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Abstract— In this paper, stability and disturbance attenua-
tion issues for a class of Networked Control Systems (NCSs)
under uncertain access delay and packet dropout effects are
considered. Our aim is to find conditions on the delay and
packet dropout rate, under which the system stability and
H

∞ disturbance attenuation properties are preserved to a
desired level. The basic idea in this paper is to formulate such
Networked Control System as a discrete-time switched system.
Then the NCSs’ stability and performance problems can be
reduced to corresponding problems for the switched systems,
which have been studied for decades and for which a number
of results are available in the literature. The techniques in this
paper are based on recent progress in the discrete-time switched
systems and piecewise Lyapunov functions.

I. INTRODUCTION

By Networked Control Systems (NCSs), we mean feed-
back control systems where networks, typically digital band-
limited serial communication channels, are used for the
connections between spatially distributed system components
like sensors and actuators to controllers. These channels may
be shared by other feedback control loops. In traditional feed-
back control systems these connections are through point-to-
point cables. Compared with the point-to-point cables, the
introduction of serial communication networks has many
advantages, such as high system testability and resource
utilization, as well as low weight, space, power and wiring
requirements [9], [14]. These advantages make the networks
connecting sensors/actuators to controllers more and more
popular in many applications, including traffic control, satel-
lite clusters, mobile robotics etc. Recently modeling, analysis
and control of networked control systems with limited com-
munication capability has emerged as a topic of significant
interest to control community, see for example [4], [3], [6],
[14], [1], [9].

Time delay typically has negative effects on the Networked
Control Systems’ stability and performance. There are sev-
eral situations where time delay may arise. First, transmission
delay is caused by the limited bit rate of the communication
channels. Secondly, the channel in NCSs is usually shared
by multiple sources of data, and the channel is usually
multiplexed by time-division method. Therefore, there are
delays caused by a node waiting to send out a message
through a busy channel, which is usually called accessing
delay and serves as the main source of delays in NCSs. There
are also some delays caused by processing and propagation,
which are usually negligible for NCSs. Another interesting

problem in NCSs is the packet dropout issue. Because of
the uncertainties and noise in the communication channels,
there may exist unavoidable errors in the transmitted packet
or even loss1. If this happens, the corrupted packet is dropped
and the receiver (controller or actuator) uses the packet
that it received most recently. In addition, packet dropout
may occur when one packet, say sampled values from the
sensor, reaches the destination later than its successors. In
such situation, the old packet is dropped, and its successive
packet is used instead. There is another important issue in
NCSs, that is the quantization effect. With finite bit-rate
constraints, quantization has to be taken into consideration
in NCSs. Therefore, quantization and limited bit rate issues
have attracted many researchers’ attention, see for example
[3], [6], [4]. It has been known [3], [6] that an exponential
data representation scheme is most desirable under certain
conditions.

In this paper, we consider uncertain time delay and packet
dropout issues of NCSs in the framework of switched sys-
tems. The strength of this approach comes from the solid
theoretic results existing in the literature for stability, robust
performance etc. for switched systems. By a switched system,
we mean a hybrid dynamical system consisting of a finite
number of subsystems described by differential or difference
equations and a logical rule that orchestrates switching be-
tween these subsystems. Properties of this type of model have
been studied for the past fifty years to consider engineering
systems that contain relays and/or hysteresis. Recently, there
has been increasing interest in the stability analysis and
switching control design of switched systems (see, e.g., [10],
[5], [11], [12] and the references cited therein). Notice that
hybrid/switched system research has provided useful results
and promising techniques to deal with NCSs with delay and
packet dropout effects. For example, in [14], the multiple
Lyapunov function method [2] was employed to analyze the
stability of NCSs with network-induced delay. In addition,
the packet dropout effects in NCSs are closely related to
the controller failures studied in the fault tolerance literature.
There are some recent work on the controller failure analysis
based on switched system techniques [11], [13]. By using a
piecewise Lyapunov function, the author in [13] showed that
if the controller failures did not occur too frequently or last

1Error control coding and/or Automatic Repeat reQuest (ARQ) mecha-
nism may be employed, but the possibility of error occurring still exists.



too long, then global exponential stability and disturbance
attenuation property of the system were guaranteed to be
preserved.

In this paper, we investigate the robust stability analysis
and disturbance attenuation problem for a class of Networked
Control Systems (NCSs) under uncertain access delay and
packet dropout effects. Our aim is to find conditions con-
cerning the delay and packet dropout rate, under which the
system stability and H∞ disturbance attenuation properties
are preserved to a desired level. We first analyze the nature
of the uncertain access delay and packet dropout effects on
NCSs in Section II. Then in Section III, we model the NCS
as a discrete-time switched system. Therefore the NCSs’
robust stability and performance problems can be boiled
down to the stability analysis and disturbance attenuation
problems of switched systems. In Section IV, the robust
stability problem for such NCSs with uncertain access de-
lay and packet dropout effects is studied, and disturbance
attenuation properties for such NCSs are studied in Section
V. The techniques employed in this paper are based on recent
progress in the continuous-time and discrete-time switched
systems [12], [11]. Finally, concluding remarks are presented.

II. ACCESS DELAY AND PACKET DROPOUT

We assume that the communication scheme has the fol-
lowing properties. For the network link layer, the delays
caused by processing and propagation are ignored, and we
only consider the access delay which serves as the main
source of delays in NCSs. Dependent on data traffic, the
communication bus is either busy or idle (available). If
available, communication between sender and receiver is
instantaneous. Errors may occur during the communication
and destroy the packet, and this is considered as a packet
dropout.

The model of the NCS discussed in this paper is shown
in Figure 1. For simplicity, but without loss of generality,
we may combine all the time delay and packet dropout
effects into the sensor to controller path and assume that
the controller-actuator communicates ideally.

We assume that the plant can be modeled as a continuous-
time linear time-invariant system described by

{
ẋ(t) = Acx(t) + Bcu(t) + Ecd(t)
z(t) = Ccx(t)

where x(t) ∈ R
n is the state variable, u(t) ∈ R

m is control
input, and z(t) ∈ R

p is the controlled output. The disturbance
input d(t) is contained in D ⊂ R

r. Ac ∈ R
n×n, Bc ∈ R

n×m

and Ec ∈ R
n×r are constant matrices related to the system

state, and Cc ∈ R
p×n is the output matrix.

For the above NCS, it is assumed that the plant output
node (sensor) is clock-driven. In other words, after each clock
cycle (sampling time Ts), the output node attempts to send
a packet containing the most recent state (output) samples.
If the communication bus is idle, then the packet will be

Sampler

x(t)=A x(t)+B u(t)+E d(t){  • c c c

z(t) = C x(t)c

Sampler

ZOH

ZOH

Quantization

Delay

Dropout

τ

Digital Controller

ϕ : x[k] → u[k]

u[k] u(t)

d[k] d(t) z(t)

x(t) x[k]

z[k]

Event Driven

Time Driven

Ts

Fig. 1. The Networked Control Systems’ model.

transmitted to the controller. Else if the bus is busy, then the
output node will wait sometime, say $ < Ts, and try again.
After several attempts or when newer sampled data becomes
available, if the transmission still can not be completed, then
the packet is discarded, which is also considered as a packet
dropout. On the other hand, the controller and actuator are
event driven and work in a simpler way. The controller, as
a receiver, has a receiving buffer which contains the most
recently received data packet from the sensors (the overflow
of the buffer may be dealt with as packet dropouts). The
controller reads the buffer periodically at a higher frequency
than the sampling frequency, say every Ts

N
for some integer

N large enough. Whenever there is new data in the buffer,
then the controller will calculate the new control signal and
transmit to the actuator. According to the assumption, the
controller-actuator communicates without delay or packet
dropout. Upon the new control signal arrival, the actuator
will update the output of the Zero-Order-Hold (ZOH) to the
new value.

Based on the above assumptions and discussion, the time
delay and packet dropout pattern can be shown in Figure 2. In
this figure, The small bullet, •, stands for the packet being
transmitted successfully from the sensor to the controller’s
receiving buffer, maybe with some delay, and being read
by the controller, at some time t = kTs + κTs

N
, and the

new control signal is updated in the actuator instantly. The
actuator will hold this new value until next update control
signal comes. The symbol, ◦, denotes the packet being
dropped, due to error, bus busy, conflict or buffer overflow
etc.

0 Ts nTs

Delay or Dropout Dropout

Sucess

Fig. 2. The illustration of uncertain time delay and packet dropout of
Networked Control Systems.



III. MODELS FOR NETWORKED CONTROL
SYSTEMS

In this section, we will consider the sampled-data model of
the plant. Because we do not assume the synchronization be-
tween the sampler and the digital controller, the control signal
is no longer of constant value within a sampling period.
Therefore the control signal within a sampling period has to
be divided into subintervals corresponding to the controller’s
reading buffer period, T = Ts

N
. Within each subinterval,

the control signal is constant under the assumptions of the
previous section. Hence the continuous-time plant may be
discretized into the following sampled-data systems:

x[k + 1] = Ax[k] + [B B · · ·B]
︸ ︷︷ ︸

N








u1[k]
u2[k]

...
uN [k]








+ Ed[k] (1)

where A = eAcTs , B =
∫ Ts

N

0 eAcηBcdη and E =
∫ Ts

0
eAcηEcdη. Note that for linear time-invariant plant and

constant-periodic sampling, the matrices A, B and E are
constant.

During each sampling period, several different cases may
arise, which can be listed as follows.

1) No delay, τ = 0, u1[k] = u2[k] = · · · = uN [k] = u[k],
then the state transition equation (1) for this case can
be written as follows.

x[k + 1] = Ax[k] + [B B · · ·B]








u[k]
u[k]

...
u[k]








+ Ed[k]

= Ax[k] + N · Bu[k] + Ed[k]

2) Delay τ = κ × Ts

N
, where κ = 1, 2, · · · , Dmax. For

this case u1[k] = u2[k] = · · · = uκ[k] = u[k − 1],
uκ+1[k] = uκ+2[k] = · · · = uN [k] = u[k], and
Equation (1) can be written as:

x[k + 1] = Ax[k] + [B B · · ·B]













u[k − 1]
...

u[k − 1]
u[k]

...
u[k]













+ Ed[k]

= Ax[k] + κ · Bu[k − 1] + (N − κ) · Bu[k] + Ed[k]

Let us assume that the controller uses just the time-
invariant linear feedback control law, u[k] = Kx[k],
which may be obtained as the solution of a LQR prob-
lem without considering the network induced effects.

Then, we may plug in the u[k] = Kx[k] and get

x[k + 1]

= Ax[k] + κBKx[k − 1] + (N − κ)BKx[k] + Ed[k]

= [A + (N − κ)BK]x[k] + κBKx[k − 1] + Ed[k]

If we let x̂[k] =

[
x[k − 1]

x[k]

]

, then the above equa-

tions can be written as:

x̂[k + 1] =

[
x[k]

x[k + 1]

]

=

[
0 I

κBK A + (N − κ)BK

] [
x[k − 1]

x[k]

]

+

[
0
E

]

d[k]

where κ = 0, 1, 2, · · · , Dmax. Note that κ = 0 implies
τ = 0, which corresponds to the previous “no delay”
case. And the controlled output z[k] is given by

z[k] =
[

0 C
]
x̂[k]

where C = Cc.
3) If packet dropout happens, due to corrupted packet or

delay τ > Dmax×
Ts

N
, then the actuator will implement

the previous control signal, i.e. u1[k] = u2[k] = · · · =
uN [k] = u[k−1], then the state transition equation (1)
for this case can be written as follows.

x[k + 1] = Ax[k] + [B B · · ·B]







u[k − 1]
u[k − 1]

...
u[k − 1]







+ Ed[k]

= Ax[k] + N · Bu[k − 1] + Ed[k]

Using the same variable transformation as in the above
case, we get

x̂[k + 1] =

[
x[k]

x[k + 1]

]

=

[
0 I

NBK A

][
x[k − 1]

x[k]

]

+

[
0
E

]

d[k]

The controlled output z[k] is given by

z[k] =
[

0 C
]
x̂[k]

where C = Cc.
In the next section, we will formulate the above NCSs as a
class of discrete-time switched systems.

IV. STABILITY ANALYSIS

Motivated by the above analysis of NCSs, we introduce
a family of discrete-time linear systems described by the
following difference equations.

x[k + 1] = Aqx[k] + Eqd[k], k ∈ Z
+ (2)

where x[k] ∈ R
n is the state variable, and the disturbance

input d[k] is contained in D ⊂ R
r. Aq ∈ R

n×n and Eq ∈



R
n×r are constant matrices indexed by q ∈ Q, where the

finite set Q = {q1, q2, · · · , qn} is called the set of modes.
Combine the family of discrete-time uncertain linear sys-

tems (2) with a class of piecewise constant functions of time
σ : Z

+ → Q. Then we can define the following linear time-
varying system as a discrete-time switched linear system

x[k + 1] = Aσ[k]x[k] + Eσ[k]d[k], k ∈ Z
+ (3)

The signal σ[k] is called a switching signal.
Associated with the switched system (3), a controlled

output z[k] is considered.

z[k] = Cσ[k]x[k]

where Cσ[k] ∈ R
p×n and z[k] ∈ R

p.
For the NCS we considered in this paper, we may formu-

late it as a switched system with Dmax + 2 different modes,
which can be expressed as follows.

{
x̂[k + 1] = Aκx̂[k] + Eκd[k]

z[k] = Cκx̂[k]
(4)

where Aκ =

[
0 I

κBK A + (N − κ)BK

]

, Eκ =

[
0
E

]

and Cκ =
[

0 C
]

for κ = 0, 1, 2, · · · Dmax, N . And the
set of modes Q is given by Q = {0, 1, 2, · · · Dmax, N}.
Note that κ = 0 implies τ = 0, which corresponds to the
“no delay” case, while κ = N corresponds to the “packet
dropout” case.

It is reasonable to assume that, for the cases of no delay
(κ = 0) or small delay (κ ≤ κ0), the corresponding
state matrix Aκ’s are Schur stable, while, for the cases of
large delay (κ > κ0) or packet dropout (κ = N ), the
Aκ’s are not Schur stable. Therefore, in this paper it is
assumed that the first r, corresponding to κ0, of all the
Dmax + 2 matrices in {Aκ} are Schur stable, while the
rest matrices are not Schur stable, where r ≤ Dmax + 2
and κ ∈ Q = {0, 1, 2, · · · , Dmax, N}. In the sequel, for
simplicity of notation, we will index the switched NCS model
with i, for i ∈ Q = {0, 1, 2, · · · , Dmax, N}. In this section,
we set d[k] = 0 in (4) for the purpose to study its stability.

It is known that for Schur stable systems x[k+1] = Aix[k],
there always exist positive scalars λ1 < 1 and hi’s, i ≤ r

such that ‖Ak
i ‖ ≤ hiλ

k
1 for any k ≥ 12. Note that for any

Schur unstable system x[k + 1] = Aix[k] (i > r), there
always exist a constant 0 < σ < 1 making the system
x[k + 1] = σAix[k] Schur stable. Hence we may assume
that there exist positive scalars λ2 ≥ 1 and hi’s, i > r such
that ‖Ak

i ‖ ≤ hiλ
k
2 for any k ≥ 1. Therefore, we get

‖Ak
i ‖ ≤

{
hiλ

k
1 i ≤ r

hiλ
k
2 i > r

(5)

Following [12], we introduce the notations as below. Denote
h = maxi{hi}. For any switching signal σ(k) and any k2 >

2The vector/matrix norm considered here is the l
2 norm and its induced

matrix norm.

k1 > 0, let Nσ(k1, k2) denote the number of switchings of
σ(k) on the interval [k1, k2). Let Ki(k1, k2) denote the total
period that the i-th subsystem is activated during [k1, k2).
Define K−(k1, k2) =

∑

i≤r, i∈Q Ki(k1, k2), which stands
for the total activation period of the Schur stable subsystems.
On the other hand, K+(k1, k2) =

∑

i>r, i∈Q Ki(k1, k2)
denotes the total activation period of the Schur unstable
subsystems. We have K−(k1, k2) + K+(k1, k2) = k2 − k1.

For given N0 ≥ 0, τa, let Sa(τa) denote the set of all
switching signals satisfying

Nσ(0, k) ≤ N0 +
k

τa

(6)

where the constant τa is called the average dwell time and
N0 the chatter bound. The idea is that there may exist
consecutive switching separated by less than τa, but the
average time interval between consecutive switchings is not
less than τa. Note that the concept of average dwell time
between subsystems was originally proposed for continuous-
time switched systems in [8]. With these assumptions and
notations, we may apply the techniques and results developed
in [12] to the NCSs and get the following theorem for
globally exponential stability. The proof of the theorem is
not difficult by using the technique of Theorem 3 in [12],
and thus is omitted here.

Theorem 1: For any given λ ∈ (λ1, 1), the NCS (4) is
globally exponentially stable with stability degree λ if there
exists a finite constant τ∗

a and λ∗ ∈ (λ1, λ) such that the
K+(0, k) and Nσ(0, k) satisfy the following two conditions

1) infk>0
K−(0,k)
K+(0,k) ≥ ln λ2−lnλ∗

ln λ∗−ln λ1
holds for some scalar

λ∗ ∈ (λ1, λ);
2) The average dwell time is not smaller than τ ∗

a , i.e.
Nσ(0, k) ≤ N0 + k

τ∗

a

, where τ∗
a = ln h

ln λ−ln λ∗
, and N0

may be specified arbitrarily.
Remark 1: The first condition implies that if we expect the

entire system to have decay rate λ, we should restrict the total
number of lost packets and large delay packets in the sense
that on average K+(0, k) has an upper-bound, K+(0, k) ≤
ln λ∗−ln λ1

ln λ2−lnλ1
k.

Remark 2: The main point of the second condition can
be described as follows. Although the first condition may
be satisfied, which means that on average the packet lost
is limited and the total number of large delayed packet is
bounded, in the worst case the packet dropout and large
access delay happen in a burst fashion. For such worst case,
the NCSs may fail to achieve the decay rate. The second
condition restricts the frequency of the packet dropout and
large delayed packet, and to make sure the above worst case
can not happen.

Remark 3: The above theorem says that the NCSs’ sta-
bility, with most of the packets arriving in a timely fashion,
does not degenerate seriously, which is reasonable.



V. DISTURBANCE ATTENUATION ANALYSIS
In this section, we will study the disturbance attenuation

property for the NCSs (4). Note that the L2 gain property
of discrete-time switched systems was studied in [12] under
the assumption that all subsystems were Schur stable. In this
section, we will extend the L2 gain property of discrete-time
switched system to the case that not all subsystems are Schur
stable. The techniques used in this section are similar to those
in [11] for continuous-time switched systems.

Following the assumptions in [12], the initial state is
assumed to be the origin, x[0] = 0. And we assume that
the Schur stable subsystems achieve an L2 gain smaller than
γ0. It is known that there exist a positive scalar λ− < 1 and
a set of positive definite matrices Pi, for i ≤ r and i ∈ Q,
such that

A
T
i PiAi−λ

2
−

Pi+C
T
i Ci+A

T
i PiEi(γ

2
0I−E

T
i PiEi)

−1
E

T
i PiAi < 0

holds [7]. Observing that for Schur unstable subsystems,
there always exist a constant 0 < σ < 1, such that the
subsystems (σAi, Ei, σCi) can achieve the L2 gain level γ0.
Therefore, we assume that for Schur unstable subsystems
there exist a positive scalar λ+ ≥ 1 and a set of positive
definite matrices Pi, for i > r and i ∈ Q, such that

A
T
i PiAi−λ

2
+Pi+C

T
i Ci+A

T
i PiEi(γ

2
0I−E

T
i PiEi)

−1
E

T
i PiAi < 0

Using the solution Pi’s, we define the following piecewise
Lyapunov function candidate

V (k) = Vσ[k](x) = xT [k]Pσ[k]x[k] (7)

for the switched system, where Pσ[k] is switched among
the solution Pi’s in accordance with the piecewise constant
switching signal σ[k]. It can be shown as in [12] that there
always exist constant scalars α1, α2 > 0, for example,
α1 = inf i∈Q λm(Pi), α2 = supi∈Q λM (Pi), such that

α1‖x‖
2 ≤ Vi(x) ≤ α2‖x‖

2, ∀x ∈ R
n, ∀i ∈ Q (8)

Here λM (Pi) and λm(Pi) denotes the largest and smallest
eigenvalue of Pi respectively. There exist a constant scalar
µ ≥ 1 such that

Vi(x) ≤ µVj(x), ∀x ∈ R
n, ∀i, j ∈ Q (9)

A conservative choice is µ = supk,l∈Q
λM (Pk)
λm(Pl)

.
Following the steps in [12], for each Vi(x) = xT [k]Pix[k]

along the solutions of the corresponding subsystem, we may
obtain that

Vi(x[k + 1]) − Vi(x[k])

≤

{
−(1 − λ2

−)Vi(x[k]) − zT [k]z[k] + γ0d
T [k]d[k]

−(1 − λ2
+)Vi(x[k]) − zT [k]z[k] + γ0d

T [k]d[k]

For a piecewise constant switching signal σ[k] and any
given integer k > 0, we let k1 < · · · < ki (i ≥ 1) denote the
switching points of σ[k] over the interval [0, k). Then, using
the above difference inequalities, we obtain

V (k) ≤

{

λ
2(k−ki)
− V (ki) −

∑k−1
j=ki

λ
2(k−1−j)
− Γ(j)

λ
2(k−ki)
+ V (ki) −

∑k−1
j=ki

λ
2(k−1−j)
+ Γ(j)

where Γ(j) = zT [j]z[j] − γ2
0dT [j]d[j]. Since V (ki) ≤

µV (k−
i ) holds on every switching point ki, we obtain by

induction that

V (k) ≤ µ
Nσ(0,k)

λ
2K−(0,k)
−

λ
2K+(0,k)
+ V (0)

−

k−1∑

j=0

µ
Nσ(j,k−1)

λ
2K−(j,k−1)
−

λ
2K+(j,k−1)
+ Γ(j)

= −

k−1∑

j=0

µ
Nσ(j,k−1)

λ
2K−(j,k−1)
−

λ
2K+(j,k−1)
+ Γ(j)

The last equality is because of the zero initial state assump-
tion x[0] = 0.

We assume that on any interval [k1, k2) the total activation
periods of the unstable subsystems satisfies K+(k1, k2) ≤
ln λ∗−ln λ−

ln λ+−ln λ−

(k2 − k1), or equivalently

K−(k1, k2)

K+(k1, k2)
≥

ln λ+ − ln λ∗

ln λ∗ − ln λ−

(10)

holds for some scalar λ∗ ∈ (λ−, 1) and ∀k2 > k1 ≥ 0. Then
we get

λ
2K−(j,k−1)
− λ

2K+(j,k−1)
+

≤ (λ∗)2K−(j,k−1)+2K+(j,k−1) = (λ∗)2(k−1−j)

Therefore, we get

V (k) ≤ −

k−1∑

j=0

µNσ(j,k−1)(λ∗)2(k−1−j)Γ(j) (11)

When µ = 1, we get from V (k) ≥ 0 and (11) that
k−1∑

j=0

µNσ(j,k−1)(λ∗)2(k−1−j)Γ(j) ≤ 0 (12)

We sum (12) from k = 1 to k = +∞ to obtain
+∞∑

k=1

(
k−1∑

j=0

µNσ(j,k−1)(λ∗)2(k−1−j)Γ(j))

=

+∞∑

j=1

Γ(j)(

+∞∑

k=j+1

µNσ(j,k−1)(λ∗)2(k−1−j))

= (1 − (λ∗)2)−1
+∞∑

j=1

Γ(j) ≤ 0

which means
+∞∑

j=0

zT [j]z[j] ≤ γ2
0

+∞∑

j=0

dT [j]d[j] (13)

Therefore, L2 gain γ0 is achieved for the switched system,
namely the NCS (4).

For the case µ > 1, we multiply both sides of (11) by
µ−Nσ(0,k−1) to get

∑k−1
j=0 µ−Nσ(0,j)(λ∗)2(k−1−j)zT [j]z[j]

≤ γ2
0

∑k−1
j=0 µ−Nσ(0,j)(λ∗)2(k−1−j)dT [j]d[j]

(14)



Now, we choose a positive scalar λ larger than 1 to consider
the following average dwell time condition: for any positive
integer j > 0,

Nσ(0, j) ≤
j

τ∗
a

, τ∗
a =

ln µ

2 ln λ
(15)

Therefore µ−Nσ(0,j) > λ−2j holds for any j > 0, where
λ = µ(2τ∗

a
)−1

. Then, from (14) we obtain
k−1∑

j=0

λ
−2j(λ∗)2(k−1−j)

z
T [j]z[j] ≤ γ

2
0

k−1∑

j=0

(λ∗)2(k−1−j)
d

T [j]d[j]

Similarly, we sum both sides of the above inequality from
k = 1 to k = +∞ to get

(1 − (λ∗)2)−1
+∞∑

j=1

λ
−2j

z
T [j]z[j] ≤ (1 − (λ∗)2)−1

γ
2
0

+∞∑

j=1

d
T [j]d[j]

and thus
+∞∑

j=1

λ−2jzT [j]z[j] ≤ γ2
0

+∞∑

j=1

dT [j]d[j] (16)

holds for any d[k] ∈ L2[0, +∞). Following the notation in
[12], we say that a weighted L2 gain γ0 is achieved. In
summary, we prove the following theorem.

Theorem 2: The NCS (4) achieves a weighted L2 gain
γ0 if the K+(k1, k2) satisfies (10) and Nσ(0, k) satisfy the
condition of (15).

Remark 4: Similarly, the condition (10) restricts the num-
ber of the packet dropout and large delayed packet, while
the condition (15) restricts the happening frequency of them.
Both of the conditions are given in the sense of average over
time.

VI. CONCLUDING REMARKS

In this paper, we modeled a class of NCSs under uncertain
access delay and packet dropout as discrete-time linear
switched systems. The stability and disturbance attenuation
issues for such NCSs were studied in the framework of
switched systems. The strength of this approach comes
from the solid theoretic results existing in the literature of
switched/hybrid systems. It was shown that the exponential
stability and disturbance attenuation level might be preserved
for the NCSs under certain bounds on the amount and rate
of the dropped and large delayed packets. Although we only
consider state feedback control law here, the techniques and
results developed here can be easily extended to the case of
static output feedback control law. It should be pointed out
that the conditions concerning the delay and packet dropout
rate for the preservation of the NCSs’ stability and H∞

disturbance attenuation properties were based on Lyapunov
theory. Therefore, the conditions are sufficient only and
maybe conservative for some cases.
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