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Abstract—In this paper, we study a class of discrete-time class for the robust performance analysis problem. Two kinds
SWItChed' I_|near systems affe_cted by both parameter variations of simplifications may be employed to make the procedures
and additive I bounded disturbances. The problem of de- acigaple. One way to obtain such decidable class is to

termining upper bounds on the [*° norm of the output is . . . X .
investigated. First, we study the condition under which the simplify the continuous variable dynamics, see for example

switched systems have finite> induced gain. Secondly, the [1]. However, this approach may not be attractive to control
[°° induced gain is calculated for such switched system under applications, where simple continuous variable dynamics

arbitrary switching signals. Thirdly, we answer the question may not be adequate to capture the system’s dynamics.
whether there exists proper switching mechanism for such - aermatively, one may restrict the discrete event dynamics
switched system to achieve a given disturbance attenuation level. o . . .
The techniques are based on positive invariant set theory. of the uncertain linear hybrid syste_ms. In this paper, we W'l_l
follow the second route and specify a subclass of uncertain
|. INTRODUCTION hybrid systems, namely uncertain switched linear systems,
Recently, there has been increasing interest in the stabilityr which the determination of an nonconservative upper
analysis and switching control design of switched systenfsounds on thé> induced gain can terminate in finite number
(see, e.g., [9], [7], [2], [8], [12] and the references citedf steps.
therein). However, the literature on the robust control of This paper is organized as follows. In Section I, a
hybrid/switched systems is relatively sparse. There are someathematical model for the discrete-time uncertain switched
related works in the literature on analyzing the induced gailinear system affected by both parameter variations and
in switched systems. In [11], th€, gain of continuous- persistent disturbances is described, and the robust dis-
time switched linear systems was studied by an averagérbance attenuation performance problems are formulated.
dwell time approach incorporated with a piecewise quadratiThree problems are investigated here. First, we study the
Lyapunov function, and the results were extended to discretesndition under witch the switched system has a fitte
time case in [12]. In [8], the root-mean-square (RMS) gaiinduced gain from the disturbance to the controlled output.
of a continuous-time switched linear system was computeSkecondly, non-conservative upper bounds of/fieinduced
in terms of the solution to a differential Riccati equationgain is determined for such switched system under arbitrary
when the interval between consecutive switchings was largewitching signals in Section IIl. Thirdly, Section IV studies
However, these robust performance problems considered avlether there exists proper switching mechanism for such
both in the signal’s energy sense, and assume that the disteivitched system to achieve a given disturbance attenuation
bances are constrained to have finite energy, i.e. boundegel. Finally, concluding remarks are presented.
Ly norm. In practice, there are disturbances that do not The letters€,P,S--- denote setsgP the boundary of
satisfy this condition and act more or less continuously ovefet P, andint{P} its interior. A polyhedral se® will be
time. Such disturbances are called persistent [6], and c@fesented either by a set of linear inequalities= {z :
not be treated in the above framework. Therefore, in thig,, < ¢, i = 1,--- ,s}, and compactly byP = {z :
paper we considet* induced gain to deal with the robust g, < g}, or by the dual representation in terms of its
performance problems in the signal’s magnitude sense, ixgartex set{z;}, denoted byvert{P}. For z € R", the
time domain specifications. Moreover, [8], [11], [12] did;l and /™ norms are defined aiz||; = Z?:l |z;| and
not explicitly consider dynamic uncertainty in the modeI.Hx”oo = max, |z;| respectively./>* denotes the space of
Dynamics uncertainty in the plant model is one of the maibounded vector sequencks= {h(k) € R"} equipped with
challenges in control theory, and it is of practical importancene norm||h|j = sup; ||k (k)||eo < 0o, Where||h; (k)]||oo =
to deal with systems with uncertain parameters. Supgs |hi(k)|. Finally, we denote by-|| the Euclidean norm
In our recent work, thé> disturbance attenuation proper-in R while dist(z, P) denotes the distance of a poinfrom
ties of a class of uncertain hybrid systems were investigategl.setp, defined aslist(x, P) = infyep ||z — .
However, the termination of the procedures, which were
developed for general hybrid systems, in finite steps was not Il. PROBLEM FORMULATION
guaranteed. This is mainly because of the fact that the reach-
ability problem is undecidable for general hybrid systems In this paper, we consider a family of discrete-time un-
[1]. Hence, an important question is to specify the decidableertain linear systems described by the following difference
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equations. From the definition ofugf}, we can derive the following

N relationship
z(t+1) = Ag(w)x(t) + Ed(t), t€Z 1) 5, C %y = ug}) < uﬁf})
wherez(t) € R" is the state variable, and the disturbancer, ;o Ng} < HEE}L) because for all switching signalg is

input d(t) is contained inD C R”, the (> unit ball, i.e. . : (Sa)
D — {d: ||di= < 1}. A(w) € R™" and E € R»* contained inY,. Let us denoteu;, +’ simply as iins. An

are state matrices indexed lye @, where the finite set mtbe.:est'llng c'aés?for Erobllerrllz.ltls when = %, nadrqglyf
Q = {q1, 45, ,q} is called the set ofodes arbitrarily switching signals. First, a necessary condition for

Combine the family of discrete-time uncertain linear sys-PrObIem 1 under this case is that every subsystem (1)-(3)

tems (1) with a class of piecewise constant functions of img2S finite ., < +oo, or, equivalently, every autonomous
o : Z* — Q. Then we can define the following time-varying subsystemgc(t + 1) = A (w)a(t) is asymptotlcally .Sfta'
system as a discrete-time switched linear system ble. For this case, a necessary and'suff|C|ent cqnd|t|on for
Problem 1 to have finite solutiop;, s is that the discrete-
2(t +1) = Ay (w)a(t) + Bd(t), tez* (2) time autonomous switched systenit + 1) = A, (w)z(t)
is asymptotically stable under arbitrarily switching. How to
The signalo(t) is called aswitching signal Let us denote check the asymptotical stability of the autonomous switched
the collection of all possible switching signals 8s, the set systemz(t+1) = A, (w)z(t) under arbitrary switching is an

of arbitrary switching signalqd9]. important problem. Unfortunately, a satisfactory answer for
Associated with the switched system (2), a controlled is still lacking, see for example [9], [7] and the references
outputz(t) is considered. therein.

After the above brief discussion on the condition for
#(t) = C(w)a(t) (3) ting < 400, we will now calculate a non-conservative
whereC'(w) € RP*" andz(t) € RP. bound ofy,,, s for the switched system (2)-(3) under arbitrary
switching sequences € ¥,. This leads to the next problem
studied in this paper.
Problem 2: Determine a non-conservative bound of the
[°° induced norm fromi(t) to z(t) for the switched system
(2)-(3) under arbitrary switching signatse %,.

Assumption 1The entries of4,(w) and C(w) are contin-
uous function ofw € W, whereWW C RY is an assigned
compact set.
Assumption 2For all ¢ € @) there existsw, € W such that
the triplet[A,(w,), E, C(w,)] is reachable and observable. ; .
For this[ s(i/\(/itg%ed sy(stgzer (2)-(3), and for a given class Itis easy to conclude that;,; > manezQ{“gﬂf}i which
of switching sequence& C ¥, we are interested in IS because of the fact that, C 3, = Ngn}) < /’(‘En;) and
determining a non-conservative bound for te induced > = {o(t) =g, t > 0} is contained in%,. In other words,

norm fromd(t) to z(t), which is defined as the disturbance attenuation performance level of switched
system (2)-(3) under arbitrary switching signalsc X, is
ujf} =inf{u: ||zl <p, VoeX,weW,de D} worse than its subsystems’. This deterioration comes from

the careless improper switching between the subsystems.
The first problem we conside; in this paper is to specify the A motivation for the study of switched systems is that a
condition under which sucl>,} is finite for the switched multi-modal controller can achieve better performance level
system (2)-(3) under the given class of switching sequencgsan a single-modal controller does. Therefore, it is natural
2. to ask whether the switched system (2)-(3) can achieve better

Problem 1: Consider a class of switching signdls de-  disturbance attenuation performance level than its subsystems
termine the condition such that thig® induced norm from do, namely achieve a. < minqu{M?nf} by carefully
d(t) to z(t) for the switched system (2)-(3) is finite. designing switching signals. If it is possible to achieve a
It can be shown [4] that Problem 1 has finite solutjdff} better disturbance attenuation leyek mianQ{ugnf}, then

if and only if the discrete-time autonomous switched systenthe next question is what is the lowest (optimal) disturbance
x(t+1) = A, (w)z(t) is asymptotically stable under the classattenuation level that can be achieved by designing the
of switching signals. Therefore, Problem 1 is transformedswitching mechanism for the switched system (2)-(3). This is
into a stability analysis problem for autonomous switcheéh fact a control synthesis problem, which gives a bound of
system under some specified class of switching signailse optimall' norm which can be achieved by designing the
(maybe arbitrary switching), which has been studied (for thewitching mechanism. Let us denote the value of the optimal
deterministic dynamics) in the literature over decades [9], [7]} norm asu;, ;- This is the last problem we addressed in
[10]. In the sequel, we limit our attention to asymptoticallythis paper, which can be formulated as follows:
stable switched systems and have the following assumption.Problem 3: Find a non-conservative bound of the optimal
Assumption 3For allc € ¥ C X, z(t + 1) = A,(w)x(t) ' norm which can be achieved by designing the switching
is asymptotically stable. mechanism for the switched system (2)-(3).
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We will mainly focus on Problem 2 in Section Ill, and can be easily shown by contradiction. The detailed proof is
solve Problem 3 in Section IV. The techniques for analyzingmitted here for space limit
these disturbance attenuation problems are based on positivén this section, we will focus on arbitrary switching class

invariant set theory [5]. 3,. Define the performance level set as
[1l. PERFORMANCELEVEL UNDER ARBITRARY Xo(p) = {z : IC(w)z]loo < p} )
SWITCHING A value ;1 < +oco is said to be admissible for arbitrary

. . . . itchi ignals:, if inf- Clearly, gi , th

In this section, we will focus on the disturbance attenfsgvsI pCo r:rs]g zlfgtnhae swil[ c#ed> g ys{em (se;[rié/ﬂegslz/)en?u i(L fo?
uation performance that the switched system (2)-(3) cay), o(t) € S, w(t) € W and | d(t) i~ < 1if and onTy if the
preserve under arbitrary switchings. We will calculate a non-, . h * 2 : L . .
conservative bound gfi,.; for the switched system (2)-(3) switched system (2) admits a positive disturbance invariant

. o . setP under arbitrary switching such théte P C X, (p).
under arbitrary switching S'Q”a*s, € Xa. . In the following, we will provide a procedure to compute
For such purpose, we first introduce the definition of,., 4 positive disturbance invariant set, for arbitrary switch-
positive disturbance invariant sdor the switched system o signalss,, . containing in X, (s). This is accomplished
(2) under a class of switching signatse  C %, to find the maximal positive disturbance invariant set for
Definition 1: Consider a class of switching signalsc  he switched system (2) under arbitrary switching, i.e. a set
¥ C ¥, for the switched system (2). A s&l in the state qntains any other positive disturbance invariant set under
space is said to beositive disturbance invariantor this 4 pitrary switching inXo(p).
switched system with the switching signal clas# for every For such purpose, we first give the predecessor operator
initial condition z(0) € S we have that:(t) € S, t > 0, for  ¢o; the g-th subsystem [4]. Given a compact s8tC R”,
every possible switching signal(t) € ¥, every admissible o can define its predecessor set for thth subs_ystem,
disturbancel(t) € D and parameter variatiow(t) € W. preg(S), as the set of all statesthat are mapped int§ by
From this definition, we can derive the following relation-the transformationd, (w)z + Ed, for all admissibled € D
ship for the positive disturbance invariance with respect tgnd.w ¢ W. If S'is a polyhedral with matrix representation

different classes of switching signals. of the form S = {z : Fz < g}. Then pre,(S) can be
Proposition 1: If a setS is positive disturbance invariant represented by

for the switched system (2) with a switching signal class

¥, thenS remains its positive disturbance invariance for all preq(S) = {z : F(Aq(w)z + Ed) < g, vd € D,w € W}

¥ Cx. In practice uncertainties in the system model often enter
We then formalize the definition of limit set. linearly and they are linearly constrained [5]. We will focus
Definition 2: The limit set£(*) for the switched system on the linear constrained case and consider the class of

(2) with a switching signal clask is the set of states for  polyhedral sets. Their main advantage is that they are suitable

which there exist a switching sequeneg) € ¥, admissible for computation. In the sequel, we assume polytopic uncer-

sequences(t) andd(t) and a non-decreasing time sequenceainty, i.e. Ag(w) = >, wp AL, wy, >0, Y5 wy = 1,

t; such that which provides a classical description of model uncertainty.
Notice that the coefficientsy, are unknown and possibly
Jm 20, 0(),w(),d(-)) == time varying. Then, the above predecessor set forgthie
subsystempre,(S), can be written as
where limy;_, 400ty = oo and ®(0,tx,0(-), w(:),d(-)) ,
denotes the value at the instafit of the solution of (2) FiZkafjvj < gi — i, Yv; € vert{S}, (5)
originating atzy = 0 and corresponding te, w andd. =1
The limit set L&) for the switched system (2) With & yheres, — maxycp(F; Ed) anduy, goes through all possible
switching signal clas& has the following property. convex combination coefficients. Because of linearity and

Lemma 1:Under Assumption 3, the limit set™) is non-  convexity, it is equivalent to only considering the vertices
empty and the state evolution of the switched system (2), foj Ag(w), ie.

every initial conditionz(0) and admissible sequenegt)

3, w(t) € W andd(t) € D, converges to(*). Moreover, FiAjv; < gi — 8 Vu; € vert{S}, (6)
£®) is bounded and it is positive disturbance invariant fOfor all i = 1,---,sandk =1,--- ,r. For brevity, we write
the switched system (2) with respect to the switching signal

classX. FAZUJ' <g-—9¢, Vv cvert{S}h,Vk=1,---,r (7)

The boundedness and convergence of the limit set com
9 elSimilar concepts and lemma were previously given in [4] for uncertain

from the a_symptotic Stabi”ty of the SWitChEd sygtem; undqrme—varying linear systems. The results developed here are extensions to
the switching signal class (Assumption 3). The invariance the uncertain switched systems.
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whered has components a§. proposition. In the second case, this comes from the fact
The predecessor set for the switched system (2) undtvat the sequence of closed s&&) is ordered by inclusion

arbitrary switchingpre(S), is defined as the set of all statesand P(>) is their intersection. Thug ¢ P if and only

 that are mapped int§ by the transformationt, (w)z+Ed, if 0 ¢ P*) for somek. Thus checking whethes > f1,,¢

for all possibleq € @, all admissibled € D andw € W. can be obtained by starting from the initial s€(x) and

Therefore, the predecessor set for the switched system @mputing the sequence of sg®®) until some appropriate

under arbitrary switching can be calculated as stopping criterion is met. In addition, we have another stop
criterion.
pre(S) = () preq(S) (®) Proposition 3: If the set P**) C int{X(u)} for some
9€@ k, then the switched system (2) does not admit a positive

As discussed above, a given scalar> 0 is admissible disturbance invariant set under arbitrary switchingig(y).
for the switched system under arbitrary switching if andn other wordsu < ftin¢.
only if the switched system (2) admits a positive disturbancBroof : Suppose that there exists such that P(*) ¢
invariant setP under arbitrary switching such thate P C  int{Xy(u)} and the switched system (2) admits a pos-
Xo(p). For case of polytopic uncertaifi(w) = Zf\’zl w;C;, itive disturbance invariant set ifXy(u) under arbitrary

where0 < w; <1 and>.N  w, =1, then switching, and henceP(™) < int{Xy(u)}. Define v as
v = inf,¢x, () dist(z, P()). For every initial condition
Xo(n) = Az:[|C(w)z|e < p} xo ¢ P(>) there exist sequence, @ andd such that the
N corresponding trajectory escapes froiy(u), i.e. z(k) ¢
= {z:] ZwicixHoo < p} Xo(u) for somek. Let #(t) and z(t) denote two system
N =1 trajectories, corresponding to the same sequences and
_ ﬂ{x N Cofloe < 1} d but with different initial conditions. The updating equation
I e = for the differencec(t) = #(t) — z(t) is
_ ﬁ{x : [ Ci } < [ i ]} et +1) = Aq (w(1))e(t) (10)
i=1 —Ci H which is stable by Assumption 3. Thus for arbitrdry ¢ <
where i stands for a column vector with as its elements. ¥ there existsi > 0 such that, for||2(0) — z(0)[| < 4, we
Xo(p) is finite intersection of polytopes containing the origin@Vve le(t)[| = [[#(t) — z(¢)|| < e for ¢ > 0. On the other
in their interior. Therefore Xo() is a polytope containing hand, we may choose(0) & P andx(0) ¢ P such

the origin in its interior. that [|2(0) — 2(0)]| < 6. Now we havei(k) € P(°) and
To determine a positive disturbance invariant getin (k) ¢ Xo(p). This implies thaf|e(k)|| > v and leads to a

Xo(u) for the switched systems under arbitrary switchingcontradiction. . _ -
we recursively define the seR®, k =0,1,--- as These results suggest the following constructive procedure

for finding a robust performance bound.

PO = Xo(p), PE = PED (pre(PED) - (9)
— Procedure 1.Checking whetheg > pi;,, ¢

it can be shown [3] thatP(™) is the maximal positive 1) Initialization: Setk = 1 and setP®) = Xy (p).
disturbance invariant set under arbitrary switchingkig( ;). 2) Compute the seP®) = P*=1) N pre(PHF=1).
With these assumptions and notations, we may adopt the3) If 0 ¢ P*+1) or P*) C int{Xy(u)} then stop, the
techniques and results developed in [4] to the switched  procedure has failed. thus, the output does not robustly
systems under arbitrary switching and get the following meet the performance level
lemma. The proof of the lemma is not difficult by using the 4) If the P*+1) = P(*) then stop, and sgt(>) = P(¥),
technique of Theorem 3.1 in [4], and thus is omitted here. 5) Setk =k 4 1 and go to step 1.

Proposition 2: Under Assumption 3, if £« C This procedure can then be used together with a bisection
int{Xo(u)} for somey > 0, then there existk such that method onp to approximate arbitrary close the optimal
P> = P®) and thisk can be selected as the smallestalue 1;,;, which solves the Problem 2. In fact, if the
integer such thap(<+1) — p(k), procedure stops at step 3. we conclude that i,y and

In order to check whether a given performance levele can increase the value of the output boundlse, if the
p > 0 is admissible for the switched system under arbitrargrocedure stops at step 4, we have determined an admissible

switching, one may compute the maximal positive disturhound for the output, say > tiny, that can be decreased.
bance invariant seP(*) in X, () and check whether or not

P(>) contains the origin. If yes, thep > p;,, otherwise
1 < wins. Note that in both cases we get an answer in a finite In the previous section, we determined a bound of the
number of steps. In the first case, this is due to the abov® induced gaingu;,; from d(¢) to z(t) for the switched

IV. IMPROVE PERFORMANCEBY PROPERSWITCHING
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system (2)-(3) under arbitrary switching. Note thaf,; > is not necessary to calculate the limit sét™ or £ to
maxgeq{/y, }, wherepf . is thel> induced norm from implement the procedures for the determination of induced
d(t) to z(t) for the g-th sub-system (1)-(3). In other words, gains.
the disturbance attenuation performance level of the switchedSimilar to the previous section, define the predecessor set
system (2)-(3) under arbitrary switching signalse ¥, for the switched system (2)ye(S), as the set of states from
is worse than its subsystems’. As we discussed in Sectiovhich there exist a subsystem (switching sigadldriving
II, it is possible for the switched system (2)-(3) to achievahe states taS in one step for all allowable disturbances
a better disturbance attenuation performance level than #asd dynamic uncertainties. By definition, the predecessor set,
subsystems’, that ig < minqu{u;?nf}, by designing proper pre(S), can be expressed as
switching mechanism. The question left unclear is what is -
the lowest performance levgl that can be achieved by re(S) = | preq(S) (11)
properly switching. Let us denoted such valuei@s,. The 9€q
existence ofu;, , is immediate from the fact that< p;, . <  Following the recursive definition oP®) in the previous
mingeq{pf, ;} < +oo. section, we recursively define the sét§"), k = 0,1, - as
In this section, we will determine a non-conservative - —(k 1) M B (k—1
bound for the optimall" normy,, . which can be achieved by PO = Xo(u), P® = PED (pre(PE-D)  (12)
designing the switching mechanism for the switched Syste@y construction,P(>) has the property that there exists a
(2)-(3), namely Problem 3 described in Section II. This iswitching signalb(¢) with respect to whichP(>) is positive
basically a control synthesis problem, which gives a boungisturbance invariant for the switched system (2), which
of the optimall' norm which can be achieved by designings called controlled invariance. Also it can be shown that
the switching mechanism for the switched system (2)-(3). p(=) s the maximal controlled invariant subset contained
First we define the limit set for the switched system (2)n X, (). Then, givery > 0, there exists a switching signal
with all stable switching signals as o(t) such that the response of the switched system satisfies
r_ m g HZ(t)_Hzoo <upu fqr all w(t) € w and_||d(t)|\loo <1if qnd _
’ only if the maximal controlled invariant subset contained in
Xo(p), P>, is nonempty and € P(>) C X (u).
where switching signal class; C X, is the collection of We now give a proposition which guarantees ti4e°)
all switching signals that the autonomous switched systegan be finitely determined.
z(t+1) = A, (w)z(t) is asymptotically stable for att € ;. Proposition 5: Under Assumption 3, ifC C int{X ()}
It can be shown thaf has the property as follows. for somey > 0, then there existk such thatP(>®) = p(k)
Proposition 4: The setL is bounded and non-empty. For and thisk can be selected as the smallest integer such that
every initial condition z(0), admissiblew(t) € W and p&+1) — p(k),
d(t) € D, there exists an admissible switching sequenceroof : According to the above proposition, there exikts
o(t) € X4 such that the state evolution of the switchedsuych that for allz(0) € Xo(p), z(t) € L C int{Xo(u)}
system (2) converges t@. In addition, for all the states (vt > k) for some proper switching signals. By construction
contained inC, then there exists proper switching signal suclihe set P(%) has the property thaflo(t) € ¥, such that
that the state evolution of the switched system (2) remaingt) ¢ Xy(u), t = 0,1,---,k, for all possibled(t) € D
in £, despite uncertainty and disturbance. andw(t) € W if and only if z(0) € P®). This implies that
Proof: The boundedness and non-emptines§ ocbmes from p&) — pk+1) Otherwise,P®) > P&+1) and there exists
the fact thatC{}) is nonempty and bounded for alle £,,  2(0) € P& butx(0) ¢ P&+, then for all possibler(t) €
and0 € £{7}). For anyz(0), there exists proper switching 5, 3d(¢) € D and3w(t) € W such thate(k+1) ¢ Xo(u).
signal o; € ¥, and finitet; such thatz(t) € £{1) for  This leads to a contradiction. ThereforBx) = pk+1),
t > t; (from the definition of limit setC{o1D). If 2(t;) ¢  and this implies thatP® = pGk+m) for m > 0. Thus
L = ,ex, L147), then there exists at least one limit set,p(>) = p(k), O
say £U72}) | such thatz(t;) ¢ £H472). From the definition ~ Problem 3 can now be solved by determining the maximal
of £U72}) we know that there exists finite, > ¢, such controlled invariant seP(>) in X, () for several values of
that z(t) € £472}) for t > ¢, under switch signab,. If 1, and checking whether or not it contains the origin. Note
x(t2) ¢ L, then the arguments goes on until finallgt) € £.  that in both cases we get an answer in a finite number of steps
We claim that with finite number of steps(t) € £. This as we discussed in the previous section. Thus the solution to
claim and invariance of the set can be easily shown by the Problem 3 can be obtained by starting from the initial set
contradiction. O  Xo(u) and computing the sequence of s&¢) until some
It should be pointed out that the introduction of theappropriate stopping criterion is met.
limit set £*) and £ is for the purpose of proving the These results suggest the following bisection algorithm to
termination of the procedures in finite number of steps. pproximate arbitrary close the optimal valpg, ., which

gEX;
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solves the Problem 3. The initial interval;, u3] such that V. CONCLUSIONS

pi < pi,p < ps may be chosen agi = ¢ and u; = In this paper, we investigated the problem of determining
mianQ{Mgnf} +e of upper bounds on th&° norm of the output of discrete-
time switched linear systems affected by both parameter
variations and additivé®™ bounded disturbances. Two cases
Initialization: € > 0, uf = e and ul = mmqu{ugnf} +e€. were considered. First, the disturbance attenuation perfor-

Algorithm 1. Algorithm for Calculating 4}, ;

while (u5 — ui) > € mance levelu;, s that could be preserved for the switched
[k = % system (2)-(3) under arbitrary switching signals was studied.
k=1, PO = Xo(u2); Secondly, we determined a non-conservative bound for the
while P(*) £ p(k=1) optimal ' norm ;,, . which could be achieved by designing
Pk = pl=1) N pre(P*k—1) the switching mechanism for the switched system (2)-(3).
if 0¢ P The techniques for analyzing the disturbance attenuation

W = 3 break problem were based on positive invariant set theory.
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0.1 +w 0.7 0.1 [4] F. Blanchini, S. Miani, and M. Sznaier, “Robust performance
Ag(w) = { 07 014w } ) = [ 0.1 } ; with fixed and worst case signals for uncertain time-varying

systems,”Automatica vol. 33, no. 12, pp. 2183-2189, 1997.
0.1+w 1 [5] F. Blanchini, “Set invariance in controlAutomatica vol. 35,
0 05—w |’ no. 11, pp. 1747-1767, 1999.
[6] M. A. Dahleh, and I. Diaz-Bobillo,Control of Uncertain
Clw) = [ L 24w ] : Systems: A Linear Programming ApproadArentice Hall,
We assume that the time varying uncertain parameter 1994.

. . . [7] R. A. Decarlo, M. S. Branicky, S. Pettersson, and B. Lennart-
is subjected to the constraint0.2 < w < 0.2, and the son, “Perspectives and results on the stability and stabilizabil-

continuous variable disturbandgt) is bounded byl € D = ity of hybrid systems, Proccedings of the IEEEvol. 88, no.
{d:|ld)= <1} ={d:—1<d<1}. 7, pp. 1069-1082, 2000. _
First, we calculate thd! induced gainufnf for each [8] J. P. Hespanha, “Computation of Root-Mean-Square gains of

subsystem. Using the bisection method (with error tolerance ~ SWitched linear systemstybrid Systems: Computation and
_ 0 01) we qetu® . — 0.145 and u? . — 0.136 Con'grol, HSCC 2002, pp. 239-252, 2.002. . N
e = 0.01), g€y, = 0. Hing = U.190. ] D. Liberzon, and A. S. Morse, “Basic problems in stability
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Then, we calculate a non-conservative bound.gfy for and design of switched systemsdEEE Control Systems
the switched system under arbitrary switching sequences Magazinevol. 19, no. 15, pp. 59-70, 1999.
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Al(w) =

ping > maxgeq{pl, }. In other words, the disturbance g%%g)%g?“}gagys‘{e?;'ﬁgE_I;i”sl"’ggns on Automatic

attenuation performance level of switched system under arb'[-ll] G Zhai. B. Hu. K. Yasuda. and A. N. Michel. “Disturbance

trary switching signals € X, is worse than its subsystems’. attenuation properties of time-controlled switched systems,”
Finally, we approximate the optimal norm ., , which Journal of the Franklin Institutevol. 338, pp. 765-779, 2001.

can be achieved by designing the switching mechanism fdi2] G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, “Qualitative
the switched system. Using bisection method (with error ~ @nalysis of discrete-time switched systems, Hroceedings

tolerancee = 0.01) we compute the., ; is approximately %3202 American Control Conferencel. 3, pp. 1880-1885,

[,y = 0.095. Note pi7;, » < mingeq{pf,;} as expected. '
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