= 3 ALY heim) =3 (3 Adede = Y wen
k=1 k=1 =i -1 &1 1-1

where +; = 2:"_, Bedes S 0forany | €12 M.

Based on {A3), we can construct the following switching law:
Switching Law A {for (0) € B{0.1]):

{1). Assume that the system trajectory starts from #(0} € B[0.1] at time ¢
current SLC Fourrene © £(0) and the current lime {qewea 0.

(2). Obtain the expression for the current Stale Taprene = Z?i. . First
subsystem 1 and stay for time ||, then switch to subsystem 2 and stay fo
and so on. In other wards. we ohlain a switching sequence {{fourrene. 1)
(11020, Ceurvent + |1l + 12l 300+ s Qewrrene + [ 70] 42 4 [1a| M)
feurrent 10 bewrrent + Tty [

(3). At time toureent + Eﬂ, |- the trajectory reaches 0, then we can let the sy
at zubsystem M for time m uttil it intersects the it sphere.

{4). Update Toureme to be the intersecting point anel foapeen to b the time
intersection. Repeat steps (2) and (3).

Using Switching Law A, we obtain nonZeno switching sequences for initial r{0)

The switching sequences are valid because Iq—h > 0 and every repetition of ste

(3) will require at most. M switchings in a time duration in_iﬁ -+ 2:1, 1%l
Switching Law A also generates bounded trajectories for initial x(0} € B[t

that a trajectory starting from »#{0) will take time Z:,',l el 160 reach the oris

{2). Forany 0 <t < Zﬁl |vit during this time period, we must have

M
B < e (O + 3 tnd - o ()
il

<M
A n n n

< 1+ 30 (AN (el
Wl k=t k=1 -

<

n
213
11 M lgassg,(kz; MY - max (hal)

Define G & 2+ M maxygiepm( ey M) - maxiigur(lad ). we will have fr(t
any t 2 0. It follows that for any ¢ > 0. if we choose d = %, we can design a
law similar 1o Switching Law A except for the scaling to Lhe points siarting
We call such # switching law Switching Law B. Under Switching Law B.

stahility of the system can be achieved,
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Next et us consider the c-attractiveness of the origin. Starting from any initial
point (0) € R sinee ¢ = R™ we have —r(0) = }:ﬂl Ar,. A, 2 0 Hence £(0)
Z:‘in(—f\.)ui. We modify Switching Luw B as follows. 1f (0} ¢ B0 4]. apply Switching

Law B for r{6) € H[0.8] as mentioned above. 1T #{9) ¢ #i0.6]. we can brst choose (he

switching sequence as
(0. D (A2 Oy + A 3k (A + 4 Ay MY

wntil the trajectory reaches 0 at time le A; and then follow Switching Law B. Hence the
trajectory will always be inside the ball B(0.¢) after T - T 3,0 Such a modification
provides us with a new switching law. We call il Switching Law C.

Clearly from the above constractions, if we chouse § = S(e) to he Switching Law C.

S renders the system e-practical stable atd Lhe origin c-attractive, o

Proof of Lemma 3.2: “If" pari: Assiane (hat a subset {a,, .-+ cay} exists such that
conditions (a} und (1) are satisfied. Without loss of generality. assuine it is {ar. - ar}.

For any .r € R". from (a), there exist 0,5, 3 - 1o+ Jsach that

{
(A4) r= Y ma
J=1
From (b}, we have
1
{A5) Yohe, 0A>0 1L
'

Multiplying (AS) by a constant ¢ > 0 and then adding to {Ad). we obtun

'
{AB) i Z(m + ),

il
Since A, > 0, we ean have i 1 ed, > O forall 1 < § < 1iF we choose e to be Jarge enough.
Now define

: o bed, i=1, .,
(A7) M {u.i TF b M,

7 can then he expressed as 3 | . Consequently. this shows r € ¢ for any r € R™,
“Only if" part: Consider the unit vectory ey, -+« . ¢4, defined in the prool of the
‘1f” part of Theorem 3.1 and their representations {A1). Define 4, to be the set of all
a;'s for which the cotresponding A > 0 in thie expression ¢ = zfn i, Similarly
define Az to be the set of all ¢, for wlich the corresponding A, > € in the expression
éy = Zfil Azqe. and so on. In this way. we can define the subsets A, Ay.--- | 43,
corresponding to the expressions of €,.€;.--+ .€a,. Now if we define the subset A
U2t Ap. we claim that A satisfies conditions (a) and (b}, The reasons are as follows.
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For {a}, since any r € R" can be represented as o linear combination of «
amd every ¢ can he represented as a linear combination of the vectors in A, w
that 1 can be represented as a linear combination of the vectors in A, Hence
l.rue,

For (b). assume that A {&,,.--- .m,}. Now consider z:’_', & by substi
expressions &, = 2:’1 ALiGs. - €y = E:". Az el ito it, we conchuele th |
_".=, i,—a.]. Note i, >0.7 1,-- .l because for each a;, there must be al
€y in the expression of which Ag,; > 0. On the other hand, we note that 3
e — o ee 0. Therefore, (b) holds true.

Proof of Theorem 3.4: (a). Il system (3.1) is practically asvmptotically st
then by Theoremn 3.1, we have C = R™. By Lenumna 3.2, there exists a subset {a,
of {ay.--- ,ap} whose span is R", and therelore { > n. However, [ ] = »
solution to Ei_, Muy, = Bis A Az coo2 Ay = 0 sinee a,'s miust 1
independent in this case. This is a contradiction to condition (b) in Lennna »
{ > n and consequently we conclude that M > 1> u + L.

(h}. We can construct an integrator switched system consisting of 7 | 1 &
which is practically asymptotically stabilizable. Assume that ay.--- .4,
independent vectors in R™. let.

(A%) turs =3 M, A >0
iw=]

It ix then not difficult to see that the convex cone formed by {aj ay. - <
¢ {20 Aalh > 0} satisfies ¢ - R™

L= |

Proof of Corollary 3.5: From the proof of part (a) of 'Fheorem 3.4, we con
the only subset salisfying the conditions of Lemma 3.2 is the sct {ay. -+ .ar,
case.

Proof of Corollary 3.8: [t is not difficnlt to see that the condition in Corof
equivalent to the condition in Corollary 3.6

Proof of Corollary 3.7: Assume withoul loss of generality that the
{ati, -+ aqy1}, then we only need to switch among these # 1 1 subsystem
Lo practically asymptotically stabilize the system. The practical asymptotic st
ity of the system onsisting of these 1 1 | subasysteins can therefare lead 1o th
asymptotic stabilizability of the original system.

Appendix B. Some geometric observations for choosing r in exam

Given an ¢ > 0. we can choose 7 hased on the following reasonttes
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fy
i 1,
1y
: ds.
/
< Lol
fis A R . x4
. el . B Y e 1
: -T’; _.)rﬂ - "
i t L (YL
4 y Je ik
B “R, g,
1 it
L] .~
*'a, P
"1
C
bay - ; fi
L i,

FiGuRE 8. Geometric observations for choosing r for Example 3.8,

First of all, let us consider ¢-practical stability, From Definition 2.5, we need to have
& hall B[0.5] such that any trajectory starling in this ball remains in 8(0.¢). Figure 8
depicts the two balls, Is arc the rays corresponding lo —a,s. Assume suhsystem 3 is
atlive and & € B[0.d] N, Also assume the points Py, Gy are on the line tangent to
210.4] and parallel to {2, 1% is on b, snd [P = faalir. Moreover. assuine the points
0. . ¢y, and R, form a parallelogram. Now we note that for any poinl in B[0,4] N 4
when subsystem 3 1 active and the system follows the minimum dwell time switching law
proposed in Example 3.8, the trajectory will either intersect. f, and switch to subsystem 1
immedintely {when the time elupsed is no less than ), or it will enter 0,Q R, and then
switch to subsystem | {when time elapsed is equal to 7). The importance of 0P Ry
fica in the fact that for trajectories starting from B[0. §] N G2 and following subsystem 3,
all trajectories will switch to subsystem | in 0PQ R (. As long ns the line segment 08,
is in B0, 4], by follewing subsystem L. the trajectory will eventually intersect. (3R and
lienice he in B|0. 6] 0 Cy. Similar arguments can be applied to show that the trajectories
starting in B[0.4] N Cy will sx}'ilrh in the parallelogram 00,7, and then enter into
B0.4) N Cy: anel the Lrajectorics starting in B0, 8} N Cy will switch in Lhe parallelogram
0P(}3 s and then enter into B[0.8]N Gy, Now in order to achieve c-practical stability. a
sufficient conditiun is to require that the farthest point @y of the parallelngram 0FQH Ay
he inside #(0,¢}. A sufficient condition for this is 102 + [AG)] < ¢ which can also be
written as

(BY llasllr +L <

sinfly —
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where fly i3 the angle extended by ; and fy (0 < 8y < 7). Also note from
dliscussion. we require that 9K, he in B[O, 8], which is equivalent 10

(B2) fesaflr < 8.
Stinilarly, we can obtain the inequalities
& §
; <y, < 4. b —— <, < &
©) el e gy S lailr <6l 4 o= <o fedle

Combining all the inequalities in (B1}-(B3). we find that if we choose
1 & l §F ., 1 § & §

B4) 7 < min { s (e = ). —fe = ——), (e = —=—} . T

(B4) 7 < min { (e~ Gt Taol ) Faall ™ ol Tl e
then the switching law with r satisfying (B4) will lead lo c-practical stability
(B4) eotresponds to the § in Definition 2.5 and can be chosen by the designe

it. must satisfy the lollowing condition
{(R5) 8 < min {esinfya, esinfa.c 8infy }.

so that the r can take positive value in the inegualities [[aslir + %,_“ <e ey
¢, and |lazllr + -‘;;‘5; < ¢. Besides the constraint {B5), we can freely choose §
different bounds for .

We claim that the switching law in Example 3.8 with r satisfving (BA4) als
c-aliractiveness. This is because any trajeclory slarting in C; lollowing subsy:
enter into the band formed by [, 0R,. and the ray r which emits from R, an
direction of R,Q, (see figure &) and then switch Lo subsystem 1. Therclore
switching from subsystem 3 to 1, all trajectories starting in Cy can then inte
which is in 8[0.8]. Then by the above arguments for e-practical stubility. the
will always be in B{0,¢).
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Delay-Dependent Static Output Feedbac)
Stabilization for Singular Linear Systems

E K. Boukas'

'Mechanical Engineering Deparunent, Feole Polytechnique de Montréal
P.O. Box 6079, Station Centre-ville. Montréal {Québec) Canada, 13C
3A7

ABSTRACT: This paper deals with the dlass of continucus. time singular linear -
tems with time delay in the stale vector Delay-independent and delay depenc
sufficient conditions on stalic output feedback stabilization are developed. A des
algorithm for a memoryless static output feedback controllers which Fuarafitee that
closed-loop dynamics will be regular, impulse free and stable is proposed in term
the solutions to linear matrix inequalities (LMIs). Two numerical examples are gi
to show the cffectiveness of the developed results.

Keywords. Singular systems, Conlinuous-time linear systeins, Linear toatrix
cquality, Stability, Stabilizability, Static cutput femdback controller.

I. Introduction

The class of singular continuots-time linear systems is an impottant class ¢
that kus attracted a lot reseurchers from mathematics and control communities
systemns are also referred to as dt-sci'ipwr systeins, implicit systems. generali
space sysiems, differential-algebraic systems or semi-state systems .9 Tt
in many studies that the class of singular systems is more appropriate to e
behavior of some practical systems in different fields ranging from chemienl pr
rebolics (see [4] and some references therein). Many problems for this class
cither in the continuous-time and discrete-time have boen tackled and interesti
have been reporled in the literature. Among these contributions we quot
{13, 19,17, 5, 14, 15, 16. 12, 7. 8, 10, 11, 3], and the references therein.

Some practical systems that can be modelled hy the chss of singular sys
we are considering here may have time-delay in their dynamics which way be
of instability and performanee degradation of such dystems {sco [2]). Therel
attention should be paid to these class of systems. To the hest of our know
class of conlinuous-time singular systems with time detays has motl yel been [0
tigated. Particularly delay-dependent sufficient conditions for stahilization are
not existing in the literature.
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