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Abstract— In this paper, we study a class of discrete-time
switched linear systems affected by both parameter variations
and additive l∞ bounded disturbances. The problem of de-
termining upper bounds on the l∞ norm of the output is
investigated. First, we study the condition under which the
switched systems have finitel∞ induced gain. Secondly, the
l∞ induced gain is calculated for such switched system under
arbitrary switching signals. Thirdly, we answer the question
whether there exists proper switching mechanism for such
switched system to achieve a given disturbance attenuation level.
The techniques are based on positive invariant set theory.

I. I NTRODUCTION

Recently, there has been increasing interest in the stability
analysis and switching control design of switched systems
(see, e.g., [9], [7], [2], [8], [12] and the references cited
therein). However, the literature on the robust control of
hybrid/switched systems is relatively sparse. There are some
related works in the literature on analyzing the induced gain
in switched systems. In [11], theL2 gain of continuous-
time switched linear systems was studied by an average
dwell time approach incorporated with a piecewise quadratic
Lyapunov function, and the results were extended to discrete-
time case in [12]. In [8], the root-mean-square (RMS) gain
of a continuous-time switched linear system was computed
in terms of the solution to a differential Riccati equation
when the interval between consecutive switchings was large.
However, these robust performance problems considered are
both in the signal’s energy sense, and assume that the distur-
bances are constrained to have finite energy, i.e. bounded
L2 norm. In practice, there are disturbances that do not
satisfy this condition and act more or less continuously over
time. Such disturbances are called persistent [6], and can
not be treated in the above framework. Therefore, in this
paper we considerl∞ induced gain to deal with the robust
performance problems in the signal’s magnitude sense, i.e.
time domain specifications. Moreover, [8], [11], [12] did
not explicitly consider dynamic uncertainty in the model.
Dynamics uncertainty in the plant model is one of the main
challenges in control theory, and it is of practical importance
to deal with systems with uncertain parameters.

In our recent work, thel∞ disturbance attenuation proper-
ties of a class of uncertain hybrid systems were investigated.
However, the termination of the procedures, which were
developed for general hybrid systems, in finite steps was not
guaranteed. This is mainly because of the fact that the reach-
ability problem is undecidable for general hybrid systems
[1]. Hence, an important question is to specify the decidable

class for the robust performance analysis problem. Two kinds
of simplifications may be employed to make the procedures
decidable. One way to obtain such decidable class is to
simplify the continuous variable dynamics, see for example
[1]. However, this approach may not be attractive to control
applications, where simple continuous variable dynamics
may not be adequate to capture the system’s dynamics.
Alternatively, one may restrict the discrete event dynamics
of the uncertain linear hybrid systems. In this paper, we will
follow the second route and specify a subclass of uncertain
hybrid systems, namely uncertain switched linear systems,
for which the determination of an nonconservative upper
bounds on thel∞ induced gain can terminate in finite number
of steps.

This paper is organized as follows. In Section II, a
mathematical model for the discrete-time uncertain switched
linear system affected by both parameter variations and
persistent disturbances is described, and the robust dis-
turbance attenuation performance problems are formulated.
Three problems are investigated here. First, we study the
condition under witch the switched system has a finitel∞

induced gain from the disturbance to the controlled output.
Secondly, non-conservative upper bounds of thel∞ induced
gain is determined for such switched system under arbitrary
switching signals in Section III. Thirdly, Section IV studies
whether there exists proper switching mechanism for such
switched system to achieve a given disturbance attenuation
level. Finally, concluding remarks are presented.

The lettersE ,P,S · · · denote sets,∂P the boundary of
setP, and int{P} its interior. A polyhedral setP will be
presented either by a set of linear inequalitiesP = {x :
Fix ≤ gi, i = 1, · · · , s}, and compactly byP = {x :
Fx ≤ g}, or by the dual representation in terms of its
vertex set{xj}, denoted byvert{P}. For x ∈ Rn, the
l1 and l∞ norms are defined as‖x‖1 =

∑n
i=1 |xi| and

‖x‖∞ = maxi |xi| respectively.l∞ denotes the space of
bounded vector sequencesh = {h(k) ∈ Rn} equipped with
the norm‖h‖l∞ = supi ‖hi(k)‖∞ < ∞, where‖hi(k)‖∞ =
supk≥0 |hi(k)|. Finally, we denote by‖·‖ the Euclidean norm
in Rn while dist(x,P) denotes the distance of a pointx from
a setP, defined asdist(x,P) = infy∈P ‖x− y‖.

II. PROBLEM FORMULATION

In this paper, we consider a family of discrete-time un-
certain linear systems described by the following difference



equations.

x(t + 1) = Aq(w)x(t) + Ed(t), t ∈ Z+ (1)

wherex(t) ∈ Rn is the state variable, and the disturbance
input d(t) is contained inD ⊂ Rr, the l∞ unit ball, i.e.
D = {d : ‖d‖l∞ ≤ 1}. Aq(w) ∈ Rn×n and E ∈ Rn×r

are state matrices indexed byq ∈ Q, where the finite set
Q = {q1, q2, · · · , qn} is called the set ofmodes.

Combine the family of discrete-time uncertain linear sys-
tems (1) with a class of piecewise constant functions of time
σ : Z+ → Q. Then we can define the following time-varying
system as a discrete-time switched linear system

x(t + 1) = Aσ(t)(w)x(t) + Ed(t), t ∈ Z+ (2)

The signalσ(t) is called aswitching signal. Let us denote
the collection of all possible switching signals asΣa, the set
of arbitrary switching signals[9].

Associated with the switched system (2), a controlled
outputz(t) is considered.

z(t) = C(w)x(t) (3)

whereC(w) ∈ Rp×n andz(t) ∈ Rp.
Assumption 1.The entries ofAσ(w) and C(w) are contin-
uous function ofw ∈ W, whereW ⊂ Rv is an assigned
compact set.
Assumption 2.For all q ∈ Q there existswq ∈ W such that
the triplet [Aq(wq), E, C(wq)] is reachable and observable.

For this switched system (2)-(3), and for a given class
of switching sequencesΣ ⊆ Σa, we are interested in
determining a non-conservative bound for thel∞ induced
norm fromd(t) to z(t), which is defined as

µ
(Σ)
inf = inf{µ : ‖z‖l∞ ≤ µ, ∀σ ∈ Σ, w ∈ W, d ∈ D}.

The first problem we consider in this paper is to specify the
condition under which suchµ(Σ)

inf is finite for the switched
system (2)-(3) under the given class of switching sequences
Σ.

Problem 1: Consider a class of switching signalsΣ, de-
termine the condition such that thel∞ induced norm from
d(t) to z(t) for the switched system (2)-(3) is finite.

It can be shown [4] that Problem 1 has finite solutionµ
(Σ)
inf

if and only if the discrete-time autonomous switched system
x(t+1) = Aσ(w)x(t) is asymptotically stable under the class
of switching signalsΣ. Therefore, Problem 1 is transformed
into a stability analysis problem for autonomous switched
system under some specified class of switching signals
(maybe arbitrary switching), which has been studied (for the
deterministic dynamics) in the literature over decades [9], [7],
[10]. In the sequel, we limit our attention to asymptotically
stable switched systems and have the following assumption.
Assumption 3.For all σ ∈ Σ ⊆ Σa, x(t + 1) = Aσ(w)x(t)
is asymptotically stable.

From the definition ofµ(Σ)
inf , we can derive the following

relationship
Σ1 ⊆ Σ2 ⇒ µ

(Σ1)
inf ≤ µ

(Σ2)
inf

Thus µ
(Σ)
inf ≤ µ

(Σa)
inf because for all switching signalsΣ is

contained inΣa. Let us denoteµ(Σa)
inf simply asµinf . An

interesting case for Problem 1 is whenΣ = Σa, namely
arbitrarily switching signals. First, a necessary condition for
Problem 1 under this case is that every subsystem (1)-(3)
has finiteµq

inf < +∞, or, equivalently, every autonomous
subsystemx(t + 1) = Aq(w)x(t) is asymptotically sta-
ble. For this case, a necessary and sufficient condition for
Problem 1 to have finite solutionµinf is that the discrete-
time autonomous switched systemx(t + 1) = Aσ(w)x(t)
is asymptotically stable under arbitrarily switching. How to
check the asymptotical stability of the autonomous switched
systemx(t+1) = Aσ(w)x(t) under arbitrary switching is an
important problem. Unfortunately, a satisfactory answer for
it is still lacking, see for example [9], [7] and the references
therein.

After the above brief discussion on the condition for
µinf < +∞, we will now calculate a non-conservative
bound ofµinf for the switched system (2)-(3) under arbitrary
switching sequencesσ ∈ Σa. This leads to the next problem
studied in this paper.

Problem 2: Determine a non-conservative bound of the
l∞ induced norm fromd(t) to z(t) for the switched system
(2)-(3) under arbitrary switching signalsσ ∈ Σa.

It is easy to conclude thatµinf ≥ maxq∈Q{µq
inf}, which

is because of the fact thatΣ1 ⊆ Σ2 ⇒ µ
(Σ1)
inf ≤ µ

(Σ2)
inf and

Σ = {σ(t) = q, t ≥ 0} is contained inΣa. In other words,
the disturbance attenuation performance level of switched
system (2)-(3) under arbitrary switching signalsσ ∈ Σa is
worse than its subsystems’. This deterioration comes from
the careless improper switching between the subsystems.

A motivation for the study of switched systems is that a
multi-modal controller can achieve better performance level
than a single-modal controller does. Therefore, it is natural
to ask whether the switched system (2)-(3) can achieve better
disturbance attenuation performance level than its subsystems
do, namely achieve aµ ≤ minq∈Q{µq

inf} by carefully
designing switching signals. If it is possible to achieve a
better disturbance attenuation levelµ ≤ minq∈Q{µq

inf}, then
the next question is what is the lowest (optimal) disturbance
attenuation level that can be achieved by designing the
switching mechanism for the switched system (2)-(3). This is
in fact a control synthesis problem, which gives a bound of
the optimall1 norm which can be achieved by designing the
switching mechanism. Let us denote the value of the optimal
l1 norm asµ∗inf . This is the last problem we addressed in
this paper, which can be formulated as follows:

Problem 3: Find a non-conservative bound of the optimal
l1 norm which can be achieved by designing the switching
mechanism for the switched system (2)-(3).



We will mainly focus on Problem 2 in Section III, and
solve Problem 3 in Section IV. The techniques for analyzing
these disturbance attenuation problems are based on positive
invariant set theory [5].

III. PERFORMANCELEVEL UNDER ARBITRARY

SWITCHING

In this section, we will focus on the disturbance atten-
uation performance that the switched system (2)-(3) can
preserve under arbitrary switchings. We will calculate a non-
conservative bound ofµinf for the switched system (2)-(3)
under arbitrary switching signalsσ ∈ Σa.

For such purpose, we first introduce the definition of
positive disturbance invariant setfor the switched system
(2) under a class of switching signalsσ ∈ Σ ⊆ Σa.

Definition 1: Consider a class of switching signalsσ ∈
Σ ⊆ Σa for the switched system (2). A setS in the state
space is said to bepositive disturbance invariantfor this
switched system with the switching signal classΣ if for every
initial condition x(0) ∈ S we have thatx(t) ∈ S, t ≥ 0, for
every possible switching signalσ(t) ∈ Σ, every admissible
disturbanced(t) ∈ D and parameter variationw(t) ∈ W.

From this definition, we can derive the following relation-
ship for the positive disturbance invariance with respect to
different classes of switching signals.

Proposition 1: If a setS is positive disturbance invariant
for the switched system (2) with a switching signal class
Σ, thenS remains its positive disturbance invariance for all
Σ′ ⊆ Σ.

We then formalize the definition of limit set.
Definition 2: The limit setL(Σ) for the switched system

(2) with a switching signal classΣ is the set of statesx for
which there exist a switching sequenceσ(t) ∈ Σ, admissible
sequencew(t) andd(t) and a non-decreasing time sequence
tk such that

lim
k→+∞

Φ(0, tk, σ(·), w(·), d(·)) = x

where limk→+∞ tk = +∞ and Φ(0, tk, σ(·), w(·), d(·))
denotes the value at the instanttk of the solution of (2)
originating atx0 = 0 and corresponding toσ, w andd.

The limit set L(Σ) for the switched system (2) with a
switching signal classΣ has the following property.

Lemma 1:Under Assumption 3, the limit setL(Σ) is non-
empty and the state evolution of the switched system (2), for
every initial conditionx(0) and admissible sequenceσ(t) ∈
Σ, w(t) ∈ W and d(t) ∈ D, converges toL(Σ). Moreover,
L(Σ) is bounded and it is positive disturbance invariant for
the switched system (2) with respect to the switching signal
classΣ.

The boundedness and convergence of the limit set come
from the asymptotic stability of the switched systems under
the switching signal classΣ (Assumption 3). The invariance

can be easily shown by contradiction. The detailed proof is
omitted here for space limit1.

In this section, we will focus on arbitrary switching class
Σa. Define the performance levelµ set as

X0(µ) = {x : ‖C(w)x‖∞ ≤ µ} (4)

A value µ < +∞ is said to be admissible for arbitrary
switching signalsΣa if µ > µinf . Clearly, givenµ > 0, the
response of the switched system satisfies‖z(t)‖l∞ ≤ µ for
all σ(t) ∈ Σa, w(t) ∈ W and‖d(t)‖l∞ ≤ 1 if and only if the
switched system (2) admits a positive disturbance invariant
setP under arbitrary switching such that0 ∈ P ⊆ X0(µ).

In the following, we will provide a procedure to compute
such a positive disturbance invariant set, for arbitrary switch-
ing signalsΣa, containing inX0(µ). This is accomplished
to find the maximal positive disturbance invariant set for
the switched system (2) under arbitrary switching, i.e. a set
contains any other positive disturbance invariant set under
arbitrary switching inX0(µ).

For such purpose, we first give the predecessor operator
for the q-th subsystem [4]. Given a compact setS ⊆ Rn,
we can define its predecessor set for theq-th subsystem,
preq(S), as the set of all statesx that are mapped intoS by
the transformationAq(w)x + Ed, for all admissibled ∈ D
andw ∈ W. If S is a polyhedral with matrix representation
of the form S = {x : Fx ≤ g}. Then preq(S) can be
represented by

preq(S) = {x : F (Aq(w)x + Ed) ≤ g, ∀d ∈ D, w ∈ W}
In practice uncertainties in the system model often enter

linearly and they are linearly constrained [5]. We will focus
on the linear constrained case and consider the class of
polyhedral sets. Their main advantage is that they are suitable
for computation. In the sequel, we assume polytopic uncer-
tainty, i.e.Aq(w) =

∑r
k=1 wkAk

q , wk ≥ 0,
∑r

k=1 wk = 1,
which provides a classical description of model uncertainty.
Notice that the coefficientswk are unknown and possibly
time varying. Then, the above predecessor set for theq-th
subsystem,preq(S), can be written as

Fi

r∑

k=1

wkAk
qvj ≤ gi − δi, ∀vj ∈ vert{S}, (5)

whereδi = maxd∈D(FiEd) andwk goes through all possible
convex combination coefficients. Because of linearity and
convexity, it is equivalent to only considering the vertices
of Aq(w), i.e.

FiA
k
qvj ≤ gi − δi ∀vj ∈ vert{S}, (6)

for all i = 1, · · · , s andk = 1, · · · , r. For brevity, we write

FAk
qvj ≤ g − δ, ∀vj ∈ vert{S},∀k = 1, · · · , r (7)

1Similar concepts and lemma were previously given in [4] for uncertain
time-varying linear systems. The results developed here are extensions to
the uncertain switched systems.



whereδ has components asδi.
The predecessor set for the switched system (2) under

arbitrary switching,pre(S), is defined as the set of all states
x that are mapped intoS by the transformationAq(w)x+Ed,
for all possibleq ∈ Q, all admissibled ∈ D and w ∈ W.
Therefore, the predecessor set for the switched system (2)
under arbitrary switching can be calculated as

pre(S) =
⋂

q∈Q

preq(S) (8)

As discussed above, a given scalarµ > 0 is admissible
for the switched system under arbitrary switching if and
only if the switched system (2) admits a positive disturbance
invariant setP under arbitrary switching such that0 ∈ P ⊆
X0(µ). For case of polytopic uncertainC(w) =

∑N
i=1 wiCi,

where0 ≤ wi ≤ 1 and
∑N

i=1 wi = 1, then

X0(µ) = {x : ‖C(w)x‖∞ ≤ µ}

= {x : ‖
N∑

i=1

wiCix‖∞ ≤ µ}

=
N⋂

i=1

{x : ‖Cix‖∞ ≤ µ}

=
N⋂

i=1

{x :
[

Ci

−Ci

]
x ≤

[
µ̄
µ̄

]
}

whereµ̄ stands for a column vector withµ as its elements.
X0(µ) is finite intersection of polytopes containing the origin
in their interior. Therefore,X0(µ) is a polytope containing
the origin in its interior.

To determine a positive disturbance invariant setP in
X0(µ) for the switched systems under arbitrary switching,
we recursively define the setsP (k), k = 0, 1, · · · as

P (0) = X0(µ), P (k) = P (k−1)
⋂

pre(P (k−1)) (9)

it can be shown [3] thatP (∞) is the maximal positive
disturbance invariant set under arbitrary switching inX0(µ).
With these assumptions and notations, we may adopt the
techniques and results developed in [4] to the switched
systems under arbitrary switching and get the following
lemma. The proof of the lemma is not difficult by using the
technique of Theorem 3.1 in [4], and thus is omitted here.

Proposition 2: Under Assumption 3, if L(Σa) ⊂
int{X0(µ)} for someµ > 0, then there existsk such that
P (∞) = P (k) and thisk can be selected as the smallest
integer such thatP (k+1) = P (k).

In order to check whether a given performance level
µ > 0 is admissible for the switched system under arbitrary
switching, one may compute the maximal positive distur-
bance invariant setP (∞) in X0(µ) and check whether or not
P (∞) contains the origin. If yes, thenµ > µinf , otherwise
µ < µinf . Note that in both cases we get an answer in a finite
number of steps. In the first case, this is due to the above

proposition. In the second case, this comes from the fact
that the sequence of closed setsP (k) is ordered by inclusion
and P (∞) is their intersection. Thus0 /∈ P (∞) if and only
if 0 /∈ P (k) for somek. Thus checking whetherµ > µinf

can be obtained by starting from the initial setX0(µ) and
computing the sequence of setsP (k) until some appropriate
stopping criterion is met. In addition, we have another stop
criterion.

Proposition 3: If the set P (k) ⊂ int{X0(µ)} for some
k, then the switched system (2) does not admit a positive
disturbance invariant set under arbitrary switching inX0(µ).
In other words,µ < µinf .
Proof : Suppose that there existsk such that P (k) ⊂
int{X0(µ)} and the switched system (2) admits a pos-
itive disturbance invariant set inX0(µ) under arbitrary
switching, and henceP (∞) ⊂ int{X0(µ)}. Define ν as
ν = infx/∈X0(µ) dist(x, P (∞)). For every initial condition
x0 /∈ P (∞) there exist sequencêσ, ŵ and d̂ such that the
corresponding trajectory escapes fromX0(µ), i.e. x(k̄) /∈
X0(µ) for some k̄. Let x̂(t) and x(t) denote two system
trajectories, corresponding to the same sequencesσ̂, ŵ and
d̂ but with different initial conditions. The updating equation
for the differencee(t) = x̂(t)− x(t) is

e(t + 1) = Aσ(ŵ(t))e(t) (10)

which is stable by Assumption 3. Thus for arbitrary0 < ε <
ν there existsδ > 0 such that, for‖x̂(0) − x(0)‖ < δ, we
have‖e(t)‖ = ‖x̂(t) − x(t)‖ < ε for t ≥ 0. On the other
hand, we may choosêx(0) ∈ P (∞) and x(0) /∈ P (∞) such
that ‖x̂(0) − x(0)‖ < δ. Now we havex̂(k̄) ∈ P (∞) and
x(k̄) /∈ X0(µ). This implies that‖e(k̄)‖ ≥ ν and leads to a
contradiction. 2

These results suggest the following constructive procedure
for finding a robust performance bound.

Procedure 1.Checking whetherµ > µinf

1) Initialization: Setk = 1 and setP (0) = X0(µ).
2) Compute the setP (k) = P (k−1)

⋂
pre(P (k−1)).

3) If 0 /∈ P (k+1) or P (k) ⊂ int{X0(µ)} then stop, the
procedure has failed. thus, the output does not robustly
meet the performance levelµ.

4) If the P (k+1) = P (k), then stop, and setP (∞) = P (k).
5) Setk = k + 1 and go to step 1.

This procedure can then be used together with a bisection
method onµ to approximate arbitrary close the optimal
value µinf , which solves the Problem 2. In fact, if the
procedure stops at step 3. we conclude thatµ < µinf and
we can increase the value of the output boundµ. Else, if the
procedure stops at step 4, we have determined an admissible
bound for the output, sayµ > µinf , that can be decreased.

IV. I MPROVE PERFORMANCEBY PROPERSWITCHING

In the previous section, we determined a bound of the
l∞ induced gainµinf from d(t) to z(t) for the switched



system (2)-(3) under arbitrary switching. Note thatµinf ≥
maxq∈Q{µq

inf}, whereµq
inf is the l∞ induced norm from

d(t) to z(t) for the q-th sub-system (1)-(3). In other words,
the disturbance attenuation performance level of the switched
system (2)-(3) under arbitrary switching signalsσ ∈ Σa

is worse than its subsystems’. As we discussed in Section
II, it is possible for the switched system (2)-(3) to achieve
a better disturbance attenuation performance level than its
subsystems’, that isµ ≤ minq∈Q{µq

inf}, by designing proper
switching mechanism. The question left unclear is what is
the lowest performance levelµ that can be achieved by
properly switching. Let us denoted such value asµ∗inf . The
existence ofµ∗inf is immediate from the fact that0 < µ∗inf ≤
minq∈Q{µq

inf} < +∞.
In this section, we will determine a non-conservative

bound for the optimall1 normµ∗inf which can be achieved by
designing the switching mechanism for the switched system
(2)-(3), namely Problem 3 described in Section II. This is
basically a control synthesis problem, which gives a bound
of the optimall1 norm which can be achieved by designing
the switching mechanism for the switched system (2)-(3).

First we define the limit set for the switched system (2)
with all stable switching signals as

L =
⋂

σ∈Σs

L({σ}),

where switching signal classΣs ⊆ Σa is the collection of
all switching signals that the autonomous switched system
x(t+1) = Aσ(w)x(t) is asymptotically stable for allσ ∈ Σs.
It can be shown thatL has the property as follows.

Proposition 4: The setL is bounded and non-empty. For
every initial condition x(0), admissiblew(t) ∈ W and
d(t) ∈ D, there exists an admissible switching sequence
σ(t) ∈ Σs such that the state evolution of the switched
system (2) converges toL. In addition, for all the states
contained inL, then there exists proper switching signal such
that the state evolution of the switched system (2) remains
in L, despite uncertainty and disturbance.
Proof : The boundedness and non-emptiness ofL comes from
the fact thatL({σ}) is nonempty and bounded for allσ ∈ Σs,
and0 ∈ L({σ}). For anyx(0), there exists proper switching
signal σ1 ∈ Σs and finite t1 such thatx(t) ∈ L({σ1}) for
t ≥ t1 (from the definition of limit setL({σ1})). If x(t1) /∈
L =

⋂
σ∈Σs

L({σ}), then there exists at least one limit set,
sayL({σ2}), such thatx(t1) /∈ L({σ2}). From the definition
of L({σ2}), we know that there exists finitet2 > t1 such
that x(t) ∈ L({σ2}) for t ≥ t2 under switch signalσ2. If
x(t2) /∈ L, then the arguments goes on until finallyx(t) ∈ L.
We claim that with finite number of stepsx(t) ∈ L. This
claim and invariance of the setL can be easily shown by
contradiction. 2

It should be pointed out that the introduction of the
limit set L(Σ) and L is for the purpose of proving the
termination of the procedures in finite number of steps. It

is not necessary to calculate the limit setL(Σ) or L to
implement the procedures for the determination of induced
gains.

Similar to the previous section, define the predecessor set
for the switched system (2),pre(S), as the set of states from
which there exist a subsystem (switching signalσ) driving
the states toS in one step for all allowable disturbances
and dynamic uncertainties. By definition, the predecessor set,
pre(S), can be expressed as

pre(S) =
⋃

q∈Q

preq(S) (11)

Following the recursive definition ofP (k) in the previous
section, we recursively define the setsP̄ (k), k = 0, 1, · · · as

P̄ (0) = X0(µ), P̄ (k) = P̄ (k−1)
⋂

pre(P̄ (k−1)) (12)

By construction,P̄ (∞) has the property that there exists a
switching signalσ(t) with respect to which̄P (∞) is positive
disturbance invariant for the switched system (2), which
is called controlled invariance. Also it can be shown that
P̄ (∞) is the maximal controlled invariant subset contained
in X0(µ). Then, givenµ > 0, there exists a switching signal
σ(t) such that the response of the switched system satisfies
‖z(t)‖l∞ ≤ µ for all w(t) ∈ W and ‖d(t)‖l∞ ≤ 1 if and
only if the maximal controlled invariant subset contained in
X0(µ), P̄ (∞), is nonempty and0 ∈ P̄ (∞) ⊆ X0(µ).

We now give a proposition which guarantees thatP̄ (∞)

can be finitely determined.
Proposition 5: Under Assumption 3, ifL ⊂ int{X0(µ)}

for someµ > 0, then there existsk such thatP̄ (∞) = P̄ (k)

and thisk can be selected as the smallest integer such that
P̄ (k+1) = P̄ (k).
Proof : According to the above proposition, there existsk
such that for allx(0) ∈ X0(µ), x(t) ∈ L ⊂ int{X0(µ)}
(∀t ≥ k) for some proper switching signals. By construction
the setP̄ (k) has the property that∃σ(t) ∈ Σa such that
x(t) ∈ X0(µ), t = 0, 1, · · · ,k, for all possibled(t) ∈ D
andw(t) ∈ W if and only if x(0) ∈ P̄ (k). This implies that
P̄ (k) = P̄ (k+1). Otherwise,P̄ (k) ⊃ P̄ (k+1), and there exists
x(0) ∈ P̄ (k) but x(0) /∈ P̄ (k+1), then for all possibleσ(t) ∈
Σa, ∃d(t) ∈ D and∃w(t) ∈ W such thatx(k+1) /∈ X0(µ).
This leads to a contradiction. Therefore,P̄ (k) = P̄ (k+1),
and this implies thatP̄ (k) = P̄ (k+m), for m ≥ 0. Thus
P̄ (∞) = P̄ (k). 2

Problem 3 can now be solved by determining the maximal
controlled invariant set̄P (∞) in X0(µ) for several values of
µ and checking whether or not it contains the origin. Note
that in both cases we get an answer in a finite number of steps
as we discussed in the previous section. Thus the solution to
the Problem 3 can be obtained by starting from the initial set
X0(µ) and computing the sequence of setsP̄ (k) until some
appropriate stopping criterion is met.

These results suggest the following bisection algorithm to
approximate arbitrary close the optimal valueµ∗inf , which



solves the Problem 3. The initial interval[µ∗1, µ
∗
2] such that

µ∗1 ≤ µ∗inf < µ∗2 may be chosen asµ∗1 = ε and µ∗2 =
minq∈Q{µq

inf}+ ε.

Algorithm 1. Algorithm for Calculating µ∗inf

Initialization: ε > 0, µ∗1 = ε andµ∗2 = minq∈Q{µq
inf}+ ε.

while (µ∗2 − µ∗1) > ε

µ∗3 = µ∗1+µ∗2
2 ;

k = 1, P̄ (0) = X0(µ∗3);
while P̄ (k) 6= P̄ (k−1)

P̄ (k) = P̄ (k−1)
⋂

pre(P̄ (k−1))
if 0 /∈ P̄ (k)

µ∗1 = µ∗3; break
end if
k = k + 1

end while
end while
Output: µ∗inf = µ∗1+µ∗2

2 .

Finally, let us illustrate the results here through an simple
numerical example.

Example 1:Consider the following discrete-time uncer-
tain linear hybrid systems:

x(t + 1) =
{

A0(w)x(t) + Ed(t), σ(t) = q0

A1(w)x(t) + Ed(t), σ(t) = q1

z(t) = C(w)x(t)

In this example the mode setQ = {q0, q1}, and the
corresponding state matrices for each subsystem are given
as

A0(w) =
[

0.1 + w 0.7
−0.7 0.1 + w

]
, E =

[
0.1
0.1

]
,

A1(w) =
[

0.1 + w 1
0 0.5− w

]
,

C(w) =
[

1 2 + w
]
.

We assume that the time varying uncertain parameterw
is subjected to the constraint−0.2 ≤ w ≤ 0.2, and the
continuous variable disturbanced(t) is bounded byd ∈ D =
{d : ‖d‖l∞ ≤ 1} = {d : −1 ≤ d ≤ 1}.

First, we calculate thel1 induced gainµq
inf for each

subsystem. Using the bisection method (with error tolerance
ε = 0.01), we getµq0

inf = 0.145 andµq1
inf = 0.136.

Then, we calculate a non-conservative bound ofµinf for
the switched system under arbitrary switching sequences
σ ∈ Σa. It can be determined thatµinf = 0.331. Note
µinf ≥ maxq∈Q{µq

inf}. In other words, the disturbance
attenuation performance level of switched system under arbi-
trary switching signalsσ ∈ Σa is worse than its subsystems’.

Finally, we approximate the optimall1 norm µ∗inf which
can be achieved by designing the switching mechanism for
the switched system. Using bisection method (with error
toleranceε = 0.01) we compute theµ∗inf is approximately
µ∗inf = 0.095. Note µ∗inf ≤ minq∈Q{µq

inf} as expected.

V. CONCLUSIONS

In this paper, we investigated the problem of determining
of upper bounds on thel∞ norm of the output of discrete-
time switched linear systems affected by both parameter
variations and additivel∞ bounded disturbances. Two cases
were considered. First, the disturbance attenuation perfor-
mance levelµinf that could be preserved for the switched
system (2)-(3) under arbitrary switching signals was studied.
Secondly, we determined a non-conservative bound for the
optimal l1 normµ∗inf which could be achieved by designing
the switching mechanism for the switched system (2)-(3).
The techniques for analyzing the disturbance attenuation
problem were based on positive invariant set theory.
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