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ABSTRACT: In this paper, optimal timing control problems for a class
of hybrid autonomous systems are studied. In particular, we focus on
problems in which a prespecified sequence of active subsystems is given
and propose an approach to find local optimal switching time instants.
The main contributinns of the paper are the derivation and compuration
of the derivatives of the cost with respect to the switching time instants,
which then facilitate the application of nonlinear optimization techniques
to locate the optimal switching time instants. The approach is then
applied to general quadratic problems for hyhrid autonomous systems
with linear subsystems and state jumps, where it is shown that the special
structure of such problems can lead to reduced computational effort.
Exaraples illustrate the results,
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1 INTRODUCTION

A hybrid system is a dynamic system that involves hoth continuous and discrete
event dvnamics. The snbaystem continuous dynamics are usually described by differ-
ential/difference equations and the discrete event dynamics are described by switch-
ing laws. Discontinuous jumps of continuous states may occur when the system
switches from one subsystem to another. Examples of hybrid systems can he found
in chemical processes, automotive systems, and electrical circuit systems.

Recently, optimal control probiems for hybrid systems have attracted researchers
from science and engineering disciplines. Many theoretical results which extend the
classical maximum principle and/or the dynamic pragramming to such problems
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have appeared (see, ez, {3, 4, 14, 16. 17, 18, 20, 23]). On the other hand, many
campwiacional methods have been propused for finding numerical solutions to vari-
ous subiclasses of such problems {see, e.g.. [1,6. 7.8, 9. 10, 11, 19. 21, 2]}, A survey
on computational mechods can be found in (23],

As indicated in (23], most of che currently available computational methods de-
mand significant amount of computation, or can only find approximations to local
optimal solutions, even when a prespecified sequence of active subsystems is given.
Tt this paper, we focus nn optimal control problems for a class of hybrid systems
in which each subsystem is autonemons (i.e., with no continuous input) and state
Jumps are present at the switching instants. Such problems arise naturally in the
context of multimodal conrol, logic-based control systems {13}, and impulsive con-
trol of discrete-continuous systems (12). Given a prespecified sequence of active
subsystems, we develop a very elective approach to find accurate numerical values
of lncal optimal switching time instanes. The approach is an extension of the results
in [21] to such hybrid systems. Moreover, by taking advantage of autonomous sub-
systems. the approach only demands reasonable amount of computation and can
olitain accurate derivative values as opposed t0 appreximations in [21]. We note
that the cost is actually a function of the switching time instants for such proh-
lems and use constrained nonlinear optimization techniques to locate the optimal
switching time instants. To apply nonlinear optimization techniques, we first need
o determine the values of the derivatives of the cost with respect to the switching
instants. The main contributions of the paper are the derivation of the expressions
of the derivatives and the computation of accurate values of these derivatives. Then
the approach is applied to general quadratic problems for hybrid autonomous sys-
tems with linear subsystems and state jumps. The computation of the derivatives
ean [urther be simplified by utilizing the special structure of such prablems.

It is worth noting that most of the available literatura results on numerical
sotutions of hyhrid systems optimal control problems are for discrete-time hybrid
systems (e.g., (1, 10, 1)), or hased an the discretizations of time and/or state spaces
{e.g., [9, 19]). However, the discretization approaches may lead to combinatoric ex-
plosion and the solutions obtained may ot be accurate enough. Unlike these results,
the probiems we consider in this paper are for cantinuous-time systems and the ap-
proach liere is not basad on discretization: hence our approach can provide us with
accurate values of local minima. The closest literature results to our paper, as far
as we are aware of. are |6, 7) which present closed-ioop solutions to a special class
of problems, i.e.. infinite horizon problems for switched linear autonomous systems.
Hawever, our approach can deal with fnite horizan problems with nonlinear sub-
systems, and with costs which are not necessarily quadraric, as opposed to infinite
horizon problems with linear subsystems and quadratic costs in [6. 7]. In view of
the above, we helieve our results are new and contribute to the understanding and
the solution of aptimal control problems of hybrid svstems.

The structure of the paper is as follows, [n Section 2, we formulate the aptimal
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control problem and propose an algorithm for sobving it. In Section 2. derailed

derivations are presented to show how to abrain the expressions of rhe derivatives. Tn
Secrion 4, the computation of some paramerers for the evaluation of the devivatives
15 addressed. In Section 5. these results are applied to general quadratic problems
for hyhrid antonomous systems with linear subsystems and state jumps, Exanples
are given in Section 6. Section 7 concludes rhe paper. Onr eardier resutets of the
research in this paper can be found in [22, 23].

2 PROBLEM FORMULATION

in this paper, we consider a class of hybrid autonomous systems which are detiner)
as follows. The hybrid system consists of autonomous subsystems (i.e., without
coutinuous input)

t=flz), fi: R =R 1el={1,2-- M} (1)

and whenever the system dynamics switches from subsystem 1 to subsystem [T
a discontinuous jump of the state z will occur, which are described by a function

3(t) = 7 (2() (2)

where 2(t{} and z(t;) are the righthand limit and lefthand limit of the state £ at
switching time instant ti, respectively.

For such a hybrid system, one can control its state trajectory evolution by
choosing appropriate switching sequences. Here a sunfching sequence o in [tq, by s
defined as

T = ((th iﬂ),(!.,i]).“' '(th'r”\‘))! (3)
with0 S K <o, g€t S-St Sty andig € L k=0,1,-- . K. 7 indicates
that the system switches to subsystem i; at time instant ty.

Assumption 1 Jn the following, we assume without loss of yenemlily that a pre-
specified sequence of active subsystem is given as (1,2,--- K, K +1), i.e., subsystem
k is active in {te_y, ti) (subsystem K + 1 in [tx, 4/]). a

Remark 1 Given any prespecified sequence of active subsystems, we can always
make it satisfy Assumption 1 hy relaheling the subsystem indices and even expanding
the collection of subsystems (1.e., two subsystems may actually refer to the same
actual subsystem). Under this assumption, we can simply denote the state jump
function at the k-th switching as 4*. G

We consider the following optimal control prablem
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Problem 1 (Optimal Control Problem) Consider a hybrid sutonomons systemn
unih siate jumps. which consisis of subsystems fi(z). i € I. Assume that a pre-
specified sequence of active subsystems {1,2,--. I, K = 1) is given. Find optwmal
aurfeang wstants 0, ety S < - Sty < tr) such that the corresponding
conlinows stafe trajectory & departs from a gquen inifial state £lty) = 1y and the
rost

vty iy
o) = walen) + [ L) a3 vt 5ie0) ()
o k=t
w minimazed. Here tg,t; are given. a

Problem 1 15 an optimal control problem in Bolza form with terminal cost w,
running cost f,7 L dt. and switching cost #%'s. In general, v* depends on the state
Just prior to switching and the state right after switching, i.e., % = w*(2(t5), z(¢))).
Hawever, in che deterministic setting of this paper, z{ty ) 15 related to =2} by (2).
By substituting (2} mto the expression of ¥*, we can again reduce ¥* to be only
dependent an z(f7).

Assumption 2 In the sequel, we assume that f; s are confinnowsly differentiable;
w, L. w*'s, and v*'s are twice continuously differentiable. a

Remark 2 Due to the smoothness assumptions for f;’s, L, w, w*’s, and +*'s, we can
observe that a small disturbance of (t;,- - - , t;c) will only cause a small disturbance of
the ./ value. Furthermore. it is not difficult to show that the cost J is a continuously
differentiable function in (¢, , 1x). o

2.1 An Algorithm
Note that Problem 1 is actually a constrained multivariable optimization problem
mini f(%-) (r)
subject tot € T ?

'y -
when? T =t ={tite tx)Tltg €6, S o £ -+ € tx < t;). The following
algorithm can be adopted to salve such a nonlinear aptimization problem.

Algorithm 1

(1). Set the iteration index j = 0. Choose an initial &,

{2). Find J(), Z(#) and ZL(#).

(3). Use some first-order or second-order feasible direction methaod (e.g., the gra-
:;l.ient projection method or the constrained Newton's method [2]) to update
t to be 7 =7 - odi? (hera dif = —(%;.%(Ej))_l (%‘{»(fj))q‘ and the stepsize
o can be chosen using, e.g., the Armijo's rule [2]). Set the iteration index
J=i+1L
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(4). Repeat steps {2), (3} and (4). until a prespecified rerminacion condition s
satisfied (e.g I]%‘}(ff';“-; < ¢ where ¢ is a given smali number). o

In order to apply the above algorithm, one needs to fud the valies of the

s A 2 Pyt " £ i
derivatives 2% and 24 (step (2)). Let us elaborate more on step {21 1 the xequel.

3 DIFFERENTIATIONS OF THE COST FUNCTION

Tn this section, we propase an approach based on the direct differentiations of the

cost function to find the values of the derivatives 21 and Zf. This is extends the

results in [21].
Assume that we have a nominal £ = (¢),- -, tx}7 and the corresponding nominal
state trajectory z(t). For such nominal values, the cost is

" t; oty K B
S tx) = w(r(af)pj L(z) dt+f+ L(z) cn+.-_j+ Liz) it e (2(6)).
u [N 'R =1
{6
Since 7o and to are given in Problem 1, .J will not be a function of them. Next we
define the value function at the k-th switching instant to he

L ! L
JE(z(]) b - o b 2 u‘-(x(t,))+/ Liz) dt+ -+ ’ L{z) dt+ Z w (#(t])).
Y e fred)
M

Note that, unlike JJ, J¥ for k = 1,--- , K will be a function of & and of 't.}w initial
state (]} which depends on the trajectory before i Also note that J& does not
have a switching cost and is

. ]
TE(2(tp), tx) 2 wlaitn) + /+ Lz) dt. (8)
th
The relationship hetween .J* and J**! is

Ii_»i-i L -
Tl by b} = f L{z) dt + v (z(tr, )) + P ) b - L)
e
{9)
for k = 1,2,..., K = L. In order to make our presentation clear. in the seeptel, we
denote ?5- for the function J* as a row vector J7, #4r as an n x n matrix Jy; and

S0 On.

3.1 Single Switching -
Let us first consider the case of a single switching. Given a nominal ¢; and the corre-
sponding nominal state trajectary z{t}, we denate by £(t) che state trajectory after
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# vanaoon di, has taken place. In the sequel, we adopt the following motational
conventinn. We write f and f, with a superseript 1~ (resp. 1<) whenever the
eorresponding active vector field at £, — (resp. ti+} is used for evatuation at £(¢])
(vesp. x{t])). Examples of this convention are f'~ ':" A=), £ e Fa(z(eT))s

- & L(z(e)), fim = 2a(z(t7)) Also, we simply write a function’s name

with a superscript 1— (resp. 1-:-'I whenever the corresponding function is evaluated

av z{tT) (resp. z{t7)). Examples are I“" 2 ()t ) Jir 2 2 (z(e7). 1),

L7 5 L(z(t)), L7 £ L(z(sf)), Li- & -(;(: 1), w'= & w(z(eD)), - - (be care

ful to distinguish the values J'+, l“‘ Li=, Ly, from the functions .J' (z(¢]), 1),

J(=(e), 0, Liz), La(z),-- ). We also qlmpiv denote the lefthand (resp. right-

hand} limit of (¢, + d#,) as ¢, + dt; {resp. t, + dt}) instead of the longer notation
= dty)— (resp. (& + dt;)+).

Now consider J{¢,) which can be expressed as

i
Hu) = [Liz) dt+ 9 (z(t7)) +  (ale), 1) (10)
ty
For a small variation dt; of ¢;, we have

J(t +dt1)=[h+q Lz} dt + 9! (2(t, + di])} + S {E(t + d2), 8, +dt,). (11)

There are three terms in (11). Lec us consider the second nrder Tavlor expansion
of each tprm In the following derivations we denote dz({t]} = I(t; +dt7) — z{i])
and dz{f) = z(tl diT) — z(¢).

Consider the first term _[;t""di L(z2) dt in (11}, if dt; > 0, we have

wdy +de] £ -dey
j L(3) dt = / Lz) dt + f L(3) dt
™ f

= [ L(I‘) dt + Ll—dt] -+ 1 Edf.lL.‘l.-dI(tl_) + H.O.T. (12)

where H.O.T, stands for Higher Order Terms. Note that in deriving (11), we have
used the relationship 2(t7) = z(¢7). If dt, < 0, we have

€™ 1+df”
f L(3) dt = j[,(::)dt-‘-[ L(z) dt

= L@y dt e dt + 540 LY dz(t]) ~HOT. (13)
ty

which has the same expression as (12) although the derivation is slightly different.

T B 0 Ty ——— L Sy T T e e Ak

Lok
L4
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For the second term in (L1}, we have
wH{a(t v de])) = wl(z(e]) = delt]))
= w'Teeltdr(i) - —(d:::(t Woelzde(tT) = HO.T. (14)

For the third term in (L1}, we have the second order expansion
JHE(G = dE), b+ dey) = T z(e]) = de(e]) 8 + dty)
= JTda(e]) = Syt 5 (de () I el + 3
+dt|J}Tdz(t]) + HO.T. {15)
In order to express (11) into second order expansions with respect to dt, we

need to find the second order expansions of dz(]) and dz(¢]) in terms of dt,. Firsr
note that

dz(t7) £ #(t, + dty) = =(t7) = f7dty - %f,“f"dtf + u{dt}). {16)

Note that in (16), o{dt}) refers to a column vector with each element heing o(dt?).
We will not explicitly mention this later in the paper since it will he clear from the
context. Next we have

dz(tt) £ i) +di]) - z(t}) = (&t + dt])) = ' (=(t]))

(u(tr))rwam)

:—dﬂ:(t;) -+ E + H.O.T. (17)
T P

where 'Y(lj) refers to the j-th element of the vector-valued function 4!, Note that

1

(dx(h'))rﬁl“—(‘;@)—dz(r) - (f'- )Ta nn(ﬂn)
: Firdti = o(dt)). (18)

]

{dz(e} ))T&Eﬂd () | (fx—)r"“n'-.;gﬂﬂ)

If we define
(fj r" "’m(‘"ﬂ
g-2 : (19)
(- )T" The )(’(”)
and substitute {18) into (17), we nbtam -
d2(7) = 91 S d + ool S €17) 17 d + ofd) (20)

b stk T
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Substituting (1G) and (20} into (12), (14} and (15} and summing them, we
ahtain

J{ty + dty)
1 1
= J(t)+ Lidt, - §dr:ll,“dz(a.‘} +oitdg(ty) = —(d:n(t' Yowlsdz(es)
I dr{tf) + It dy + (d;(t NI de(th) + J,';, dt?
—d"l ]leI(tr) +H.OT.

hr

= I(a:)—(L“+ Wy 17 = I+ )t
(L f S [ (Tl P I i 2 €
=YY I £ + I + 2I05E 117 Y dtd + ofde})

e

1
Jer) = Sty + oy, dt} + o(dt]) (21)

Now lat us consider J!(z(¢1),¢1) which is the value function for the given nom-
inal z{(t]) and t;. The Following dynamic programming equation holds for it

N R A AL A (22)

Note that (22) can be derived similarly to the HID equation. However, the
difference between it and the HJDB equation is that (22) holds for any trajectory
that is not necessarily optimal (for more details see [3)).

By differentiating (22), we obtain

Jes = (VI - S - L {23)
dty = LA = (TR S (A S L (24)

Suhstituting these into (21) we have

Jt, - Ll- __LI+ _,_wl—fl- +Jl+('Y_-:—fl- _fH-) (25)
ooy = (L7 = LV +wlm f e+ ()T el £
TR T €T = FEV T - (TR R NG - P
(T = T f" 1 {26)

3.2 Two or More Switchings

In order to construct a second-order optimization algorithm for hybrid systems with
two or more switchings, we need more information to derive the derivatives of J
with respect to the t,'s. Let us first consider the case of two switchings, Assume
that a system switches from suhsystem 1 to 2 at ¢, and from subsystem 2 to 3 at ¢»

s i

e s s
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[to £t £t < its). The cost then is

ity ta) = [ Lix! dt—w'(z{t])) = Sz ) b ta) {271

oty

1t .
=/L(z'| dt +ut (2{t7)) + Lizy dt = v {z(ez)) = (e 0 128)

t'l

Using (27). by holding ty fixed, J,,, J,;, can be derived simiarly ro that in
Section 3.1. On the other hand. if ¢| is held fixed, the first two rerms in {28) will
not contribute to the coefficients Jy,. S, Jiy, Ji, can then be derived using the
expansion of the last thres terms in (28) with respect to dé similarly o that n
Section 3.1. However, we need additional information to derive doa,. Arguments
from the calculus of variations will be used in the following to derive it. Let us first
define the important notion of incremental change which will he used in the saquel.

Definition 1 (Incremental Change) Given any vanations dt, end dto. we define
dx(e), min{t]. ¢y + dtT} <t < max{ts. ta+dt;} to be the incremental change of the
state due to dbty and diy. In deteil. 1f1s defined as follows (see fiqure 1)},

PR Sy ad &ﬂ(‘t?slm.wrg ¥ Syt

AR ‘\Q"ﬁ_——f“ : G Ty RO Ty
S

7\1!_1_",_,'.‘-' \‘ 0] at
- 2 \m

e U \

1 1 1 ! 1 + 1 {

Illl'bdll l:l!fdll llll!d(l !delzl:

6 At At )

{ap dt 20.dt30 (). df 30, dt <0

¥ .W

8t “"_) \\._ ity At uit)

b
2 t Yo ____'_'__
ee— A zru T—
S— (] \-___
Lt [
Lpedt oy Py tgrdi, fedt o0y tobdt, 1,

le}. d1,< 0, de 2 0 (dr. dt <Ot S

Figure 1: The incremental change dz(t) for {&). dt; > 0. dta 2 00 (). dy > 0,
dtg < 0,' (C). dt] < U, dt‘_! _>_ 0; (d) dt; < 0. dt'.) <.

Case 1: d2) > 0,dt: > 0 (see figure 1{a})}
In this case. dz(t) is defined io be

{t) — z(2), t € {t, ~dt], ::i
dr(ty = ¢ w(t)—z(t). tejtl ¢, ~di]] {20}
Z(t) — 5y {t). t & [ta . Lo + diT]
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where y;(t] s the solution of

i) = falwl)), t €], 4 +dif]
wity — dif) = I{t +dt7)
und () 15 the solution of

{ 4(t) = f2(=2(8)), ¢ & ftg, 2 + dt5]
2{3) = =ty ).

Case 2: dt) 2 0,diy <0 (ses figure 1(b))
In this case, dz(t) is defined to be

E(e) — z{t), t € [t + dtf, 80— dig]

dz{t) = § wale} —z(t), t € 47,81 —dt7)
z(t) = (1), t € [t2 +dts, 3]

where yo(¢) is the solution of

{ in(t) = fa((e)), t € [t], 01 + dt])
wolty + dt7) = 2(t, + dt7)

and z(t} is the solution of
5(t) = f2(2(D)), t € [ta + dt5, t5]
52(!',2 e dt;) = i‘(tg - dtg_)
Case 3: dt; < 0.dty > 0 (see figure 1{c))
In this case, dx(t) is defined to be
i(t) = I(t), te [tf'-‘z_l
dz(t) =

) —wsfe), te [t +dt], 8]
E(2) — zu(t), t € [ty t2 + diz]

where yy(t) 15 the solution of

{ l(t) = fo(ws(0), ¢ € [t +dt],¢f]
n(t) = z(t])
und z;(t} is the solution of

{ &{t) = fo(z3(0)), t € [ta, ta + di7]
z3(t7) = z{t7).

Case 4: di, < 0,dty < fsee figure 1{d})
In thas case, dz(t) s defined to be
Bty —x(t), tE[t] 12 +dt]]
az(t) = ¢ E(t) — ya(t), t € [ty + di], 1]}
() — z(8), t € [ta +di7, t5]

{30)

(31)

(32)

(33)

(34)

(35)

{36)

(37}

(38)
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where y4(t) 15 the solution of
{ !31(3)_ = fe(y|(i)). t €ty = dt] b)) (39
wlel) = z(e])
and z,{t) 15 the solution of
--;1(:) = f'-‘(zi(t))v te (t'-’ —dt-;,t_:_] (40)
zy(tr ~ dit3) = (b + dt5).
u}

Remark 3 Note that 6z(t) defines the difference hetween {t) and 2{¢) in the
time interval where subsystem 2 is active. Moreover, by extending the trajecto-
ries £ and z under the dynamics of subsystem 2 to the time interval [min{s), ¢, -
dtf }, max{is, t2 + dt; }| in which at least one of 2(¢) and z(t) evalves along subsys-
tem 2, dx(t) even detines the difference for this interval. D

[n the followings, the expressions of dz(t7 ), dz(ty), and dx(tT) are derived.

Lemma 1 The ezpressions of 0z(t;) and dz(ty + dt7) are as follows

éz{ty) = A3, e7) (v f7 - F)de +ofdty), {(41)
dz(te +dtz} = A(ts,tD){vi™F'" = fN)dt + FI A, t) (v 1 = Fi7)deydty
+{terms in dt¥, di2 and H.0.7"), (42}

where Aty ,tT) is the state transition matriz for the yariational equation
af'x (I(t))
1(t) = ———=ylt 43
g0 = 2y (43)
Jor y(th e € [tf,t5); in (43), T is the current nominal state.

Proof: See Appendix. m}

In fact, from the proof of Lemma 1 {see Appendix), we can ohserve thar
0z(t) = Aft, e )dz(er) + (H.O.T. in 62(s7)) = AlL, t7)6z(:7) + ofdt)) for any t €
[min{t}, ¢ + diT}, max{ts, ts + dt5})]. The following important principle can be
obtained directly from this observation. We refer to it as the forward deconpling
principle. It reveals some intrinsic relationship among different switching instants.
The Forward Decoupling Principle:

{a). The value of the incremental change 3z(t]) at ¢ does not depend on dta.

o

T g



s
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{hi. The value of the incrementai change dz{t;) at ¢; does depend on dt,. u

The forward decoupling principle tells us that a variation of an earlier switching
instant will affect the value of the incremental change at a later switching instant,
but 10t vice versa,

Lemma 2 The ezpressions of dz{ty) (re., Z(te + dt7) — z(t7}) and dz{il) (ie.,
E(ty — dis) — 2(t7)) are

dz(er) = Aty ) v F17 — 170ty = FEAQS 65 F T ~ F)dndts

< f2dty — (terms 1n de, dt2 and H.O.T.), (44)
Ax(ty) = v AT (v - P+ (T S )AL )
—_,-"”)dt,dt«_, + 427 fUdty + (terms in di, 02 and H.0.T)) (45)

where £27 13 defined simtlarly lo £'- in (19) ns

(e )
&2 : (46)
(f2- )T" "’(-:1(:(‘2'))

unth 7, referring to the j-th element of the wector-valued function ~*,

§EH

Proof: See Appendix. ()

Remark 4 It is very important to point out that in the expressions of dz(t;) and
d.r(L."] we deliberately express the terms f7~A(87,¢7)vL™ f1= ~ f1*)di dts and
(2273 =&)AL 7))y~ £ — F')dtdts explicitly because they will contribute
to cthe coefficient of dt|dt,. a

Now that we have the expressions for 6z(t7), dz(t; + dt7), dz(t7), and dz(ef),
we are ready to derive the coefficient for dt,dt: in the expansion of

)+t
J{ty — dty.ta + ditp) =/ L(#()) dt+ v (2(t, + dtT))

27

2 dty
+ / . L{Z(t)} dt + u(£(t2 + dt;)) + T2 (2(ta + ditT), s + db,). (47)
g

There are five terms in (47). Let us look at each term’s Tavlor expansion in
order to find its contribution to the coeHicient of di,dt,.

By using the forward decoupling principle, we can conclude that none of dz{t7),
Sz(¢7). dz(t]), and dz{t]) will depend on dt;. Consequently the Taylor expansion
of the first two terms will not have terms in dt,, di} and dt,dts. Therefore the first
two terms will not contribute to the coefficient of dt dt..

For the third term in (47), we have the following Lemma.
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Lemma 3 The contribution off ;d: L(%) dt to the coefficient of dit,dl, i«

LEAfy 47k - ). {48

]

Proof: See Appendix.

The fourth term in (47} ean be axpanded as

v (z(ty) + dz(t3))
= " +uidz(t;) + %(du:(t._,‘))rwg;dx(c.;_‘. +HOT (40

o (3(ty + dit;))

Therefore the contribution to the coefficient of di,dt, by the fourth term is
(Wi £+ (V) Al e (w f 7 = 1) (50)

For the fifth term in (47). similar to the single switching case, we can obtain its
Tavlor expansion as

P&(ta +dtF), 12 + dta) = J2 + J2dz(ed) + J2 dty + —(d:r(t )T du(e})

+ ST e+ dy JPdz(]) + HOT. (31}

2 tzly

In (51), the terms that will possibly contribute to the coefficient of dt,dts are those
containing dz(t7). They are

Jrdx(eh), (d::(t.,)) LHdz(ed), dtaJlLdz(ty). (52)

Substituting the expression of dz(#7) into (52} and summing them, we nbtain the
contribution of the fifth term to the coefficient of dt,dts as

(L + &)+ ()T (3 T2 + YAl ) (0 17 = £17). (53)

Summing (48), (50), and (53) and also substituting into the sum the expression
of JX; which can be obtained similarly to the expression of Ji%in (23), we conclude
that the coefficient of dt;dty (i.e., Jy o in the expansion of S{ty + dt,. ts + dty) is

Ty 2

Jue = (L +ul £+ (P + I G 7+ €N+ (P (3) T 027
+Ia T )f"i(tzJ?”)('rz ==

(L'.‘- — L‘.!+ a- - ,a—fz- + (f?-)TU;; . }2+(~3-f;’- - E‘Z f2- -)
+i f f’*)’l“wi JA( )0 f17 = £, (54)

I

Remark 5 The above results still holds even when #, = t» {we can consider ¢2 > ¢,
first and then let ¢t; — ¢y to prove this). (]

T T T W
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The ahove result can also be similarly extended 1o the case of K switchings to
relate dz(¢]), doi] | w dt and db, [k < [}. The expression for J, can similarly
e abrained. We summarize and extend the results obtained in this section by the
following thearem.

Theorem 1 The cost J in Problem | satisfies
J(ty = dty, &y + dta, -+ b+ dig)

K K
L a
= 'l{tl: g, -, f.h‘) - Z ']!adti‘ + 5 Z ']t.ﬁzkdti' + Z J‘klldtkdtf
= k=i

1Shatg
+(higher order ferms) {55)

where

Jio = LT = LF bR o (R R - R, (56)
de = (LF = LTV o fE 5+ (P Y
FIET I 68 = VP - (TR LAY (A~
g = PV IS (R - ), (57)
Jorany k=1,--- K, and
dogy = (LT = Ll 2ol flo 5 (P, S w6 = i)
o f = PTIE)EET, §)0 P - ), (58)
forany | <k <! £ K. Here H(t] ,t]) is the stale transition matriz under state
Jumps

Htr, 67) = Al el WS Al t) oo 07 AL L 8)) (59)

where A(t] |, 1]). k £ j £ 1= 1 is the state transition matric for the lime mierval
(t7.t7,,] for the variational equation

fﬁ—l( (t))

W) = y(t). (60)
Also here
(f"‘)T—’—(’“‘ )
&= : ck=1 K, (61)
{fk )T nl ("('E })
unth 'y{‘j) referring to the j-th element of the vector-valued junction ¥*. m]

4
-~
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Remark 6 [n general in the interval [57, ¢}, there will be discontinuous juiaps and
they must he taken into consideration when we consider the incremental change
diz) in this interval, hence H{t,t7) appears in (58) (instead of Al 7)) b we
follow the similar derivations as in the two switchings case. [n the spectal tase when
f=k+1, Ht;,t]) is reduced to Afer, . 7). i

4 COMPUTATION OF H(t,t]), J, AND J%-

It should be pointed out that in Thearem 1, in arder to compute J, ., ., and Jes
we need 1o know the values of H (], 7}, /5 and /57, However, given nominal ¢
and x, these values are not readily available. [n general, numerical methods need ta
be used to compute their values. An efficient numerical method based on solving ad-
ditional initial value ordinary differential equations {(ODEs) with jumps is developed
in this section.

First note that if { = k + 1 then H(¢7,t7) is equal to A{t;, . t}), which is the
state transition matrix for

. s (z(2) .
7 = —**i;i—)y(n) (62)
To find its value, we can first find the solution y!*{t),--- y™)(t) corresponding to
initial conditions
'y“)(t:) =g, -, y(")(t;") =e, (03)

respectively, where e; is the unit column vector with all 0's except that the j-th
element being 1, j = 1,2,--- ,n. From linear systems theory, A(ty, . t7), is equal
to the square matrix whose j-th column is y¥(¢_,), i.e., in this case

H(t,',t;') = A(EEH""I:) = [ym“;-e-l)’ o ,y(")(tiﬂ)]- {54)

Now if { > k, a similar method can be adopted to compute H{t],¢}). Instead of
solving initial value ODEs for y9)s, 447} (t}'s are now obtained hy solve the following
ODEs with jumps with initial conditions (63).

{ wle) = M‘—“D- y(t), for £ <t < ¢5, (65)
y(tf) =" v(t)k<J<l .

We then bave
H{t7 68) = V) y™E) (66)

To obtain the value of .J%, note that

K Lt K
F2(E) e 1 28) =w(3c(:,r))+zf+ L{z(®)) dt= > w'(z{t])). (67)
1=k !J

j=krl
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Nore that. for simpliciry of notation. we regard i; as {10 (G7).

[f 2¢)) has a variation dz(ty), then
Sl = 0z(e] )t L tg)
= w(elty) = H(t;, t])dz(t]) + HO.T.) + Z/ L{z(ty = H(t. t])dz(ty)
~H.O.T) dt + Z v (z(t7) ~ H
k<l

= J(E(td ) te o ) = (u,( (L) Hity, e,,)-a-Zf (8} H (L &)

(¢ 45 )z(tf} -~ H.O.T.)

K
+ 3 v (z(c;))H(t;,:;))az(s,j) +H.O0.T. (68)

=kl

Hence

JE _1,(::(:,))H(t,,z,=)--z'[ L. (z(t))H(t.tf) dt- Z W27 HE 8.

i=r =k

{69)

If we apply the similar procedure by varying z(¢) as in {68) to J* (z(t{). tk, - -+ . tx),
we can obtain

JE o= HT(t 5 (s (:,))H(t,,t;')+2/ HT(t, 6] ) Lao (z()) H{t, t]) dt

i=k

+ Z HT (5 eyl (z())) H (8 ). (70)

J=kel

From the ahove discussions, we find that H(t],¢F) can be obtained by solving
ODEs with jumps (65) along with initial conditions (63). H{t;, t]} can be obtained
in the same fashion. J¥* and J57 are in the forms (69) and {70) which can he easily
rewritten as ODEs with jumps. By solving the following initial value ODEs with
Jumps from &7 to ¢; (along with the hybrid system ODEs with jumps which provides
us with the state trajectory)

B, ) MHU t), tF <<t (1)
H(eF . 0) = H{e.

= Lo (z(t)} H{t, t]), t" SLL L,
{ ) =)+ e A (72}
{ o= HT (L6 ) Lee (2(E) H{E D), 5 St <87, (73)
172(‘]') = Th(t,- )+ HTU_ tk )Ug'z (I(t ))H(t_; vt:)\
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along with initial eanditions (63) and

’fl{z'-') = Ulzul- {T")
77’_‘(5&-) = Oru‘n- (T‘)}
we can find the value of H{t,t7) and can ohtain the values of J5=, J57 from
JET = el Hitn ) = e, (76)
A= (v (2(t))) H b, 7} = mity). (77

Remark 7 (Computational Cost) All other terms in (56)-(58) except for A7 67
JE* and JEF are readily available once the nominal trajectory r(t} is known. There-
fore the main computational cnst for Jy, Ji,1,. Ji 4 0ccurs in the computation of
H(t7, t5), J5 and J%7. The above method we propose reduces the computation
of H(t7,t7) to solving initial value ODEs with jumps {63} for any & < { and the
cnmputatinn of J** and .J¥7 to solving initial value ODEs with jumps {71)-(73) for
k=1,2---,K. Hence we altogether nerd to solve UK . p = BIEZD sars of
initial value ODE: with jumps. With today’s pn“Frflll ODE solvers (Pg odedS
functinn in MATLAR), these equations can be solved efficiently and accuratelv. For
our purpose of efficient aptimization of open-loop solutions of aptimal switching
instants, such computation suffices. Moreover, {or general quadratic problems for
switched autonomous linear systems which we will elabarate an in the next section,
the computational costs of these values can he reduced greatly. a

5 GENERAL QUADRATIC PROBLEMS FOR HYBRID
AUTONOMOUS SYSTEMS WITH LINEAR SUBSYSTEMS AND
STATE JUMPS

In this section, we apply the approach develnped in Section 3 to a special class of
problems, namely, general quadratic problems for hybrid autonnmous systems with
linear subsystems and linear state jumps. In particular, we show that due ro the
special structure of the problem, the computation of H(t, ,t;), .I,j'* and .IL*‘ can
further be simplified.

FProblem 2 Consider a hybrid autonomous system wnth linear subsystems T =
Az,t € f. Assume a prespecified sequence of active subsystems (1.2,--- K A +1)
is given. Also assume that when the system swilches from subsysiem k to k + 1
(k=1,--+,K), there is a discontinuous jump of the conlinuous state which has the

linear relationship .
o(t7) = ¥ (2(ty)) = Oualty) = T (78)
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where O [ are mainees of appropriate dimenswns. Find optimal suntching -

stands £, g (te £ 00 € - € by € by) such that the cost in general quadradic
form
1 K
e tg) = w(z() —’-] L{z) dt + Zw"(:(t;)) (79)
L k=1
where
u(z(t;)) = %(x(tf)) Qrzity) + Myz(ts) + Wy, (80)
Lz) = %(I(t)) Qr{t) + Mz{t) + W, (81)
) = 30 Qualiy) + Maz(er) + Wi, (82)

18 mimimized. Here ty, t; and x(t) = 7y are given; Qp, My, W, Q, M, IV are matri-
ces of appropriate dimensions with Q; 2 0, Q 2 0. Qu, My, Wi, (k=1,--- K}, are
matnces of appropriate dimensions which form the quadratic terms for the switching
casts from subsystem k to k+ 1 and Q. > 0. m]

In view of the special structure of Problem 2, we can readily observe that

Alte, -t} = etrrilfani=) (83)
forany k= 1,---, K. Moreover,
H(t‘-, t:) = eAl(fl—lr—uiﬂfi‘—l)—eAa-:(‘l—n o2 g... A},;ki-l)-ertu.ttm—t.)
= e-"l(‘l—‘l-l)el_leo“ll—a('l-l “le1) g ... g ek‘]_le"‘b-l-lui-&l_‘l)_ (84)

The computation of J5* and J5F is discussed next. Assume a nominal £ is
given. If for any & € R" and any ¢ € [to, t;] we denote by J(z,t) the cost incurred
if the sysiem starts from the state z at time instant ¢ and evnlves according to the
partion of the switching sequence generated by £ in [¢, t;]. In other words,

Tz 1) = w(zity) + / L) e S W) ()
¢ & with refne)

where z(t) = . Dynamic programming approach similar to (22) can be applied to
J(z,t) to obtain

J(z,6) = %ITP(t):r +S(0)z +T(t) (36)

where P(t) = PT{t} and P(t), 5(t), T(t) obey the following differential equations
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with jumps

-P= A+ WFP=Qutr £, §7)
P(e]) = B P(e] )6 -2 o
~§=S4; + M <<t o
{5(‘}}= [T P(7)8, + S(t])8, ;- ‘*f_-, (3
~T=W <t :
{ () = 4T ?P( S0 L s, - 1) (39)
along with initial conditions
Plty) = Qp, (v0)
S(tf) = ."f[f, (91}
T(e;) = Wy (92)
From the definitions of the functions .J and J¥, if { is fixed, we have

Jk('t(t:)v tkv" " .t.‘\‘) = j(z(t:}it:)' (03)
]:(I(t:),h-,‘ o 'LI\') = ],(J:(t;),f.,’:). (9‘4)
STt ) b o tw) = e (3(D).8]). (05}

Therefore the values of J£* and J5* can be obtained as
K= L), 6) = (@6) P - S, (96)
T = Ja(a(eh) ) = P(e)). (97)

Remark 8 (Computational Cost) The computation of H(t;, {7)'s using (84) is
straightforward and do not resort to an ODE solver. The computation of J£* and
JET using (96) and (97) relies on the values of P(t])'s and S(t1)'s which are easy
to obtain by solving the initial value ODEs with jumps {87)-(92) backward in time
only once. Therefore, the computational cost for Problem 2 is greatly reduced as
opposed to the general case in Section 4. (m]

68 EXAMPLES

In this section, we present two examples to illustrate the etfectiveness of the approach
developed in this paper. The examples are computed using MATLAD implementa-
tion of aur approach. Our approach and implementation can solve these examples
very efficiently.




o
(3
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Example 1 Consider a hvbrid autnoomaus system consisting of

i =z, +0.5sinz; (98)

subsystem 1:
= -0.5c08z; ~ 1y

;= 0.3sinz; + 0.5z,
subsystem 2:
subsystem { is = —0.52) +0.3¢08 75 (99)
SR i
Ty = -z, ~0.5cosz, (100)

subsystemn 3: . 2
T2 =0.5s8inr + I,

Assume that ¢y = 0, t; = 3 and the system switches at ¢ = t, from subsvstem 1 to 2
and at { = ¢y from subsystem 2 to 3 (0 < ¢, < i» € 3). Also assume that the system
has the state jump
o {tT) = zy(t]) + 0.2
+ - . 10
{ Ig(t]')=1'2(t,)+0.2 )
when switching from subsystem 1 to 2 and
i {t7) = n.(t3) = 0.2
3 8 102
(i ity i
when switching {rom subsystem 2 to 3. We want to find optimal switching instants
¢y, {2 such that the cost

1_-x (3)+232 3) + f(x (8) + 23(6) dt+Z S7htR) + 2 xs(tk)) (103)

k=l
is minimized. Here 7,(0) =1 and z,(0) =

For this problem, we choose initial nominal ¢, = 1, t, = 1.5. We derive the
derivatives of .J using the result in Theorem 1. The computation of H(t5,¢f), Jit,
JiF, JF, and J% s hased on results in Section 4. By using Algorithm 1 with the
constrained Newton's method, after 8 iterations we find that the optimal switching
instants are ¢, = 0.4847, t, = 1.9273 and the corresponding optimal cost is 18.8310.
The computation takes 4.01 seconds of CPU time when it is performed using Matlab
6.1 on an AMD Athlond 900MHz PC with 256MB of RAM. The corresponding state
trajectory is shown in figure 2. Figure 3 shows the plot of the cost function for
different U < £, < ¢ € 3. By comparing the .J value for different ¢, and i;, we verify
that the solution we obtain is the global optimal {althaugh it is difficnlt to tell from
the cost surface, our computation shows us so). a

Example 2 (Switched Autonomous System with Time Delay) Consider
switched autonomous system consisting of

subsvstem l: & = A;z = [ UL U }z, (104)
-5 =01
= . - — — —0‘1 5
subsystem 2: £ = Ad;x = [ 05 —01 ] z, {105)
. 1 0
subsystemn 3: £ = Az = [ 0 -1 ] z, (106)
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Figure 2: The state trajectory for Example 1.

23

o

EIIERE

Figure 3: The cost for Example 1 for different (t;,£}'s.

Assume that the system has a time delay T = (.1 sec {or each switching to actually
take effect. Also assume that ty = 0, t; = 3 and the system switches at ¢ = ¢,
from subsystem 1 to 2 and at t = ¢, from subsystem 2 to 3 (hera we require that
0<t <t +4T £ta <tz +T £ 3). We want to find optimal ¢, t2 such that the
cost

3
J= % /o T (t}yx(t) dt (107)

is minimized. Here z,(0) = 0 and z.{0) = -3.

To find optimal ¢, and t, we first transiate the original problem into a prohlem
for a bybrid autonomous system and then use the approach in this paper to solve
it. We translate the problem as follows, Consider a hybrid autonomous system
with subsystems (104)-(106). Regard the original system d»namlcq in the interval
ft;. ¢, + T) as a state jump at ¢,

. N 0.9777 00493 _,._
o(e}) = eMTa(e]) = [ ~0.4030 09777 | Z(tT): (108)
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I shewnkang the dynamics w ¢}, 4, + T| into a state jump, instead of regarding
subsystem 2 as active in ft; = T, t=f in the original system, we can now regard
subsystem 2 as active in {t;. 23 = T] in the translated system.

Similarly, we now regard the original system dynamics in the interval {ty, t, + T}
A% A Stale jump at f — T

09777 0.4930

3tz =T7) =™ Ta(t - T7) = [ -0.0493 0.0777

] {t, = T7). {109)
In shrinking the dynamics in [t2,t2 + T} into a state jump at ¢ — T, instead of
regarding subsystem J as active in [ta + 7, 3| in the original system, we now regard
snhsystem 3 as active in [t — 7,3 = 27 in the translated system.

Once we have translated the original system dynamies into a hybrid autonomous
system in [0.3 — 27] as above, we can translate the original cost function into the
following one for the translated system

J = 1'/03_”‘1'7“}1'(#) dt + %IT(tl_)(‘/ﬂ.TeAT!gﬂﬂ d’t):l’.‘(tl_)

2
T
+éa:r(t..,_1")(/ e Tte et dt)::(t-_s-T‘)
- ¢
L r 1o [ 00064 —0.02207 ..
= -Z,/o T B)z(t) dt+ 52 (“)[-0.0220 00083 | Z(4)

0.0883 0.0220

1,
wpF =T ){0.0220 0.1064

] T(ta -~ T} (110}
The problem now becomes linding ¢, and ¢, so that the .7 in (110} is minimized: it is
a general quadratic problem for hybrid autonomous system with linear subsystems
and state jumps.

For this problem, we choose initial nominal £, = 0.5 and t; = 1.6. We derive the
derivatives of J nsing the result in Theorem 1. The computation of H(t;, t}), J1*,
deg o 3T, and ST is based on results in Section 5. By using Algorithm 1 with the
constrained Newton's method, after 13 iterations we find that the optimal switching
instants are ¢ = 0.9423 and ¢, = 1.5108, and the corresponding optimal cost is
24461, The computation takes 9.78 seconds of CPU time when it is performed
using Matlab G.1 on an AMD Athlond 900MHz PC with 256MDB of RAM. We then
translate the result back to the original switched svstem. The corresponding state
trajectory is shown in Hgure 4. Figure 5 shows the plot of the cost function fnr
different (¢),¢3)'s. Note from figure 5 that there are several local minima for this
problem. By comparing the .J value for different ¢, and ¢, we verify that the one
lacal minimum we obtain here is actually the global optimal (although it is difficult
ter tell from the cost surface, nur compuration shows us so). m]

e o
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Figure 4: The state trajectory for Example 2.

Figure 5: The cost for Example 2 for different {t,,¢s)'s.
7 CONCLUSION

In this paper, we proposed an approach for solving optimal timing control problems
for a class of hybrid autonomous systems given prespecified sequences of active
subsystems. [n particular, we derive the derivatives of the cost with vespect to
the switching time instants and use nonlinear optimization techniques to locate the
optimal switching time instants. It is also shown in the paper that the computational
burden can be rased in the case of general quadratic problems for hybrid autonomous
systems with linear subsystems and state jumps. The approach developed in the
paper has been implemented using MATLAB. The software we developed can solve
the optimal control problems studied in this paper very eHiciently. Fuiure research
topics include the incorporation of intelligent optimizatinn methads for finding glabal
aptima and the development of methods for finding optimal switching sequences
when the sequence of active subsystems is not prespecified.
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APPENDIX: SOME PROOFS FOR SECTION 3.2

PROOF OF LEMMA 1: Although the results in the Lemma hold for all cases in the definicion
of dz{t), we need Lo discuss each case in order to show che validity of them.

Case 1: dh 2 U. dt'_a 2 0
Sz(ty +dtf) = E(t, +dtf) —zity +dt])
1 t] ty et}
oty d [ hae) d) = (Flan + [T pla) @)

o (2e0) + Aot + okdtn)) = (3HaeD)) + fa (27 ety + oftr)
(317 = f17)dty + oldty). {AL)

We then conclude from the property of the variational equation that

Sz{ty) = Alg.t +dtf)dz(ey +de]) + (HOT. in dx{t, + dt7})

(Al )+ A (tr 60)dt +oldt)) (2L 1 = Fhadby + ofdty)) + ofdt )
Aty (7 F1 = PN+ oldty ). (A2
Bty + dty) -z (ta + de7)

dr(ty + iy}

trrat]

= (str+ [ " e @) - (a5 + [ ) @)

[

= satir+ [T () - Alao) @

y
= 52e7) + (f2(205)) - fala(t7)) )des + ofdta)
= fz(13) + f2Sx(ty )ds + oldty)
= Al )P = PN+ A L £ - P Mt

+({terms in &, dt} and H.0.T.). {A)

e —— -
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Case 2: +ft; > 4. dts < U
The arguemens for proving (Al} in Case 1 can be appiied in this case to show its validicy. In
thus case,

drita +dt3) 2a(ta + dt7) — £{lz + di7)

= (:g{t{) -'r[:ﬂ"; f2(zale)) dt) - (z(t.{) + /;?d'; Falz(e}) dt)

= dr(ty )+ f:vd’; (!g(z:(t)] -h (:u))) dt

= axtig b+ (fal2aleg)) - fal(t3)) Julta + ofditz)

= dz(ty}+ f27dx(ty Jdts + o(diz}
= Al M - ) AL ) (e AT - FT)d
+(rerms in df3, dt} and H.O.T.). (A4)

Case J: dty <U,dt; >0
In chis case, we have

Sz{tT) = #UT) - £(t})

(zM =ty + 7)) + -[.4-«:,’ fal#(e) dt) =+ (z(t + [E‘-H[.lm,— filzte) o)
(2 (b +diD)} + fafa(e + D) (=dtr) + ofdty)) - (2t +di7)
(2l =) + o))

= — (3 (@l + D)) Yty + 2 (ot +dtD)) £+ oldty)

= ~£(3 (307)) + Oldtn) Jdty +15(2(e7 } + Olden)) £ dty +ofalt)

= (:r,‘ (25 1 = fa (r(tf))))dh +oldty)

= 7T - F ) +oldy). (A3)

In the derivarions of the third to the lase equartions in (A5}, we use the relationship
Ity +dt7) = (a7 Y + f1odty +oldty ) = z(t7) + Oldty), (A6)
and the Taylor expression of fa. Therefore, we have
dz(ts) = A(g.e5)éz(e]) + (HO.T. in dz(2]))
= Alty DT T = b+ oldy) (A7)
ax(ts +ety) = E(ta +diy) = z3(tz -+ dts)

= (e [ no @) - (s [ plse) @
(>4 f

= dz(7)+ /:"u; (£(20) - fo{za())) @

= d2(t7) + (A(207)) = fa(sat)) Jdtz + oldta)

= Sz{t5) + fiéx(ty )dts + ofdls)

= Al )T = P F AL T - £ )t
+{terms in dt], dt} and H.O.T.). (A8)
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Case 4 dt; < 0. dty <0
The arguments for proving (A7) in Case 3 van be applied in this czse 1o show its validicy. In
this case, we have

i

dz(ta + dey) zglts + ety } — 2ita + dty)

tzrdfl

= (:Atg‘) 1'-'/’;2-“'; fa{zade)) dt) - (.‘:ir._.‘)+/::
= sxre [ (Rae) - Ale)) a

= x5} + (f;(_4(z, 1) = folztey }))dtu + atdts)

= oz{ty )+ ES dx(iy Jdta + oldty)

= AT TN - AT+ ST AR )T T = f
+{terms in dt}, dt3 and H.O.T.}. {AQ}

fatr)} dr)

PROOF OF LEMMA 2: (44) foliows directly from the fact that
do(t]) = dxlty + i3} + fa(2(t5))dtz + ofdta). {ALD)

To prove (45}, we note that

de(t}) = (3t +dt7)) - ¥ (203)
= Azle7) +dz(7)) - ¥zl )
(d:(t;)]Tﬂ 'lll Eifs) )dzu }
= 2vda()+ 5 : + (HOT. in dz(t7)).{A11)
(dz(r;)ffi,aé’r‘i’ﬁdz(t;)
Now since

(dxrt;)JTi:%‘-‘,Lm: )

w2 -

(dx(t;))rm“”n: £;[l=')) de{ty)

2y Ly fausd)

(.f' )1"”"‘(»»(’“2 ])

iz

ETAQ e Y = ) dty + (verms in dtf, dif and H.O.T.), {412)

Alts e )i 1 = F)deydey + (verms in def, de3 and H.O.T.)

we can substitute (A12) into (411} to obuain (45). a

PROOF OF LEMMA 3: We first note that

tailt crridty + L(z) e, if dty 20,
[ sy ae= ot gy £ 0 W00 2 (A13)
bty f:,m* i ) t.u+Jr’:dr ey L(E) 81, ifdtl <.

In che light of the forward decoupling principle, the term f'“:‘&" MUY () di in the case of di, <
0 will nox depend on diy; therefore, it will not conwribute o t.h.e coefficiens of dtydiy. Su we conclude

e 5, . o S B g e 8 e
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it o matser 41y > G oor dty < 0, e only need to consider the term er.;{‘:!: - Lz} dt. For
[ 1

this term, we discuss as {ollows.
Case L: dta 20
Ir this case, we have

ta ot

ty 4ty [ 5
[ Liz)dt = / Liz +4z) dt + f L{z) de. (A1)

Pax{ ey by} max{f7 by +dt ]} T
The first verm in (A14) will not be contributing due to the reason that
Sx(t) = AL ) (A" F1~ — Fi%)de, + ofdy), (A15)
for ¢ € fmax{t]. ¢ +dt}}.t7] and sherefore they do not depend on dts,
The second term is shown 1o be

-
[_ L{£} dt = L(2(t3))dty + o(dty)
fy

= L*7dty + L376x(t7 Jdta + (verms in (62(15)) de, de} and HOT).  (Al6)

By substituting the expression of §z(ty) into {AL6). we abtain the coefficient of df, dt, con-
tributed by this term as
L34, )0 11 = f1). {a17)
Case 2: dt, <)
In this case, since r(t} + dz(t) = £{t) for ¢ € [max{t}, 1, + dif },tz + dt5], we have

3ty fytdty
f Li#dt = f L{z +63) dt
max{ry 4t} ) max{iy .0 Hilt] }
5 ta+dty
= / Liz + 6z) dt + / Liz +dz} dt. (A18)
max{t] gy +dtd) [y

Similar to Case 1, the first term in (A18) will not be contributing. The second verm is shown
to be

€1ty
/'_ L{z + 85} dt = L(z(t7) + 52(t] Yeta + oldta)

= L*dty + LI 62(6)dty + (vervas i (2467 )) dta, de and HOT). (a9

;].‘herefore. by substicuting she expression of 5z{t7) into (A19), we obtain the same coefficient
[ALT o
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Hyvbrid Automata Model of Manufacturing Svsterms
and its Optimal Control Subject to Logical
Constraints *
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Abstract

In this paper we present a hybrid system formulation for the modeling and
control of automated manufacturing systems, combining both discrete and con-
tinuous dynamics in a single hybrid automaton representation. We derive & hi-
erarchical two-level production control policy based on hybrid automata mod-
els, capable of providing closed—loop behaviors which both satisfy logic-based
and optimize performance specifications. We show that the hvbrid automaton
mode] of an elementary service is Zeno and linear. We propase a non-Zeno
regularization, and also an outer approximation for it; the latter is non-Zeno,
and also an initialized linear hybrid automaton and hence decidable. Our main
contribution is the integration of Auid approximation techniques within a hy-
brid automata model framework aimed at performance optimization subject
to logical constraints. By introducing the notions of macro-states and macro—
events, the logical constraints are satisfied through a upper ievel supervisory
controller which achieves a desired macro—events trajectory set, represented by
a generated language, upon which the optimization is performed by a lower
level controller,

Keywords: Manufacturing systems, supervisory control, optimization. pro-
duction control policy, fluid approximation. .
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