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Abstract

Supervision based on place invariants (SBPI) is an efficient technique for the supervisory
control of Petri nets. In this paper we propose extensions of the SBPI to a decentralized control
setting. In our setting, a decentralized supervisor consists of local supervisors, each controlling
and observing a part of the Petri net. We consider both versions of decentralized control, with
communication, and with no communication. In the case of communication, a local supervisor
may receive observations of events that are not locally observable and send enabling decisions
concerning events that are not locally controllable. In the first part of the paper we propose
efficient algorithms for the design of decentralized supervisors, based on the extension of the
SBPI concept of admissibility that we define. Then, in the second part of the paper, we propose
the design of decentralized supervisors based on transformations to admissible constraints. The
feasibility of this problem is demonstrated with a simple integer programming approach. This
approach can incorporate communication between local supervisors as well as communication
constraints.

1 Introduction

The decentralized control of discrete event systems (DES) has received considerable attention in
the recent years [13]. The current research effort has been focused on the automata setting, and has
considered both versions of decentralized control, with communication and with no communication.
This paper considers the decentralized control of Petri nets by means of the supervision based on
place invariants (SBPI) [5, 11, 20].

Petri nets are compact models of concurrent systems, as they do not represent explicitly the
state space of the system. Petri net methods relying on the structure of the net rather than the state
space are of special interest, as the size of the state space, when finite, can be exponentially related
to the size of the net. Among such methods, the SBPI offers an efficient technique for the design of
supervisors enforcing on Petri nets a particular class of state predicates, called generalized mutual
exclusion constraints. Note that the generalized mutual exclusion constraints can represent any
state predicate of a safe1 Petri net [20]. Furthermore, without loss of any of its benefits, the SBPI
has been extended in [7] to handle any constraints that can be enforced by control (monitor) places.
While SBPI has been considered so far in a centralized setting, this paper proposes extensions of
SBPI to a decentralized setting.

Admissibility is a key concept in the SBPI of Petri nets with uncontrollable and unobservable
transitions. When dealing with such Petri nets, the SBPI approach classifies the specifications as
admissible and inadmissible, where the former can be directly enforced, and the latter are first
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1A Petri net is safe if for all reachable markings no place has more than one token.

Marian Iordache, Panos J. Antsaklis, “Decentralized Control of Petri Nets,” Proceedings of the Workshop on 
Discrete Event Systems Control at the 24th International Conference on Application and Theory of Petri Nets 
(ATPN 2003), pp.143-158, Eindhoven, The Netherlands, 24 June, 2003.



transformed to an admissible form and then enforced. In the automata setting [12], admissibility
corresponds to controllability and observability, and the transformation to an admissible form to
the computation of a controllable and observable sublanguage.

The main contributions of this paper are as follows. First, we define d-admissibility (decen-
tralized admissibility), as an extension of admissibility to the decentralized setting. Our concept
of d-admissibility extends the admissibility concept in the sense that a set of constraints that is
d-admissible can be directly enforced via SBPI in a decentralized setting. Since d-admissibility
identifies constraints for which the supervisors can be easily computed, rather than the class of
constraints for which supervisors can be computed, it does not parallel controllability and coob-
servability in the automata setting [15]. Second, we show how to enforce d-admissible constraints
and show how to check whether a constraint is d-admissible. Third, to deal with constraints that
are not d-admissible, we provide an algorithmic approach to make the constraints d-admissible
by enabling communication of events (transition firings). Fourth, to deal with the case in which
the constraints are not d-admissible and communication is restricted or unavailable, we propose
a simple linear integer programming approach for the design of the decentralized control. The
design process generates both the local supervisors and the communication policy. Communication
enables the local supervisors to observe events that are not locally observable and to control events
that are not locally controllable. The communication policy specifies for each local supervisor the
events it remotely observes and the events it remotely controls. This approach allows commu-
nication constraints to be incorporated in the design process and can be used to minimize the
communication. With regard to our use of integer programming, note that while the development
of alternative methods that are less computationally intensive are a direction for future research, in
the automata setting it was shown that a decentralized solution cannot be found with polynomial
complexity [13]. Note also that the size of the integer program depends on the size of the Petri net
structure, and not on the size of its state space (i.e. the size of its equivalent automaton), which
may not be finite.

To our knowledge, the decentralized supervisory control of Petri nets has not been yet considered
in the literature, except for [3]. In [3], distributed supervisors and a central coordinator are designed
for specifications that are given from the beginning in a distributed form. In our approach there is no
central coordinator and the specifications are not required to be given in a distributed form. In the
automata setting, the work on decentralized control can be found in [13] and the references therein.
In particular, we mention [15] for the decentralized control with no communication and [1, 14] for
decentralized control with communication. As in our paper, the communication in [14] consists of
events rather than states estimates or observation strings [1, 18]. Other related work includes [18],
which approaches the problem of finding a decentralized solution with the same performance as a
centralized solution when communication is available. The vast majority of the decentralized control
papers consider language specifications. In this paper we focus our attention on the particular class
of state predicate specifications supported by SBPI. In the automata setting, the existence of a
decentralized solution enforcing state predicates is studied in [17]. Literature on SBPI or closely
related to it is found in [5, 20, 11, 16, 8, 9] and the references therein. Finally, note that the
decentralized control of DES can be used in various applications, including manufacturing [10, 3],
failure detection [2], and communication protocols [4].

The paper is organized as follows. Section 2 describes the notation and outlines the SBPI.
Section 3 describes the decentralized setting of our approach. Section 4 defines the d-admissibility,
shows how d-admissibile constraints can be enforced, and presents the algorithm checking whether
a constraint is d-admissible. Then, d-admissibility is applied to the design of local supervisors with
communication in section 5. The algorithm presented in section 5 uses communication in order to
reduce (when possible) the enforcement of constraints that are not d-admissible to the enforcement
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of d-admissible constraints. Section 6 describes the supervisory approach for the enforcement of
constraints that are not d-admissible in the case in which the communication is restricted or not
available. Finally, section 7 illustrates our approach on a manufacturing example from [10].

2 Preliminaries

A Petri net structure is denoted by N = (P, T, F,W ), where P is the set of places, T the set of
transitions, F the set of transition arcs, and W the weight function. The incidence matrix of N is
denoted by D (places correspond to rows and transitions to columns). A place (transition) denoted
by pj (ti) is the place (transition) corresponding to the j’th (i’th) row (column) of the incidence
matrix.

The specification of the SBPI [5, 11, 20] consists of the state constraints

Lµ ≤ b (1)

where L ∈ Z
nc×|P |, b ∈ Z

nc, and µ is the marking of N . To distinguish between the case nc = 1
and nc > 1, we say that (1) represents a constraint when nc = 1, and that (1) represents a set of
constraints when nc > 1. Note that N represents the plant. The SBPI provides a supervisor in
the form of a Petri net Ns = (Ps, T, Fs,Ws) with

Ds = −LD (2)
µ0,s = b − Lµ0 (3)

where Ds is the incidence matrix of the supervisor, µ0,s the initial marking of the supervisor, and µ0

is the initial marking of N . The places of the supervisor are called control places. The supervised
system, that is the closed-loop system, is a Petri net of incidence matrix:

Dc =
[

D
−LD

]
(4)

An example is shown in Figure 7, in which the control places C1 and C2 enforce µ2 + µ3 ≤ 1 and
µ5 + µ6 ≤ 1, respectively.

Note that (3) implies that when the plant and the supervisor are in closed-loop, the initial
marking of the plant satisfies (1). Let µc be the marking of the closed-loop, and let µc|N denote
µc restricted to the plant N . Let t ∈ T be a transition. t is closed-loop enabled if µc enables t.
t is plant-enabled, if µc|N enables t in N . The supervisor detects t if t is closed-loop enabled at
some reachable marking µc and firing t changes the marking of some control place. The supervisor
controls t if there is a reachable marking µc such that t is plant-enabled but not closed-loop
enabled. Given µc, the supervisor disables t if there is a control place C such that (C, t) ∈ Fs and
µc(C) < Ws(C, t).

In Petri nets with uncontrollable and unobservable transitions, admissibility issues arise. In-
deed, a supervisor generated as shown above may include control places preventing plant-enabled
uncontrollable transitions to fire, and may contain control places with marking varied by firings of
closed-loop enabled unobservable transitions. Such a supervisor is clearly not implementable. We
say that a supervisor is admissible, if it only controls controllable transitions, and it only detects
observable transitions. The constraints Lµ ≤ b are admissible if the supervisor defined by (2–3) is
admissible. When inadmissible, the constraints Lµ ≤ b are transformed (if possible) to an admis-
sible form Laµ ≤ ba such that Laµ ≤ ba ⇒ Lµ ≤ b [11]. Then, the supervisor enforcing Laµ ≤ ba

is admissible, and enforces Lµ ≤ b as well. Our discussion on admissibility is carried out in more
detail in section 4. We will denote N with sets of uncontrollable and unobservable transitions Tuc

and Tuo by (N , Tuc, Tuo).
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Figure 1: Robotic manufacturing system.

3 The Model

We assume that the system is given as a Petri net structure N = (P, T, F,W ). A decentralized
supervisor consists of a set of local supervisors S1, S2,. . .Sn, each acting upon individual parts of
the system, called subsystems, where the simultaneous operation of the local supervisors achieves a
global specification. A local supervisor Si observes the system through the set of locally observable
transitions To,i, and controls it through the set of locally controllable transitions Tc,i. So, from
the viewpoint of Si, the sets of uncontrollable and unobservable transitions are Tuc,i = T \ Tc,i

and Tuo,i = T \ To,i. This is the design problem: Given a global specification and the sets of
uncontrollable and unobservable transitions Tuc,1, Tuc,2, . . . Tuc,n and Tuo,1, Tuo,2, . . . Tuo,n, find
a set of local supervisors S1, S2,. . .Sn whose simultaneous operation guarantees that the global
specification is satisfied, where each Si can control T \ Tuc,i and observe T \ Tuo,i. A system N
with subsystems of uncontrollable and unobservable transitions Tuc,i and Tuo,i will be denoted by
(N , Tuc,1, . . . Tuc,n, Tuo,1, . . . Tuo,n).

As an illustration, consider a manufacturing example in which two robots transport parts to a
common assembly area (Figure 1). The system is modeled by the Petri net of Figure 2(a), where
µ2 = 1 (µ4 = 1) when the left (right) robot is in the parts bin, and µ1 = 1 (µ3 = 1) when the left
(right) robot is in the assembly area. The set of controllable transitions of the left (right) subsystem
may be taken as Tc,1 = {t1, t2} (Tc,2 = {t3, t4}). Assume that the subsystem of each robot knows
when the other robot enters or leaves the parts bin. Then each subsystem contains the controllable
transitions of the other subsystem as observable transitions; a possible graphical representation of
the subsystems is shown in Figure 2(b) and (c).

4 Admissibility

To distinguish between admissibility in the centralized case and admissibility in the decentralized
case (to be defined in this section), we denote by c-admissibility the admissibility property in
the centralized case. Therefore, c-admissibility is taken with respect to a Petri net (N , µ0) of
uncontrollable transitions Tuc and unobservable transitions Tuo. The significance of c-admissibility
is as follows. A c-admissible set of constraints (1) can be implemented with the simple construction
of (2–3), as in the fully controllable and observable case.

In the decentralized case, we are interested to define admissibility with respect to a Petri net
(N , µ0), and the sets of uncontrollable and unobservable transitions of the subsystems: Tuc,1 . . .
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Figure 2: A Petri net model of the robotic manufacturing system.
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Figure 3: Centralized control versus decentralized control.

Tuc,n and Tuo,1 . . . Tuo,n. Admissibility in the decentralized case is called d-admissibility. As
in the case of c-admissibility, we would like d-admissibility to guarantee that the (decentralized)
supervisor can be easily constructed. This is achieved by the following definition.

Definition 4.1 A constraint is d-admissible with respect to (N , µ0, Tuc,1 . . . Tuc,n, Tuo,1 . . . Tuo,n),
if there is a collection of subsystems C ⊆ {1, 2, . . . n}, C 6= ∅, such that the constraint is c-admissible
with respect to (N , µ0, Tuc, Tuo), where Tuc =

⋂
i∈C

Tuc,i and Tuo =
⋃
i∈C

Tuo,i. A set of constraints is

d-admissible if each of its constraints is d-admissible.

To illustrate the definition, assume that we have a constraint that is c-admissible only with
respect to the first subsystem. Then, it is d-admissible, as we can select C = 1. Note also that
when each subsystem has full observability of the net and every transition is controllable with
respect to some subsystem, any constraint is d-admissible.

The construction of a decentralized supervisor, given a d-admissible set of constraints, is illus-
trated on the Petri net of Figure 2. The mutual exclusion constraint

µ1 + µ3 ≤ 1 (5)

is to be enforced. The centralized control solution is shown in Figure 3. In the case of decentralized
supervision, there are two subsystems: the first one has Tuo,1 = ∅ and Tuc,1 = {t3, t4}, and the
other has Tuo,2 = ∅ and Tuc,2 = {t1, t2}. Note that (5) is not c-admissible with respect to any of
(N , Tuc,1, Tuo,1) or (N , Tuc,2, Tuo,2). However, it is d-admissible for C = {1, 2}. Given two variables
x1, x2 ∈ N, a decentralized supervisor S1 ∧ S2 enforcing (5) can be defined by the following rules:
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The supervisor S1:

• initialize x1 to 0.

• disable t1 if x1 = 0

• increment x1 if t2 or t3 fires.

• decrement x1 if t1 or t4 fires.

The supervisor S2:

• initialize x2 to 0.

• disable t4 if x2 = 0

• increment x2 if t2 or t3 fires.

• decrement x2 if t1 or t4 fires.

A graphical representation of S1 and S2 is possible, as shown in Figure 3. Thus, S1 is represented
by C1 and S2 by C2; x1 is the marking of C1 and x2 the marking of C2. Graphically, C1 and C2 are
copies of the control place C of the centralized supervisor. Note that (C1, t4) and (C2, t1) model
observation, not control. This is due to the fact that S1 never disables t4 and S2 never disables
t1. As C1 and C2 have the same initial marking as C, their markings stay equal at all times. So,
whenever t1 should be disabled, the disablement action is implemented by C1, and whenever t4 is
to be disabled, the disablement action is implemented by C2.

In the general case, the construction of a supervisor enforcing a d-admissible constraint lµ ≤ c
(l ∈ N

1×|P | and c ∈ N) is as follows: (Note that the notation of Definition 4.1 is used)

Algorithm 4.2 Supervisor Design for a D-admissible Constraint

1. Let µ0 the initial marking of N , C the control place of the centralized SBPI supervisor
Ns = (Ps, T, Fs,Ws) enforcing lµ ≤ c, and C the set of Definition 4.1.

2. For all i ∈ C, let xi ∈ N be a state variable of Si.

3. Define Si, for i ∈ C, by the following rules:

• Initialize xi to c − lµ0.

• If t ∈ Tc,i, t ∈ C• and xi < Ws(C, t), then Si disables t.

• If t fires, t ∈ To,i and t ∈ •C, then xi = xi + Ws(t, C).

• If t fires, t ∈ To,i and t ∈ C•, then xi = xi − Ws(C, t).

To enforce a d-admissible set of constraints Lµ ≤ b, the construction above is repeated for each
constraint lµ ≤ c. Note that in the graphical representation the supervisors Si correspond to |C|
copies of the control place C of the centralized supervisor, where each copy has the same initial
marking as C.

Next we prove that the resulting decentralized supervisor is feasible (physically implementable)
and as performant as the centralized supervisor. The decentralized supervisor is feasible if for
all reachable markings µc of the closed-loop and for all transitions t: (i) for all i = 1 . . . n, if t
is closed-loop enabled and t /∈ To,i, firing t does not change the state (marking) of Si; (ii) if t is
plant-enabled but not closed-loop enabled, there is an Si disabling t such that t ∈ Tc,i.

Theorem 4.3 The decentralized supervisor constructed in Algorithm 4.2 is feasible, enforces the
desired constraint, and is as permissive as the centralized supervisor of (N , Tuc, Tuo).

Proof: Feasibility is an immediate consequence of the construction of Algorithm 4.2. To prove
the remaining part of the theorem, we show that a firing sequence σ is enabled by the centralized
supervisor at the initial marking if and only if it is enabled by the decentralized supervisor at the
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initial marking. The proof uses the notation of the Algorithm 4.2 and of Definition 4.1. In addition,
let S be the centralized supervisor implemented by the control place C, and Sd the decentralized
supervisor

∧
i∈C

Si. Given a firing sequence σ = ti1ti2 . . . tik enabled from µ0 in the open-loop (N , µ0),

let’s denote by µj the markings reached while firing σ: µ0
ti1−→ µ1

ti2−→ µ2
ti3−→ . . . µk.

First, note that for all firing sequences σ = ti1ti2 . . . tik enabled by both S and Sd from µ0, we
have that at all markings µj reached while firing σ

xi = c − lµj ∀i ∈ C (6)

This is proven by induction. For i = 0, (6) is satisfied, due to the way the variables xi are initialized.
Assume (6) satisfied for j < k. According to the SBPI, when the plant has the marking µj the
marking of C is c − lµj, the same as xi ∀i ∈ C. There are two cases: (a) lµj = lµj+1 and (b)
lµj 6= lµj+1. In case (a), in view of (2), Ws(C, tij ) = Ws(tij , C) = 0. Therefore, neither the
marking of C, nor any of the xi’s is changed by firing tij . Hence, (6) is satisfied at µj+1. In case
(b), note that by Definition 4.1, the d-admissibility of lµ ≤ c implies that S is c-admissible with
respect to (N , µ0, Tuc, Tuo). Then, since tij is not dead and lµj 6= lµj+1: tij /∈ Tuo. However,
tij /∈ Tuo ⇒ (∀i ∈ C) tij /∈ Tuo,i. Hence, tij is observable to all Si, and so all xi are changed in the
same way. Moreover, according to the SBPI, firing tij changes the marking of C the same way as
xi are changed. From the SBPI we know that the new marking of C is c − lµj+1. It follows that
when µj+1 is reached, xi = c − lµj+1 ∀i ∈ C.

Finally, we prove by contradiction that the firing sequences enabled by S from µ0 are the firing
sequences enabled by Sd from µ0. Assume the contrary, that there is σ that is enabled by one
supervisor and not enabled by the other. We decompose σ into σ = σxtxσy, tx ∈ T , where σx is

enabled by both supervisors and σxtx is not. If µ0
σx−→ µx, then (6) is satisfied at µj = µx; the

marking of C is also c − lµx. There are two cases: (a) tx enabled by C; (b) tx not enabled by C.
As in the previous part of the proof, case (a) leads to the conclusion that Sd enables also tx, which
contradicts the assumption that not both S and Sd enable tx. In case (b), according to the SBPI,
we have that Ws(C, tx) < c − lµx and tx /∈ Tuc, by the d-admissibility of lµ ≤ c. It follows that
there is i ∈ C such that Si disables tx, and hence that Sd does not enable tx. This contradicts the
assumption that one of S and Sd enables tx. 2

Let S be the centralized supervisor that enforces the constraint in the fully controllable and
observable version of N . Let TM

uo be the set of transitions that are not detected by S and TM
uc the

set of transitions that are not controlled by S. The d-admissibility of a constraint can be tested as
follows:

Algorithm 4.4 Checking whether a Constraint is D-admissible

1. Find TM
uo and TM

uc .

2. Find the largest set of subsystems C such that ∀i ∈ C: Tuo,i ⊆ TM
uo .

3. If C = ∅, declare that the constraint is not d-admissible and exit.

4. Define Tuc =
⋂
i∈C

Tuc,i.

5. Does Tuc satisfy Tuc ⊆ TM
uc ? If yes, declare the constraint d-admissible. Otherwise, declare

that the constraint is not d-admissible.
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Note that a d-admissible constraint can be implemented for a minimal set Cmin ⊆ C containing
the minimal number of subsystems such that TM

uc ⊇ ⋂
i∈Cmin

Tuc,i. Note also that checking whether a

set of constraints is d-admissible involves checking each constraint individually.

Proposition 4.5 The algorithm checking d-admissibility is correct.

Proof: A constraint is declared d-admissible if C 6= ∅ and Tuc ⊆ TM
uc . The definition of TM

uo and
TM

uc implies that the constraint is c-admissible with respect to (N , Tuc, Tuo) (where Tuo =
⋃
i∈C

Tuo,i).

Then, in view of Definition 4.1, the algorithm is right to declare the constraint d-admissible.
Next, assume a d-admissible constraint. Then, there is a set of subsystems C′ 6= ∅ such that the

constraint is c-admissible with respect to (N , T ′
uc, T

′
uo) (where T ′

uc =
⋂

i∈C′
Tuc,i and T ′

uo =
⋃

i∈C′
Tuc,i).

Then T ′
uo ⊆ TM

uo ; T ′
uo ⊆ TM

uo ⇒ C′ ⊆ C ⇒ Tuc ⊆ T ′
uc ⇒ Tuc ⊆ TM

uc . Consequently, the algorithm
declares the constraint to be d-admissible. 2

In general, it may be difficult to compute the sets TM
uc and TM

uo . Then estimates T e
uc ⊆ TM

uc

and T e
uo ⊆ TM

uo can be used in the algorithm instead. In this case the algorithm only checks a
sufficient condition for d-admissibility, and so it can no longer detect constraints that are not d-
admissible. In the case of the SBPI, such estimates can be found from the structural admissibility
test of [11], stating that Lµ ≤ b is c-admissible if LDuc ≤ 0 and LDuo = 0, where Duc and Duo are
the restrictions of D to the columns of Tuc and Tuo.

Note that when it is possible and convenient to communicate in a reliable fashion with each
subsystem of a decentralized system, a centralized solution with Tuc =

⋂
i=1...n

Tuc,i and Tuo =⋂
i=1...n

Tuo,i is possible. Finally, note that in the implementation of d-admissible constraints, each

supervisor Si with i ∈ C relies on the proper operation of the other supervisors Sj with j ∈
C. By itslef, a local supervisor may not be able to implement a d-admissible constraint or its
implementation may be overrestrictive. For instance, in the example of Figure 2, the supervisor of
the first subsystem can only enforce µ1+µ3 ≤ 1 by itself by enforcing µ1 = 0. However, this solution
is overrestrictive. D-admissibility illustrates the fact that more can be achieved when supervisors
cooperate to achieve a given task, rather than when a supervisor tries on its own to achieve it (cf.
“two heads better than one” in [15]).

5 Supervision with Communication

The design technique introduced in this section uses communication to reduce the set of unob-
servable transitions Tuo,i such that, if possible, the given constraints are c-admissible with respect
to (N , Tuc, Tuo). Note that communication cannot reduce Tuo below the attainable lower bound
Tuo,L ⊆ Tuo, where Tuo,L =

⋂
i=1...n

Tuo,i. Tuc can be changed by selecting a different set C. How-

ever, it cannot be reduced below Tuc,L =
⋂

i=1...n
Tuc,i. Indeed, Tuc,L (Tuo,L) is the set of transitions

uncontrollable (unobservable) in all subsystems.
As an illustration, consider the system of Figure 2(a), this time with Tc,1 = To,1 = {t1, t2} and

Tc,2 = To,2 = {t3, t4}. In this setting the constraint µ1+µ3 ≤ 1 is cleary not d-admissible. However,
by communicating the firings of the transitions t1 and t2 to the right subsystem and of t3 and t4
to the left subsystem, the sets of locally observable transitions become T ′

o,1 = T ′
o,2 = {t1, t2, t3, t4},

the constraint becomes d-admissible, and the supervisory solution of Figure 3 can be again used.
For the general case, we have the following algorithm:
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Algorithm 5.1 Decentralized Supervisor Design

1. Is the specification admissible with respect to (N , Tuc,L, Tuo,L)? If not, transform it to be
admissible (an approach of [11] could be used).

2. Let S be the centralized SBPI supervisor enforcing the specification. Let Tc be the set of
transitions controlled by S and To the set of transitions detected by S.

3. Find a set C such that Tuc =
⋂
i∈C

Tuc,i ⊆ T \ Tc.2

4. Design the decentralized supervisor by applying Algorithm 4.2 to N and C.

5. The communication can be designed as follows: for all t ∈ To ∩ (
⋃
i∈C

Tuo,i), a subsystem j such

that t ∈ To,j transmits the firings of t to all supervisors Sk with t ∈ Tuo,k and k ∈ C.

Note the following. First, no communication arises when To ∩ (
⋃
i∈C

Tuo,i) = ∅. Second, the

algorithm does not take in account communication limitations, such as bandwidth limitations of
the communication channel. Bandwidth limitations can be considered in the approach described
in the next section. Third, in this solution communication is used only to make some locally
unobservable transitions observable; there is no remote control of locally uncontrollable transitions.
Fourth, this solution tends to require less communication than a centralized solution. Indeed, a
central supervisor not only needs to send the control decisions to the local subsystems, but also
to remotely observe all transitions in To. Fifth, the main limitation of the algorithm is that in
the case of inadmissible specifications, the transformation at the step 1 may result in constraints
that are too restrictive. If so, the alternative solution proposed in the next section can be used.
Finally, the only way the algorithm can fail is at step 1, when the specification is inadmissible and
the transformations to an admissible form fail.

Proposition 5.2 The decentralized supervisor is feasible and equally permissive to the centralized
supervisor S enforcing the specification on (N , Tuc, Tuo,L).

Proof: Since S is admissible, Tc ∩ Tuc = ∅ and To ∩ Tuo,L = ∅. Communication ensures that the
sets of locally unobservable transitions become T ′

uo,i = Tuo,i \ To. It follows that the specification
is d-admissible with respect to (N , Tuc,1, . . . Tuc,n, T ′

uo,1, . . . T
′
uo,n) and so the conclusion follows by

Theorem 4.3. 2

6 Constraint Transformations

6.1 Control without communication

In this section we propose a method for the transforamtion of constraints that are not d-admissible
to (stronger) constraints that are d-admissible. As an illustration, consider the Petri net of Fig-
ure 2(a), this time with the initial marking µ0 = [0, 3, 0, 3]T , Tc,1 = To,1 = {t1, t2}, Tc,2 = To,2 =
{t3, t4}, and the desired constraint µ1 + µ3 ≤ 2. It can be seen that there is no way to transform
µ1 + µ3 ≤ 2 to a single d-admissible constraint. However, we can transform it to two d-admissble

2At least one solution exists, C = {1 . . . n}. This can be seen from the fact that S admissible w.r.t. (N , Tuc,L, Tuo,L)
implies Tuc,L ∩ Tc = ∅, and from Tuc,L =

⋂
i=1...n

Tuc,i.
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Figure 4: Decentralized control example.

constraints: µ1 ≤ 1 and µ3 ≤ 1, where the first is d-admissible for C = {1} and the second for
C = {2}. This solution is shown in Figure 3.

In the general case, the problem can be stated as follows: Given a set of constraints Lµ ≤ b
that is not d-admissible and the subsystem clusters C1, C2, . . . Cm, find sets of constraints L1µ ≤ b1

. . . Lmµ ≤ bm d-admissible with respect to C1, C2, . . . Cm, respectively, such that

(L1µ ≤ b1 ∧ L2µ ≤ b2 ∧ . . . Lmµ ≤ bm) ⇒ Lµ ≤ b (7)

Note that unlike to the algorithm of section 5, which computes also a set C, here we have a number
of sets C1, C2, . . . Cm that are already given. For instance, if To,i ∩ To,j = ∅ for all i 6= j, then we
may take Ci = {i}, for all i. Furthermore, note that this framework includes the case when not all
constraints Liµ ≤ bi are necessary to implement Lµ ≤ b, by allowing Li = 0 and bi = 0.

The problem is more tractable if we replace (7) with the stronger condition below:[
m∑

i=1

αiLiµ ≤
m∑

i=1

αibi

]
⇒ Lµ ≤ b (8)

where αi are nonnegative scalars.3 Without loss of generality, (8) assumes that L1 . . . Lm have the
same number of rows. Again, without loss of generality, (8) can be replaced by[

m∑
i=1

Liµ ≤
m∑

i=1

bi

]
⇒ Lµ ≤ b (9)

We further simplify our problem to

L1 + L2 + . . . Lm = R1 + R2L (10)
b1 + b2 + . . . bm = R2(b + 1) − 1 (11)

for R1 with nonnegative integer elements and R2 diagonal with positive integers on the diagonal.
Note that [(R1 + R2L)µ ≤ R2(b + 1) − 1] ⇒ Lµ ≤ b has been proved in [11].

It is known that a sufficient condition for the c-admissibility of a set of constraints Lµ ≤ b is
that LDuc ≤ 0 and LDuo = 0, where Duc and Duo are the restrictions of the incidence matrix D
to the sets of uncontrollable and unobservable transitions [11]. The admissibility requirements in
our setting can then be written as

LiD
(i)
uc ≤ 0 (12)

LiD
(i)
uo = 0 (13)

3In the literature, a relaxation of a hard problem that is similar to the relaxation from (7) to (8) is the S-procedure
mentioned in [19] at page 62.
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where D
(i)
uc and D

(i)
uo are the restrictions of D to the sets T

(i)
uc =

⋂
i∈Ci

Tuc,i and T
(i)
uo =

⋃
i∈Ci

Tuo,i.

Integer programming can be used to find a feasible solution to (10–13), where the unknowns
are R1, R2, Li, and bi. In general it is difficult to find constraints or a cost function that guarantee
that the least restrictive solution is found, when a least restrictive solution exists. However, given
a finite set MI of markings of interest, it is possible to insure that the feasible space of the solution
will include the markings of MI by using the constraints:

LiM ≤ bi1T i = 1 . . . m (14)

where ≤ means that each element of LiM is less or equal to the element of the same indices in
bi1T , M is a matrix whose columns are the markings of MI , and 1T is a row vector of appropriate
dimension in which all elements are 1. The next result is an immediate consequence of our previous
considerations.

Proposition 6.1 Any sets of constraints Liµ ≤ bi satisfying (10–14) are d-admissible and
∧

i=1...n
[Liµ ≤

bi] ⇒ Lµ ≤ b.

6.2 Control with communication

This section extends the procedure of section 6.1 to the case in which communication is possible.
Here communication is used to relax the admissibility constraints (12) and (13) by reducing the
number of locally uncontrollable or unobservable transitions. However, this reduction may be
limited by various communication constraints, such as bandwidth limitations. The framework of
this section allows communication constraints to be incorporated in the design process, and can be
used to minimize communication by defining a cost function. The analysis of this section, without
being comprehensive, serves as an illustration of the fact that such problems can be approached in
this framework.

For each set Ci and transition tj, let αij be a binary variable, where αij = 1 if the firing of tj is
made known to the subsystems in Ci. Note that we have the following constraints:

∀tj ∈ Tuo,L : αij = 0 (15)

where Tuo,L =
⋂

i=1...n
Tuo,i is the set of transitions that cannot be observed anywhere in the system.

Let Bi
L and Bi

U be lower and upper bounds of LiD and A = [αij ] be the matrix of elements αij .
Given a vector v and a matrix M , let diag(v) denote the diagonal matrix of diagonal v, M(k, ·)
the k’th row of M , and M |

T
(i)
uo

the restriction of M to the transitions of T
(i)
uo (i.e. M |

T
(i)
uo

contains

the columns M(·, j) such that tj ∈ T
(i)
uo ). We require

LiD
(i)
uo ≤ [Bi

Udiag(A(i, ·))]|
T

(i)
uo

(16)

LiD
(i)
uo ≥ [Bi

Ldiag(A(i, ·))]|
T

(i)
uo

(17)

instead of LiD
(i)
uo = 0. In this way, the admissibility requirement LiD

(i)
uo = 0 is relaxed by eliminating

the constraints corresponding to the transitions of T
(i)
uo that have their firings communicated to the

subsystems of Ci.
Similarly, (12) can also be relaxed by communicating enabling decisions of supervisors. Nat-

urally, for each transition t it controls, each supervisor Si has two enabling decisions: enable
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and disable. They depend on whether all control places C of Si that are connected to t satisfy
µc(C) ≥ Ws(C, t) or not. A possible implementation is to require a supervisor announce a remote
actuator each time its enabling decision changes. Then the actuator can determine its enabling by
taking the conjunction of the decisions corresponding to all supervisors controlling it. In our set-
ting, d-admissibility implies that the supervisors within a cluster Ci have always the same enabling
decisions, and so only communication between clusters needs to be considered. Similarly to αij , we
can introduce binary variables εij describing the communication of enabling decisions pertaining
to tj. Thus, εij = 1 if a supervisor from Ci communicates its enabling decisions to tj. As in the
case of αij , we have

∀tj ∈ Tuc,L : εij = 0 (18)

for Tuc,L =
⋂

i=1...n
Tuc,i. Furthermore, if E = [εij ], (12) becomes:

LiD
(i)
uc ≤ [Bi

Udiag(E(i, ·))]|
T

(i)
uc

(19)

Communication constraints stating that certain transitions cannot be observed by communica-
tion or that certain transitions cannot be remotely controlled by communication, can be incorpo-
rated by setting coefficients αij and εij to zero. Constraints limiting the average network traffic
can be incorporated as constraints of the form:∑

i

A(i, ·)gi +
∑

i

E(i, ·)hi ≤ p (20)

where gi and hi are vectors of appropriate dimensions and p is a scalar. As an example, the elements
of gi could reflect average firing counts of the transitions over the operation of the system. Note
that (20) can be written more compactly as

Tr(AG + EH) ≤ p (21)

where G and H are the matrices of columns gi and hi, and Tr(M) denotes the trace of a matrix M .
We may also choose to minimize the amount of communication involved in the system. Then

we can formulate our problem as

min
Li,bi,A,E,R1,R2

Tr(AC + EF ) (22)

where the weight matrices C and F are given, and the minimization is subject to the constraints
(10–11), (14), (15–19), and αij , εij ∈ {0, 1}|T |. This problem can be solved using linear integer
programming.

6.3 Liveness Constraints

A difficulty of this approach is that the permissivity of the generated constraints can be hard to
control. In the worst case, the generated constraints may cause parts of the system to unavoidably
deadlock. Such a situation can be prevented by using a special kind of constraints, that we call
liveness constraints.

A liveness constraint consists of a vector x such that for all i: Lix ≤ 0. A possible way to
obtain such constraints is described next. Given a finite firing sequence σ, let xσ be a vector such
that xσ(i) is the number of occurrences of the transition ti in σ. Given the Petri net of incidence
matrix D and the constraints Lµ ≤ b, let y be a nonnegative integer vector such that Dy ≥ 0
and −LDy ≥ 0. A vector y satisfying these inequalities has the following property. If σ is a firing
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Figure 6: Petri net model of the system.

sequence such that (a) σ can be fired without violating Lµ ≤ b and (b) xσ = y, then σ can be fired
infinitely often without violating Lµ ≤ b. However, if the decentralized control algorithm generates
a constraint Liµ ≤ bi such that LiDy 6≤ 0, then any firing sequence σ having xσ = y cannot be
infinitely often fired in the closed-loop. If such a situation is undesirable, the matrices Li can be
required to satisfy Lix ≤ 0 for x = Dy. An illustration will be given in section 7.

7 Example

This section illustrates our approach on the manufacturing example from [10], shown in Figure 5.
The system consists of two machines (M1 and M2), four robots (H1 . . . H4), and four buffers of
finite capacity (B1 . . . B4). The events associated with the movement of the parts within the
system are marked with Greek letters. There are two types of parts. The manufacturing process
of the first type of parts is represented by the following sequence of events: γ1τ1π1α3τ3π3α1η1.
The manufacturing process of the second kind of parts is represented by γ2τ4π4α2τ2π2α4η2. These
processes can be represented by the Petri net of Figure 6. In the Petri net, the transitions are labeled
by the events they represent, and the places by the names of the manufacturing components. For
instance, a token in p16 indicates that M2 is idle, and a token in p8 indicates that M2 is working
on a part of type 2 that has just entered the system. Furthermore, the number of parts in a buffer
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Figure 7: Decentralized supervision.

is the marking of the place modeling the buffer; for instance, µ13 represents the number of parts in
B2 at the marking µ. The number of parts the machines M1 and M2 can process at the same time
is µ1 + µ7 + µ11 + µ15 = n1 and µ4 + µ8 + µ14 + µ16 = n2, respectively. In [10], n1 = n2 = 1.

The first supervisory requirements are that the buffers do not overflow. Assuming that the
buffers B1 and B2 share common space, the requirement can be written as:

µ3 + µ13 ≤ 2k (23)

where 2k is the maximum number of parts that can be in B1 and B2 at the same time. Similarly,
if the buffers B3 and B4 share a common space of the same capacity, the constraint is

µ6 + µ10 ≤ 2k (24)

Another requirement is that the number of completed parts of type 1 is about the same as the
number of completed parts of type 2:

v8 − v16 ≤ u (25)
v16 − v8 ≤ u (26)

where v8 and v16 denote the number of firings of t8 and t16, respectively. In [10], u = 2. Note that
constraints involving the vector v can be easily represented as marking constraints in a transformed
Petri net [7].

Following [10], the constraints (23–24) are enforced assuming that the system consists of the
subsystems: Tc,1 = {t2} and To,1 = {t2, t3, t4}, Tc,2 = {t5} and To,2 = {t5, t6, t7, t8}, Tc,3 = {t10} and
To,3 = {t10, t11, t12}, Tc,4 = {t13, t16} and To,4 = {t13, t14, t15, t16}. We take Ci = {i} for i = 1 . . . 4.
Enforcing (23–24) for k = 2 results in the control places C1, C2, C3, and C4 shown in Figure 7.
They correspond to the subsystems 1, 2, 3 and 4, respectively, and enforce µ2 +µ3 ≤ 2, µ5 +µ6 ≤ 2,
µ9 + µ10 ≤ 2, and µ12 + µ13 ≤ 2.

In order to enforce (25–26), we need communication of events. Indeed, without communication
there is no acceptable solution. For instance, a solution is to enforce µ5 + µ6 + µ7 + v8 ≤ u in
subsytem 2 and v16 ≤ u in subsystem 4. However, this implies that the manufacturing system is
constrained to produce no more than 2u parts! To force a computer implementation to generate
constraints that do not block the system, we can introduce liveness constraints. In this example,
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we can add the liveness constraints Lix ≤ 0 for x = Dy and y = [1, 1, . . . 1]T . This is to prevent
the constraints generated by the algorithm from blocking the firing sequence t1t2 . . . t16 to occur
infinitely often. However, with this liveness constraint and no communication, the problem is
infeasible. Therefore, since communication is necessary, we are interested to minimize it. Assuming
broadcast (αij = αj , εij = εj, for all i) and that the cost of remote control and remote observation
is nonzero and equal (i.e. A = E), the following is an optimal solution:

µ5 + µ6 + µ7 + v8 − v16 ≤ 2 (27)
v16 − v8 ≤ 2 (28)

which involves communicating the occurrences of t8 and t16. The constraint (27) is implemented
in the subsystem 2, and the constraint (28) in the subsystem 4. In Figure 7, the two constraints
are enforced by the control places C5 and C6.

Finally, note that in general a computer implementation may generate solutions that are too
restrictive, such as µ12 + µ13 + µ14 + v16 − v8 ≤ 2 instead of v16 − v8 ≤ 2. Then, a second integer
program can be used to improve the permissivity, by minimizing the sum of the positive coefficients
of the constraints, while requiring the other coefficients to stay less or equal to zero (the integer
program is also subject to the constraints of the previous integer program and to a constraint that
fixes the communication cost to the minimal value previously computed.)

8 Conclusions

The design of decentralized supervisors is computationally easy for the class of specifications iden-
tified as d-admissible. When communication between the local supervisors is allowed, the concept
of d-admissibility can also be used for the design of supervisors enforcing specifications that are not
d-admissible, by the identification of the events that need to be communicated. In the decentralized
settings with no communication or with restricted communication, the enforcement of specifications
that are not d-admissible can be done via linear integer programming. The integer programming
approach is suboptimal, as it may not produce the least restrictive solution, when it exists. How-
ever, it allows to design both the supervisors and their communication policy. Moreover, it can be
used to minimize the communication of the local supervisors.
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