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Abstract

This paper describes a Matlab toolbox for computational analysis and synthesis
of a class of piecewise linear hybrid dynamical systems, which are affected by both
time varying parametric uncertainties and persistent exterior disturbances. The robust
tracking and regulation control problem for such uncertain piecewise linear systems is
investigated and solved in two stages. The first stage is to analyze whether there exists
an admissible control law such that the closed-loop system exhibits desired behavior. If
a specified behavior can be forced on the plant by a control mechanism, then it is called
attainable. The method for attainability checking is developed and implemented which
employs the predecessor operator and backward reachability analysis. The second stage
is to design such admissible control law for a given attainable tracking and regulation
specification. The procedure for controller design proposed and implemented here is
based on linear programming techniques. A numerical example is used for illustration
throughout the paper.

∗The partial support of the National Science Foundation (NSF ECS99-12458 & CCR01-13131) is gratefully
acknowledged. The first author appreciates the support from Center of Applied Mathematics Fellowship
(2003-04), University of Notre Dame.

Hai Lin P.J. Antsaklis, "HySTAR: A Matlab Toolbox for Robust Regulation of Polytopic Uncertain 
Piecewise Linear Hybrid Systems," ISIS Technical Report ISIS-2003-006, October 2003.



Contents

1 Introduction 1

2 Model Representation 2

2.1 Uncertain Piecewise Linear Systems . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Represent Uncertain Piecewise Linear Systems . . . . . . . . . . . . . . . . . 3

3 Problem Formulation 5

3.1 Robust Tracking and Regulation Problem . . . . . . . . . . . . . . . . . . . 5

3.2 Specification Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Two Stage Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Robust Backward Reachability Analysis 8

4.1 Robust One-Step Predecessor Set . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Predecessor Sets for Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Backward Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.4 Commands for Backward Reachability Analysis . . . . . . . . . . . . . . . . 10

5 Safety, Direct Reachability and Attainability 11

5.1 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.2 Direct Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3 Attainability Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.4 Specification Checking Commands . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Controller Synthesis 14

6.1 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2 Direct Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.3 Tracking Attainable Specifications . . . . . . . . . . . . . . . . . . . . . . . . 18

6.4 Commands for Controller Design and Simulation . . . . . . . . . . . . . . . . 19

7 Conclusions 20

Appendix A: Toolkit for non-convex piecewise linear sets 22

Appendix B: HyStar Command Reference 23

Hai Lin P.J. Antsaklis, "HySTAR: A Matlab Toolbox for Robust Regulation of Polytopic Uncertain 
Piecewise Linear Hybrid Systems," ISIS Technical Report ISIS-2003-006, October 2003.



List of Tables

1 Commands for building a UPWL system. . . . . . . . . . . . . . . . . . . . . 3

2 Commands for tracking and regulation specification setup. . . . . . . . . . . 6

3 Commands for backward reachability analysis. . . . . . . . . . . . . . . . . . 10

4 Commands for specification checking. . . . . . . . . . . . . . . . . . . . . . . 13

5 Commands for controller synthesis and simulation. . . . . . . . . . . . . . . 19

6 Commands for dealing with non-convex piecewise linear sets. . . . . . . . . . 22

7 Command list for HyStar. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

List of Figures

1 Tracking and regulation control specification and its polyhedral region se-

quence approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The one-step predecessor set for the region Ω1. . . . . . . . . . . . . . . . . 12

3 Left: The illustration of the three-step backward reachable set from Ω1, namely
R3(Ω). Right: Three-step direct reachable set from Ω0 to Ω1. . . . . . . . . . . . 14

4 Left: Simulation for closed-loop nominal plant (assuming d = 0). Right: The active
mode sequence q and control signals u of the controller. . . . . . . . . . . . . . . 20

Hai Lin P.J. Antsaklis, "HySTAR: A Matlab Toolbox for Robust Regulation of Polytopic Uncertain 
Piecewise Linear Hybrid Systems," ISIS Technical Report ISIS-2003-006, October 2003.



1 Introduction

Hybrid Systems are heterogeneous dynamical systems of which the behavior is determined

by interacting continuous variable and discrete event dynamics. Hybrid systems have been

identified in a wide variety of applications in control of mechanical systems, process control,

automotive industry, power systems, aircraft and traffic control, among many other fields.

Therefore, the last decade has seen considerable research activities in modeling, analysis

and synthesis of hybrid systems involving researchers from a number of traditionally distinct

fields [6]. In this paper, we will develop a Matlab toolbox, HyStar, for robust analysis and

synthesis for a class of uncertain hybrid systems.

There have been a variety of software toolboxes with varying methodologies and varying

success in the hybrid literature. For example, HYSDEL [1] is an automated model represen-

tation tool for discrete-time piecewise linear hybrid systems, which generates MLD models to

be used for control, estimation, and verification [8]. HyTech [2, 10] is an automatic verifica-

tion tool for linear hybrid automata based on symbolic model checking. In [3, 7], a toolbox,

d/dt, is developed for analyzing hybrid systems with linear differential inclusions, and the

reachable states are calculated by polyhedral approximations. CheckMate [4], which is

developed for automatic verification for nonlinear hybrid automata, also approximates the

set of reachable states by polyhedra. In [9], a Matlab toolbox, PwLTool, for analysis of piece-

wise linear systems is described, which is based on piecewise quadratic Lyapunov functions

and convex optimization. For further reference about existing toolboxes for hybrid systems,

see for example the review paper [14].

The Matlab toolbox, HyStar (Hy∗), is an implementation of our group’s recent the-

oretic results in the field of robust control of uncertain Hybrid Dynamical Systems [12].

Previous work appeared in [11], which dealt with discrete-time piecewise linear hybrid sys-

tems without parametric uncertainties. The model investigated in the present paper is a

class of discrete-time uncertain piecewise linear systems, which is affected by both time-

variant parameter variations and persistent exterior disturbances. Section 2 describes the

model representation, i.e. how an uncertain piecewise linear system is defined in this tool-

box. The control objective is for the closed-loop system to exhibit certain desired behav-

ior despite the uncertainties and disturbances. Specifically, given finite number of regions

{Ω0, Ω1, · · · , ΩM} in the state space, our goal is for the closed-loop system trajectories,

starting from the given initial region Ω0, to go through the sequence of finite number of

regions Ω1, Ω2, · · · , ΩM in the desired order and finally reach the final region ΩM and then

remain in ΩM . This kind of specifications is analogous to the ordinary tracking and regula-

tion problem in pure classical continuous variable dynamical control systems. In addition,

it also reflects the qualitative ordering of event requirements along trajectories. In Section

3, the robust tracking and regulation control problem for such uncertain piecewise linear

system is qualitatively formulated, and the commands to represent the specifications are

1

Hai Lin P.J. Antsaklis, "HySTAR: A Matlab Toolbox for Robust Regulation of Polytopic Uncertain 
Piecewise Linear Hybrid Systems," ISIS Technical Report ISIS-2003-006, October 2003.



described. One of the main questions is to determine whether there exist admissible control

laws such that the region-sequence can be followed. If such an admissible control law exists,

the region-sequence specification {Ω0, Ω1, · · · , ΩM} is called attainable. The attainability

checking is based on backward reachability analysis and symbolic model checking method,

which are discussed and implemented in Section 4. In Section 5, the necessary and sufficient

condition and corresponding commands for checking the attainability is given. The next

question is how to design an admissible control law in order to satisfy the closed-loop speci-

fication. An optimization based method is proposed and implemented in Section 6 to design

such admissible control laws. A numerical example is used for illustration throughout the

paper. The command references for the toolbox is presented as an appendix to the paper.

In addition, a software toolkit built for non-convex piecewise linear sets is briefly described

in the appendix as well.

Notation : A polyhedron in R
n is a (convex) set given by the intersection of a finite number

of open and/or closed half-spaces in R
n. A polytope is a closed and bounded (i.e. compact)

polyhedron. A polyhedral set P will be presented either by a set of linear inequalities

P = {x : Fix ≤ gi, i = 1, · · · , s}, synthetically P = {x : Fx ≤ g}, or by the dual

representation in terms of its vertex set {xj}, denoted by vert{P}. A piecewise linear (Pwl)

set consists of a finite union of polyhedra.

2 Model Representation

In this section, a mathematical definition of the discrete-time uncertain piecewise linear

systems is given and the representation of the uncertain piecewise linear systems in HyStar

(Hy∗) is described.

2.1 Uncertain Piecewise Linear Systems

We consider discrete-time uncertain piecewise linear systems of the form

x(t + 1) = Aq(w(t))x(t) + Bq(w(t))u(t) + Eqd(t), t ∈ Z
+, if x ∈ Pq (2.1)

where x(t) ∈ X ⊂ R
n, u(t) ∈ Uq ⊂ R

m, d(t) ∈ Dq ⊂ R
r, w(t) ∈ W ⊂ R

v are the system

state, the control input, the disturbance input, and the uncertainty parameter respectively.

Let the finite set Q stand for the collection of discrete modes q. It is assumed that X , Uq,

Dq and W are assigned polytopes for each mode q ∈ Q, and that Dq contains the origin.

The partition of the state space X is given as a finite set of polyhedra {Pq : q ∈ Q}, where

Pq ⊆ X and
⋃

q∈Q Pq = X . The continuous variable dynamics of each mode q is defined by

the state matrices Aq(w), Bq(w) and Eq. It is assumed that the entries of Aq(w) and Bq(w)

are continuous functions of w for every mode q.

2
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command description

setupwl initialize uncertain piecewise linear system (UPWLsys) object

addynamics define system dynamics and constraints

addregion define the polyhedral regions Pq

getupwl extract UPWLsys object

Table 1: Commands for building a UPWL system.

A possible evolution of the uncertain piecewise linear systems from a given initial con-

dition x0 ∈ X can be described as follows. First, there exists at least one discrete mode

q0 ∈ Q such that x0 ∈ Pq0; the mode q0 is then called feasible mode for state x0
1. The next

continuous variable state is given by the transition x1 = Aq0(w)x0 +Bq0(w)u+Eq0d for some

w ∈ W, d ∈ Dq0 and specific u ∈ Uq0 . Then the above procedure is repeated for state x1 to

determine the next possible state x2, and so on.

In practice uncertainties often enter linearly in the system model and they are linearly

constrained. To handle this particular but interesting case, we consider the class of polyhedral

sets. Such sets have been considered in previous works addressing the control of systems with

input and state constraints. Their main advantage is that they are suitable for computation.

Therefore, in the sequel, we turn to consider polytopic uncertainty in Aq(w) and Bq(w) for

every mode q ∈ Q. Without loss of generality, we assume that

Aq(w) =

vq∑
k=1

wk
qA

k
q , Bq(w) =

vq∑
k=1

wk
qB

k
q ,

where wk
q ≥ 0 and

∑vq

k=1 wk
q = 1. The pair (Aq(w), Bq(w)) represents the model uncertainty

which belongs to the polytopic set Conv{(Ak
q , B

k
q ), k = 1, · · · , vq} for each mode q ∈ Q.

This is referred to as polytopic uncertainty and provides a classical description of model

uncertainty. Notice that the coefficients wk
q are unknown and possibly time varying.

2.2 Represent Uncertain Piecewise Linear Systems

Table 1 lists the basic commands for building an uncertain piecewise linear system (UPWL-

sys). Having partitioned the state space and used the functions for entering data into Matlab,

the system is aggregated into a single record that is passed on to functions for analysis and

controller synthesis. The command setupwl initializes the UPWLsys object and should be

run first. When this is done, one will typically define the entire system by repeatedly calling

addynamics and addregion. The command addynamics is used to specify the vertex state

1In the definition of uncertain piecewise linear systems, it is not required that the partition Pq has
mutually empty intersections. Therefore, for the initial state x0 there may exist more than one feasible
discrete modes. In such cases, it is assumed that the current active mode, q0, is randomly selected from
these feasible modes.

3
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matrices of the polytopic uncertain Aq(w), Bq(w) and Eq corresponding to the dynamics

of a certain discrete mode q of the UPWL system. Command addynamics also specifies

the boundary of the continuous control u, Uq, and disturbance d, Dq for the discrete mode

q. An identifier is returned for future reference to the dynamics, also we use the returned

identifier to stand for the discrete states q ∈ Q. The command addregion lets the user

enter the region specific data (Fq, gq), where Pq = {x : Fqx ≤ gq}, and via the references

returned by addynamics specify the dynamics in the region. When all matrices are entered,

the UPWLsys object is extracted by getupwl. Please note that in addition to linking several

dynamics to one region, it is also possible to link several regions to the same dynamics. In

the following, we present an numerical example to illustrate the uncertain piecewise linear

system model.

Example 2.1 (Represent Model) We consider discrete-time uncertain piecewise linear

systems of the form

x(t + 1) =

{
A1(w)x(t) + B1(w)u(t) + E1d(t), x ∈ P1

A2(w)x(t) + B2(w)u(t) + E2d(t), x ∈ P2.

where P1 = {x ∈ R
2|‖x‖∞ ≤ 100} and P2 = {x ∈ R

2| − 50 ≤ x1 ≤ 100, −50 ≤ x2 ≤ 100}.
The vertex matrices of polytopic uncertain A1(w) and B1(w) are

A1
1 =

(
0.825 0.135

0.68 1

)
, A2

1 =

(
1 0.35

0.068 0.555

)

B1
1 =

(
1.7

0.06

)
, B2

1 =

(
1.9

0.08

)
, E1 =

(
0.0387

0.3772

)
,

and the vertex matrices of polytopic uncertain A2(w) and B2(w) are

A1
2 =

(
−0.664 0.199

0.199 0.264

)
, A2

2 =

(
−0.7 0.32

0.32 0.44

)

B1
2 =

(
0.8

0.1

)
, B2

2 =

(
0.9

0.2

)
, E2 =

(
0.1369

0.5363

)

Assume the constrains of the continuous control signal is given as U1 = U2 = [−1, 1], while

the bound of disturbance is d ∈ D1 = D2 = [−0.1, 0.1]. The uncertain piecewise linear

system model can be set up by the following codes.

%Initialize the UPWLSYS object

setupwl([]);

%Enter Dynamical Matrix

4
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A0=[.825 .135;.067 .555];

A00=[1 .35;.68 1];

B0=[1.7;.06];

B00=[1.9; .08];

E0 =[.0387;.3772];

A1=[-.664 .199;.199 .264]; A11=...;

... ;

U.l = [1;-1]; U.r = [1;1];

D.l = [1;-1]; D.r =[.1;-.1];

% Add Dynamics

dyn1=addynamics({A0,A00},{B0,B00},E0,U,D,0);

dyn2=addynamics({A1,A11},{B1,B11},E1,U,D,0);

% Add Region

addregion([1 0;0 1;-1 0;0 -1],[100;100;100;100],[dyn1]);

addregion([1 0;0 1;-1 0;0 -1],[100;100;50;50],[dyn2]);

%Extract UPWLSYS object

upwlsys = getupwl;

Now, the variable upwlsys contains aggregated data of the uncertain piecewise linear

system model, including state partition information, discrete modes and dynamics for each

mode etc. In order to do analysis and synthesis for the above uncertain piecewise linear

system, one simply passes the variable upwlsys on to functions for analysis and controller

synthesis, which will be introduced later.

3 Problem Formulation

In this section, the robust tracking and regulation problem is formulated for the discrete-time

polytopic uncertain piecewise linear systems and the representation of the specification in

HyStar (Hy∗) is described.

3.1 Robust Tracking and Regulation Problem

Tracking and regulation problem is a classical control problem in the continuous variable

dynamical control systems, which can be formulated as follows. Given an initial region, a

target region and a pipe connecting these two regions in the state space, design a controller

such that all the trajectories starting from the initial region will be driven to the target region

through the pipe. Similar specification can be formulated for the piecewise linear systems.

However instead of connecting the initial region and the target region by a pipe, we use a

5
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sequence of connected polyhedral regions Ωi, which may be seen as inner approximations of

the pipe specification (See Figure 1).

Ω0

Ω1

Ω2
ΩM

Ω3

Figure 1: Tracking and regulation control specification and its polyhedral region sequence

approximation.

The problem considered in this paper is to select feasible modes q(t) and to design

admissible control signals u(t) ∈ Uq(t) such that the closed-loop piecewise linear systems’

trajectories, starting from the given initial region Ω0, go through the sequence of regions

Ω1, Ω2, · · · , ΩM in the desired order, finally reach the final region ΩM and then remain

in ΩM , in spite of uncertainties and disturbances. Note that the region Ωi ⊆ X does not

necessarily coincide with the partitions Pq in the definition of the uncertain piecewise linear

systems (2.1).

3.2 Specification Setting

command description

setspec initialize the specification object

addspec add specification

getspec extract the specification object

Table 2: Commands for tracking and regulation specification setup.

The commands for setting specifications are listed in Table 2. Command setspec initial-

izes a standard specification object. Then, by using the command addspec, we can add the

regions Ωi one by one (not necessarily in order). Command getspec extracts the specifica-

tion data and returns a single record, which can be called for analysis and synthesis purpose

later on. Let us illustrate the commands through an example.

Example 3.1 (Specification Setup) For the previous example, we consider two regions

in sequence {Ω0, Ω1}, which is given as Ω0 = {x ∈ R
2| − 20 ≤ x1 ≤ 20, −40 ≤ x2 ≤ 40},

and Ω1 = {x ∈ R
2|‖x‖∞ ≤ 10}. Our control objective is for all the initial states in the

region Ω0 will be driven by admissible control laws into region Ω1 in finite number of steps

6
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without existing Ω0. When it reaches the region Ω1, the state trajectories will stay in Ω1 for

ever. This specification can be described by the following lines.

%Initialize Specification object

setspec(upwlsys,[])

%Add Regions(specifications)

addspec(upwlsys,[1 0;0 1;-1 0;0 -1],[20;40;20;40],1);

addspec(upwlsys,[1 0;0 1;-1 0;0 -1],[10;10;10;10],2);

%Extract the specification object

spec = getspec;

3.3 Two Stage Solver

We propose to solve the robust tracking and regulation problems for the uncertain piecewise

linear systems in two stages.

First stage is to check whether there exist feasible modes q(t) and admissible control

signals, u(x(t)) ∈ Uq(t), such that the region-sequence specification is satisfied despite the

uncertainties and disturbances. If there exists such admissible control laws to satisfy the

tracking and regulation specification, then the specification is called attainable. In order to

check attainability, two different kinds of properties should be checked, that is the direct

reachability between two successive regions, Ωi and Ωi+1 for 1 ≤ i < M , and the safety (or

controlled invariance) for the final region ΩM . The analysis problems for safety and direct

reachability are formulated as follows.

• Safety: Given a region Ω ⊂ X , determine whether there exist admissible control laws

such that the evolution of the system starting from Ω remains inside the region for all

time, despite the presence of dynamic uncertainties and disturbances.

• Direct Reachability: Given two regions Ω1, Ω2 ⊂ X , determine whether there exist

admissible control laws such that all states in Ω1 can be driven into Ω2 in finite steps

without entering a third region.

After answering how to check whether there exists admissible control laws to satisfy a

given specification, we will design the admissible control law in the second stage, if the

specification is attainable. Similarly, the controller synthesis stage is also divided into two

basic problems, that is safety control and direct reachability control. The two basic control

problems are formulated as follows.

• Safety Controller Synthesis: Given a safe region Ω ⊂ X , determine the admissible

control laws to make the region Ω safe (controlled invariant);

7
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• Direct Reachability Controller Synthesis: Given two regions Ω1, Ω2 ⊂ X , where Ω2

is directly reachable from Ω1, determine the admissible control laws such that all the

states in Ω1 can be driven into Ω2 in finite steps without entering a third region.

In the following sections, we will solve the robust tracking and regulation problem stage

by stage. First, necessary and sufficient conditions for safety and direct reachability are given

in Section 5. The safety and direct reachability checking are based on backward reachability

analysis. In the next section, we will briefly discuss the backward reachability analysis and

its implementation, which serves as one of the basic tools for the analysis that follows.

4 Robust Backward Reachability Analysis

This section describes the results and commands for backwards reachability analysis for

the uncertain piecewise linear systems, which server as the foundation for checking safety,

reachability and attainability.

4.1 Robust One-Step Predecessor Set

The basic building block to be used for backward reachability analysis is the robust one-step

predecessor operator, which is defined below.

Definition 4.1 The robust one-step predecessor set, pre(Ω), is the set of states in X , for

which admissible control inputs exist and drive these states into Ω in one step, despite

disturbances and uncertainties, i.e.

pre(Ω) = {x(t) ∈ X | ∃q(t) ∈ Q, u(t) ∈ Uq(t) : x(t) ∈ Pq(t),

Aq(t)(w)x(t) + Bq(t)(w)u(t) + Eq(t)d(t) ∈ Ω, ∀d(t) ∈ Dq(t), w ∈ W}

We can also define the one-step predecessor set under the q-th mode, preq(Ω), as the

set of all states x ∈ Pq, for which an admissible control input u ∈ Uq exists and guarantees

that the system will be driven to Ω by the transformation Aq(w)x + Bq(w)u + Eqd for all

allowable disturbances and uncertainties.

Proposition 4.1 The robust one-step predecessor set pre(Ω) for an uncertain piecewise

linear system can be computed as follows:

pre(Ω) =
⋃
q∈Q

preq(Ω)

Therefore, we only need to calculate the one-step predecessor set for each q-th subsystem.

8
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4.2 Predecessor Sets for Subsystems

The difficulty in calculating preq(Ω) comes mainly from the fact that the region Ω is typically

non-convex. Even if one starts with convex sets, the procedure deduces non-convex sets

for piecewise linear systems after an one-step predecessor operation. Because of the non-

convexity, some of the linearity and convexity arguments do not hold and extra care should

be taken. However, under the polytopic uncertainty assumption, the calculation of the

predecessor set for piecewise linear (Pwl) sets can be simplified, in view of the following

proposition.

Proposition 4.2 For polytopic uncertain discrete-time piecewise linear system, the robust

one-step predecessor set for an assigned piecewise linear set Ω (may be non-convex) under

the q-th dynamics can be calculated as

preq(Ω) =

vq⋂
k=1

prek
q (Ω),

where prek
q (Ω) stands for the one-step predecessor operator of the k-th vertex state matrix

(Ak
q , B

k
q ) for 1 ≤ k ≤ vq, i.e.

prek
q(Ω) = {x ∈ Pq | ∃u ∈ Uq : Ak

qx + Bk
q u + Eqd ∈ Ω, ∀d ∈ Dq}.

Therefore, we derived the relationship between the robust one-step predecessor operator

for the polytopic uncertain systems, preq(·), and the one-step predecessor set of the vertex

dynamics, prek
q (·) for k = 1, · · · , vq. From Proposition 4.2, it turns out that the robust one-

step predecessor set for a piecewise linear set Ω under polytopic uncertain linear dynamics can

be reduced to the finite intersection of one-step predecessor sets corresponding to the dynamic

matrix polytope vertices, which have no parametric uncertainty. The predecessor set under

deterministic linear dynamics, prek
q(Ω), has been studied extensively in the literature and

can be computed by Fourier-Motzkin elimination and linear programming techniques.

Proposition 4.3 The robust one-step predecessor set for a (non-convex) piecewise linear

set Ω, pre(Ω), can be written as a finite union of polyhedra.

Although the convexity is not preserved under the one-step predecessor operation, the

piecewise linearity remains unchanged in view of Proposition 4.3. Therefore, one can apply

the predecessor operation recursively, and this is explored in the next section.

4.3 Backward Reachability Analysis

Given Ω1 and Ω2, define robust one-step controllable set as all the states in Ω1 for which

there exist admissible control signals to drive such state into Ω2 in the next step, for all

9

Hai Lin P.J. Antsaklis, "HySTAR: A Matlab Toolbox for Robust Regulation of Polytopic Uncertain 
Piecewise Linear Hybrid Systems," ISIS Technical Report ISIS-2003-006, October 2003.



allowable uncertainties and disturbances, i.e.

K1(Ω1, Ω2) = {x(t) ∈ Ω1 | ∃q(t) ∈ Q, u(t) ∈ Uq(t), : x(t) ∈ Pq(t),

Aq(t)(w)x(t) + Bq(t)(w)u(t) + Eq(t)d(t) ∈ Ω2, ∀d(t) ∈ Dq(t), w ∈ W}

The robust one-step controllable set K1(Ω1, Ω2) can be computed as follows:

K1(Ω1, Ω2) = pre(Ω2) ∩ Ω1

It follows from Proposition 4.3 that the robust one-step controllable set K1(Ω1, Ω2) is a

piecewise linear set if Ω1 and Ω2 are given as piecewise linear sets. Therefore, the robust

one-step controllable set operator can be used recessively to define i-step controllable set

Ki(Ω1, Ω2) as follows.

Ki(Ω1, Ω2) = K1(Ω1,Ki−1(Ω1, Ω2)),

where i ≥ 1 and K0(Ω1, Ω2) = Ω2. When the Ω1 is set to be the whole state space X , the

i-step controllable set Ki(X , Ω) is called the i-step backward reachable set from region Ω,

which is denoted as Ri(Ω).

4.4 Commands for Backward Reachability Analysis

command description

pre predecessor operator pre(·)
prein inner-approximation of the predecessor operator pre(·)
dreach finite-step controllable set Ki(Ω1, Ω2)

reach finite-step backward reachable set

Table 3: Commands for backward reachability analysis.

Table 3 lists the commands for predecessor operator and backward reachability analysis.

The command pre exactly calculates the one step backward reachable set for uncertain

piecewise linear systems. Command prein calculates an inner-approximation of the one

step backward reachable set. Notice that pre and prein return the same result when the

region in concern is convex. Their only difference is in the way dealing with non-convexity.

As we discussed, the main difficulty for the calculation of pre(Ω) is the non-convexity of

the piecewise linear set Ω. The command pre includes two times of calculation of the

complement set of non-convex sets, and the complement operation become inefficient quickly

as the number of polyhedra contained in the piecewise linear set and the number of faces

for each polyhedron increase. This obstacle makes the calculation of pre(Ω) not cheap when

Ω is non-convex, especially when one recursively uses pre to calculate backward reachable
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set or finite-step controllable set. This motivate us to introduce the command prein to

inner-approximate pre(Ω), which is based on the following fact:

Ω =
⋃
i

Ωi ⇒ pre(Ω) ⊇
⋃
i

pre(Ωi).

where Ωi are convex sets. The command prein does not involve complement operation

when dealing with non-convex piecewise linear set Ω, which makes it more efficient than

the command pre. However, the price paid is the accuracy, prein only returns an inner-

approximation of pre(Ω). The command dreach calculates or inner-approximates the finite-

step controllable set Ki(Ω1, Ω2) from region Ω1 to Ω2. The command reach calculates or

inner-approximates the finite-step backward reachable set. Finally let’s see an example for

usage of the commands.

Example 4.1 (Predecessor Operator) For the numerical example described in the

previous section, consider the region Ω1, which is defined as Ω1 = {x ∈ R
2|‖x‖∞ ≤ 10}.

First we call pre to calculate the predecessor set by the following code.

% Calculate the one-step predecessor set

prePL = pre(upwlsys,spec(2)),

% Plot the one-step predecessor set

figure(1),clf,

viewpwl(prePL),

% Inner-approxiamte the one-step predecessor set

preinPL = prein(upwlsys,spec(2))

The predecessor set is also piecewise linear, as shown in Figure 2. The command viewpwl

is used to plot a piecewise linear (maybe non-convex) set, which is based on the graphical

functions provided by Geometric Bounding Toolbox (GBT 7.0) [5]. The illustration of the

commands dreach and reach will be given in the next example.

5 Safety, Direct Reachability and Attainability

In this section, we first present necessary and sufficient conditions for checking the safety for

a given region Ω ⊂ X and the direct reachability between two given regions Ω1 and Ω2. Then

a necessary and sufficient condition for checking the attainability of a given specification is

presented. Finally, the commands for checking safety, direct reachability and attainability

are described.

5.1 Safety

The following is an important, well-known geometric condition for a set to be safe (controlled

invariant).
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Figure 2: The one-step predecessor set for the region Ω1.

Theorem 5.1 The set Ω is safe if and only if Ω ⊆ pre(Ω).

The proof follows immediately from the definition of the predecessor set pre(Ω). Testing

for safety need to: compute pre(Ω), which can be efficiently done by the predecessor operator

described and implemented in the previous section; test whether Ω ⊆ pre(Ω), this can

be done by a feasibility of some linear programming problems. So this condition can be

efficiently tested by solving a finite number of linear programming problems that depends

on the number of regions and discrete states of the system.

5.2 Direct Reachability

Secondly, we study the reachability problem for uncertain piecewise linear systems. It should

be emphasized that we are interested only in the case when reachability between two regions

Ω1 and Ω2 is defined so that the state is driven to Ω2 directly from the region Ω1 in finite

steps without entering a third region. This is a problem of practical importance in hybrid

systems since it is often desirable to drive the state to a target region of the state space while

satisfying constraints on the state and input during the operation of the system.

The problem of deciding whether a region Ω2 is directly reachable from Ω1 can be solved

by recursively computing all the states that can be driven to Ω2 from Ω1 using the prede-

cessor operator. With the introduction of the finite step controllable set from Ω1 to Ω2, the

geometric condition to check the direct reachability can be given as follows.

Theorem 5.2 Consider an uncertain piecewise linear systems and the regions Ω1 and Ω2.

The region Ω2 is directly reachable from Ω1 in finite number of steps if and only if there
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exist finite integer N such that Ω1 ⊆
⋃N

i=0 Ki(Ω1, Ω2).

5.3 Attainability Checking

Given a finite number of regions {Ω0, Ω1, · · · , ΩM}, the attainability for this sequence of

regions specification is equivalent to the following two different kinds of properties, that is

the direct reachability from region Ωi to Ωi+1 for 0 ≤ i < M and the safety for the final

region ΩM . Therefore the attainability checking can be expressed as follows.

Theorem 5.3 The specification {Ω0, Ω1, · · · , ΩM} is attainable if and only if the following

conditions hold: First, ΩM is safe; and secondly the region Ωi+1 is directly reachable from

Ωi, for i = 0, 1, · · · , M − 1.

Combined with Theorem 5.1 & 5.2, it is straight forward to derive corresponding geo-

metric conditions for attainability.

5.4 Specification Checking Commands

command description

issafe check the safety of a region

isreach check finite step direct reachability between two regions

isattain check the attainability of a given specification

Table 4: Commands for specification checking.

Table 4 lists the commands for safety, direct reachability and attainability checking.

Command issafe checks the safety of a piecewise linear (maybe non-convex) region for the

UPWL system. By Theorem 5.1, it calls the function pre to calculate the one-step prede-

cessor set for the piecewise linear region Ω, then it calls a function issubset (see Appendix

A) to check whether Ω is a subset of its predecessor set pre(Ω). issafe returns a positive

scalar when the geometric condition satisfied, i.e. the region Ω is safe, and returns zero

or negative scalar otherwise. Command isreach checks the finite steps direct reachability

between two piecewise linear regions. It calls function dreach and issubset to check the

geometric condition in Theorem 5.2. By Theorem 5.3, we know attainability checking can

be divided into checking the safety for the terminal region and the reachability between two

successive regions. So isattain calls the function isreach and the issafe. Finally, let’s

see an example for usage of the commands.

Example 5.1 (Specification Checking) Consider the uncertain piecewise linear sys-

tem and the specification defined in the previous examples. First, calculating the one-step
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predecessor set of the region Ω1, pre(Ω1), which has been illustrated in Figure 2 as a union

of two polytopes. It can be checked that pre(Ω1) ⊃ Ω1, therefore the region Ω1 is safe by

Theorem 5.1.

Next, we consider direct reachability from another region Ω0 to Ω1. It is found that

Ω0 ⊆ ⋃3
i=0 Ki(Ω0, Ω1), therefore Ω1 is directly reachable from Ω0 in finite number of steps

(less or equal to three steps), by Theorem 5.2. The three-step direct reachable set from Ω0 to

Ω1 is calculated and plotted in the right part of Figure 3. The three-step backward reachable

set from Ω1, namely R3(Ω), is plotted in the left part of Figure 3 for comparation.
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Figure 3: Left: The illustration of the three-step backward reachable set from Ω1, namely R3(Ω).
Right: Three-step direct reachable set from Ω0 to Ω1.

By Theorem 5.3, the attainability of the specification, {Ω0, Ω1}, is guaranteed. The

attainability checking can be implemented by the following codes.

attain = isattain(spec, upwlsys);

if attain>0

display(’the attainability check passed.’)

else ...

6 Controller Synthesis

The hybrid tracking and regulation control problem considered in this section is to select

feasible modes q(t) and to design admissible control signals, u(t) ∈ Uq(t), such that the

state trajectory x(t) goes through the regions, namely Ω0, Ω1, Ω2 · · · , in the specified order

and the closed-loop system satisfies some requirements, such as sequencing of events and

eventual execution of actions. In Section 5, we specified the conditions for existence of such

control laws so that the closed-loop system satisfies safety, reachability and attainability
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specifications. Here we design such control laws based on optimization techniques. As it was

discussed in the previous section, the attainability controller synthesis problem can be divided

into two basic problems, that is safety controller synthesis and direct reachability controller

synthesis. In the following, we first present a systematic procedure for the controller design

for these two basic cases. Then a procedure for attainability controller synthesis is given and

the commands for controller synthesis and simulation is illustrated.

6.1 Safety

First, we consider the safety controller synthesis for the terminating region, ΩM . Without

loss of generality, we assume that ΩM is a connected piecewise linear set (may be non-convex).

Therefore, we can specify a polytope PM which is contained in the interior of ΩM . Let us

assume that PM = {x|GMx ≤ gM}. We define the cost function JM : Q ×W ×Uq → R
+ as

JM(q, w, u) = ‖GM(Aq(w)x + Bq(w)u)‖∞

= ‖
vq∑

k=1

wk[GM (Ak
qx + Bk

q u)]‖∞

where ‖ · ‖∞ stands for the infinite norm. The cost function JM is in fact the Minkowski

function induced from the the convex polytope PM .

Because ΩM is assumed to be safe, ΩM ⊆ pre(ΩM) =
⋃

q preq(ΩM). Therefore, for any

x ∈ ΩM , there exists at least one mode q ∈ Q such that x ∈ preq(ΩM). We call such

mode feasible for state x. The control signal can be selected as the solution to the following

min-max optimization problem for one of such feasible modes q:

min
u∈Uq

max
w∈W

JM(q, w, u)

s.t. x ∈ preq(ΩM)

The constraint “x ∈ preq(ΩM)” in the above optimization problem means that the admissible

control signal u ∈ Uq must keep all the possible next step states inside ΩM despite the

uncertainties and disturbances along the mode q. The existence of such control signals

comes from the safety of ΩM and the feasibility of mode q for current state x by assumption.

Therefore, we can always select an admissible control signal for a feasible mode q. The

optimal action of the controller is one that tries to minimize the maximum cost, to try to

counteract the worst disturbance and the worst model uncertainty. In the following, we will

describe step by step how to solve the above min-max optimization problem for the controller

design.

First, we assume that ΩM is convex, and it can be represented by ΩM = {x|FMx ≤ θM}.
For such case, the above min-max optimization problem can be equivalently reduced to

the following linear programming problem [13], if the control constraints Uq is given as a
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polytope.

min
u∈Uq

z

s.t.




GM [A1
qx + B1

qu] ≤ z̄

GM [A2
qx + B2

qu] ≤ z̄

· · · · · ·
GM [A

Nq
q x + B

Nq
q u] ≤ z̄

−GM [A1
qx + B1

qu] ≤ z̄

−GM [A2
qx + B2

qu] ≤ z̄

· · · · · ·
−GM [A

vq
q x + B

vq
q u] ≤ z̄

FM [A1
qx + B1

qu] ≤ gM − δ

FM [A2
qx + B2

qu] ≤ gM − δ

· · · · · ·
FM [A

vq
q x + B

vq
q u] ≤ gM − δ

u ∈ Uq

where z̄ stands for a column vector of proper dimension and with all elements being an auxil-

iary variable z ∈ R. Here δ is a vector whose components are given by δj = maxd∈Dq F T
j Eqd,

and F T
j is the j-th row of matrix FM , which represents the worst case of the disturbances

with respect to the safety specification. Hence the admissible control signal u can be de-

signed for each feasible mode q of the current state x by solving a linear program of the

above form. The feasibility of the linear program is guaranteed by the safety of ΩM and

the feasibility of mode q, i.e. x ∈ preq(ΩM). Note that there may be more than one modes

feasible for the current state x. For such case, a linear program is solved for each feasible

mode, and the active mode and control action is selected as the pair that return the minimal

value of the cost function. Notice that the values for cost functions of different mode q are

comparable, because they are values of Mikowshki functions induced from the same convex

set PM . After the control action is applied and the system evolves along the active mode,

the next step state x′ is guaranteed to be contained inside ΩM , namely the safety of ΩM is

guaranteed. Then the controller synthesis process repeated for the new state x′ to design

next step control signals.

In the following, we will deal with the case when ΩM is a non-convex piecewise linear set.

As it is shown in Proposition 4.3, preq(ΩM ) can be written as a finite union of polyhedra.

Assume preq(ΩM) =
⋃s

i=1 Φi. For each feasible mode q, x ∈ preq(ΩM) =
⋃s

i=1 Φi, then there

exists at least one i, for 1 ≤ i ≤ s, such that x ∈ Φi. The admissible control signal u ∈ Uq,

which keeps the state trajectory remaining in ΩM despite the uncertainties and disturbances

along the mode q, can be designed through the following min-max optimization problems.

min
u∈Uq

max
w∈W

JM(q, w, u)

s.t. x ∈ Φi
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Because of the convexity of Φi, for i = 1, · · · , s, each min-max optimization problem can be

reduced into a linear programming problem as shown for the case of convex ΩM . It is clear

that at least one of these linear programs is feasible if q is a feasible mode for x, and the

solution u is an admissible control that satisfies the safety specification. It is worth pointing

out that the above partition of the non-convex set preq(ΩM) into finite number of convex

sets Φi does not imply that each Φi is safe. In fact, we only rely on the property that if

x ∈ Φi ⊂ preq(ΩM) then admissible control signals to keep the next state x′ remaining inside

ΩM (not Φi) along the mode q do exist.

Therefore, at each step the admissible hybrid control law is designed by solving a finite

number of linear programs. The number of linear programs to be solved depends not only

on the number of feasible modes for current state but also on how many polytopic cells Φi of

the (non-convex) region preq(ΩM) contains. The number of linear constraints for each linear

programming problem is determined by the number of vertex matrices, namely vq, and the

number of faces of the polytopic subregion Φi.

6.2 Direct Reachability

Next, we consider the reachability between two successive regions Ωi and Ωi+1. The control

objective is to drive every state in Ωi to Ωi+1 without entering a third region. Similarly, we

specify a polytope Pc ⊆ Ωi+1, which can be represented as Pc = {x|GCx ≤ gC}. We define

the cost functional, JC : Q ×W × Uq → R
+ as

JC(q, w, u) = ‖GC(Aq(w)x + Bq(w)u)‖∞

= ‖
vq∑

k=1

wk[GC(Ak
qx + Bk

q u)]‖∞

Because Ωi+1 is direct reachable from Ωi, so that for all states x in Ωi, there always exist

discrete mode q, and admissible control signal u ∈ Uq such that the next state remains in

Ωi ∪ Ωi+1, for all allowable disturbances and uncertainties. Therefore, there always exists

q ∈ Q to make the following min-max optimization problem feasible:

min
u∈Uq

max
w∈W

JC(q, w, u)

s.t. x ∈ preq(Ωi ∪ Ωi+1)

This optimization problem is of the same type as the one studied in the safety controller syn-

thesis. Based on similar arguments as in the safety controller synthesis, the above min-max

optimization problem can be reduced into a finite number of linear programming problems.
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6.3 Tracking Attainable Specifications

Assume that the given tracking and regulation specification {Ω0, Ω1, · · · , ΩM} is attainable.

Our task in this section is to select feasible modes q(t) and to design admissible control

signals, u(t) ∈ Uq(t), such that for all the initial states x0 contained in Ω0 will be driven into

Ω1, without violating state and input constraints, then into Ω2 and so on. Finally, the state

trajectory will reach the final region ΩM and stay there.

The controller design procedure is now described: For initial condition x0 ∈ Ω0, determine

the feasible modes for x0 as act(x0) = {q ∈ Q | x0 ∈ preq(Ω0 ∪ Ω1)}. Note that act(x0) is

a non-empty finite set by reachability assumption. For each feasible mode, we employ the

reachability controller design procedure for Ω0 and Ω1. This can be done by solving a finite

number of linear programs. And for each feasible mode q, at least one of the linear programs

is feasible and returns an admissible control signal u ∈ Uq. This claim comes from the

assumed direct reachability from Ω0 to Ω1. The active mode q and control signal u(x0) is

selected among these admissible control signal pairs as the one that returns the smallest value

of the cost function, which represents the best effort being taken to reach Ω1. Then, the

control signal is applied and its corresponding feasible mode q is followed, and the next state

x1 is guaranteed to be contained in Ω0 or Ω1, for all possible disturbances and uncertainties.

If x1 does not reach Ω1, then the reachability controller design procedure for Ω0 and Ω1 is

taken again to obtain the next step feasible mode and admissible control signal. If, after

some steps, x(t) is driven into Ω1, then the reachability controller design procedure for Ω1 to

Ω2 is invoked. This procedure is repeated and finally x(t) reaches ΩM , for which the safety

controller synthesis procedure is followed to obtain the active modes and admissible control

signals. Similar to the case of reachability controller synthesis, the non-emptiness of the

feasible modes, and the feasibility of the finite number of linear programs can be guaranteed

for the safety controller synthesis of ΩM .

The following algorithm describes the controller design procedure that guarantees the

attainability for an attainable specification described by {Ω0, Ω1, · · · , ΩM}.

Algorithma 6.1 Attainability Control

INPUT: {Ω0, Ω1, · · · , ΩM};
for i = 0, 1, · · · , M − 1,

while x(t) ∈ Ωi and x(t) /∈ Ωi+1

Design reachability controller from Ωi to Ωi+1

end

end

Design safety controller for ΩM

OUTPUT: q∗, u∗
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6.4 Commands for Controller Design and Simulation

command description

safereg safety controller design

reachreg direct reachability controller design

regulator attainability controller design

upwlsim simulation for given UPWL system

Table 5: Commands for controller synthesis and simulation.

Table 5 lists the commands for controller synthesis and simulation. Command safereg

first calls function issafe to check the safety of the piecewise linear region in question. If

the checking passed, then safereg calculates and returns the feasible mode q and the ap-

propriate control signal u ∈ Uq. Similarly, Command reachreg first checks the reachability.

If the checking passed, then reachreg calculates and returns the feasible mode q and the

appropriate control signal u ∈ Uq. The command regulator calls function reachreg to

select feasible mode and design admissible control signal to satisfy the reachability between

two nonterminal successive regions in the specification. And when the final (terminal) region

is reached, regulator calls safereg to calculate the feasible mode q and the appropriate

control signal u ∈ Uq in order to guarantee safety specification. At each step the regulator

also calls upwlsim for simulation of the trajectory. Finally let’s see an example for usage of

the commands.

Example 6.1 (Controller Design) Consider the same example setup as in the previous

section. We have defined a specification, {Ω0, Ω1}, and checked its attainability. Here we

will design the controller to satisfy the tracking and regulation specification. Assume initial

condition x0 = [16, 36]T , which is contained in Ω0 but not contained in Ω1. First, design the

direct reachability control signal for x0. Select the cost function as the induced Minkowski

function of the set PC = {x ∈ R
2|‖x‖∞ ≤ 10} for each mode q = 1, 2. Then solve the

optimization problem w.r.t. the cost function for each mode under constraints “x ∈ preq(Ω0∪
Ω1)”. Following the procedure developed above, the active mode and control signal can be

designed by solving a finite number of linear programs. In this example, we need to solve two

linear programs with 26 linear inequality constraints in u and z each (16 of these constraints

are induced from the cost function, 8 constraints come from predecessor constraint, and 2

are control constraints). Here it is shown that the active mode is q = 2 and the control

signal u = −1.00 ∈ U2 return the best control effort. This can be automatically done by

calling the function reachreg. Therefore, if the control signal is applied and the mode q = 2

is followed, the next state x1 is guaranteed to be contained in Ω1

⋃
Ω0 despite uncertainties

and disturbances. If we simulate the state evolution under nominal condition, i.e. setting

D = {0} and choosing the epicenter of the state matrix 1
2
(A1

q + A2
q) for each mode, then we

obtain the next step state x1 = [−2.42, 16.67]T , which is contained in Ω0

⋃
Ω1 as expected.
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Command upwlsim is called by function regulator to return the next step closed-loop

systems state under nominal conditions. Because x1 /∈ Ω1, the reachability regulation design

is repeated again, also by solving two linear programs with 26 linear inequality constraints.

After one more step, we obtain x2 = [5.13, 5.09]T which is contained in Ω1. Then a safety

regulation controller is designed. The cost function is induced from the region Ω1, because

of its convexity. Similarly, we obtain active modes and control signals by solving two linear

programs at each step, which can be obtained by calling safereg. The following code satisfy

this purpose, and the simulation results under nominal assumptions are shown in Figure 4.

The sequence of selected active mode and admissible control signals of the controller is also

illustrated in Figure 4.

x0 = [16;36];

[u,Reg,qss,xss] = regulator( upwlsys, spec, x0);

figure(1),clf

plot(xss(1,:),xss(2,:))

figure(2), clf

subplot(211),stem([1:length(qss)],qss);

subplot(212),stem([1:length(uss)],uss)
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Figure 4: Left: Simulation for closed-loop nominal plant (assuming d = 0). Right: The active
mode sequence q and control signals u of the controller.

7 Conclusions

This paper has presented a Matlab toolbox, Hy∗, for the tracking and regulation control

problem for the polytopic uncertain piecewise linear systems. The existence of a controller
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such that the closed-loop system follows desired sequence of regions under uncertainty and

disturbance was studied first. The analysis is based on computation of predecessor op-

erator and backward reachability analysis. Then, using the optimization based regulator

introduced, we presented a systematic procedure for controller design by using linear pro-

gramming techniques. The toolbox is available from the authors upon request.
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Appendix A: Toolkit for non-convex piecewise linear

sets

In the implementation of the backward reachability analysis and regulator synthesis for the

polytypic uncertain piecewise linear systems, there involves a lot of operations on the piece-

wise linear (Pwl) sets (maybe non-convex), for example intersection, union, linear transform

and so on. For convenience, we build a separate toolkit in order to deal with non-convex

Pwl sets. Table 6 lists the commands for operations on Pwl sets.

command description

cellreduce reduces the redundant cells of a (non-convex) Pwl set.

fme Fourier-Motzkin elimination method

iscontain check whether the collection of points is contained in a Pwl set

isnull check whether a polytope has empty interior

issubset check whether a Pwl set is a subset of another Pwl set

lintrans computes the linear transform of a Pwl set

mfease feasibility check of a Pwl set

mreduce reduction of a constraints of a polytope

msum calculates the Minkowski sum of two polytopes

pdiff calculates the Pontryagin difference between two Pwl sets

plcomp complement set of a Pwl set

plinters intersection set of two Pwl sets

plunion union set of two Pwl sets

viewpwl plots the Pwl set

Table 6: Commands for dealing with non-convex piecewise linear sets.
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Appendix B: HyStar Command Reference

command description

addynamics define system dynamics and constraints

addregion define the polyhedral regions Pq

addspec add specification

dreach finite-step controllable set Ki(Ω1, Ω2)

getspec extract the specification object

getupwl extract UPWLsys object

isattain check the attainability of a given specification

isreach check finite step direct reachability between two regions

issafe check the safety of a region

pre predecessor operator pre(·)
prein inner-approximation of the predecessor operator pre(·)
reach finite-step backward reachable set

reachreg direct reachability controller design

regulator attainability controller design

safereg safety controller design

setspec initialize the specification object

setupwl initialize uncertain piecewise linear system (UPWLsys) object

upwlsim simulation for given UPWL system

Table 7: Command list for HyStar.

ADDREGION ADDREGION

Purpose
Adds a new polyhedral region partition to the uncertain piecewise linear systems currently

described.

Synopsis
reg = addregion(G, w, UsedDynamics)

Description
Adds a new polyhedral region partition Pq to the uncertain piecewise linear systems

currently described. A label can be optionally attached to this specification to facilitate

future reference to it.

Parameters
Input :
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G, w

Constraint matrices that specify the polyhedral region Pi = {x | Gx ≤ w}.
UsedDynamics

A reference label for which dynamics to use in this region. Several dynamics specifications

can be linked to one region by entering a vector here. That is the discrete state q.

Output :

reg

A label for future reference to the region.

See Also
SETUPWL, ADDYNAMICS, GETUPWL

ADDSPEC ADDSPEC

Purpose
Adds a new region specification to the region-sequence specification currently described.

Synopsis
reg = addspec( upwlsys, G, w, seq )

Description
Adds a new region specification to the specification currently described. A label can be

optionally attached to this specification to facilitate future reference to it

Parameters
Input :

upwlsys

The uncertain piecewise linear system (UPwlsys) in question.

G, w

Constraint matrices (G, w) for region identification of the specification: Ωi = {x ∈ R
n|Gx ≤

w}.
seq

Indicate the order of the region in the tracking and regulation specification, e.g. the first

region (seq=1) or the kth region (seq=k), and so on.

Output :

reg

A label for future reference to the region specification.

See Also
SETSPEC, GETSPEC

ADDYNAMICS ADDYNAMICS
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Purpose
Adds a new continuous variable dynamics to the currently active uncertain piecewise

linear systems.

Synopsis
dyn = addynamics(A, B, E, U, D, comb)

Description
Adds a new continuous variable dynamics to the uncertain piecewise linear system cur-

rently described. A label can be optionally attached to this dynamics to facilitate future

reference to it.

Parameters
Input :

A,B,E

Data describing the polytopic uncertain dynamics

x(t + 1) =
∑

i

wiAix(t) +
∑

i

wiBiu + Ed. (7.1)

A (or B) is a cell with elements describing the vertex matrices Ai ( or Bi respectively), namely

A={A1, · · · , Av} ( or B={B1, · · · , Bv} respectively).

U,D

Data describing the bound of continuous control and disturbance. U and D are both in struct

form with field .l and field .r. The control constraint is described as U = {u ∈ R
m|U.lu ≤

U.r}. Similarly, D = {d ∈ R
r|D.lu ≤ D.r}.

comb

Flag indicating whether the combination between the vertex matrices of cell A and B is

necessary, which means that polytopic uncertainty (A(w), B(w)) ∈ Conv{(Ai, Bj)} for all

vertex matrices of cell A and B, namely Ai and Bj .

Output :

dyn

A label for future reference to the dynamics.

See Also
SETUPWL, ADDREGION, GETUPWL

DREACH DREACH

Purpose
Calculating the finite-step controllable set between two (non-convex) piecewise linear

sets, KN(Ω1, Ω2).

Synopsis
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DR = dreach(upwlsys,PL1,PL2,nstep)

Description
Calculating the finite-step controllable set between two (non-convex) piecewise linear

sets, KNΩ1(Ω2). Note that the finite-step controllable set KN (Ω1, Ω2) is recursively defined

as

Ki(Ω1, Ω2) = K1(Ω1,Ki−1(Ω1, Ω2)),

where i ≥ 1 and K0(Ω1, Ω2) = Ω2.

Parameters
Input :

upwlsys

specify the UPwlsys object in concern.

PL1,PL2

Define the two (non-convex) piecewise linear regions for reachability analysis. Please note

that the non-convex piecewise linear sets PL1 and PL2 is express in a cell format, whose

elements are convex polyhedra (The union of these convex polyhedra gives the non-convex

piecewise linear set.). Each polyhedron is in struct format with two fields, namely .l and

.r.

nstep

Specify the step need to be calculated. The default value of nstep is 3.

Output :

DR

The N-step controllable set between two (non-convex) piecewise linear sets, KN (Ω1, Ω2),

where N = nstep.

See Also
REACH, PRE, PREIN, ISREACH

GETSPEC GETSPEC

Purpose
Extract the specification object.

Synopsis
spec = getspec

Parameters
Output :

spec

The variable spec contains aggregated data of the ordered region-sequence tracking and

regulation specification for the uncertain piecewise linear system in concern. The variable
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spec is called to refer to the tracking and regulation specification defined by setspec and

addspec.

See Also
SETSPEC, ADDSPEC

GETUPWL GETUPWL

Purpose
Extract the UPwlsys object.

Synopsis
upwlsys = getupwl

Description
Returns the internal representation UPwlsys of an uncertain piecewise linear system

once this system has been fully described with ADDREGION and ADDYNAMICS. The internal

representation UPwlsys can be passed directly to any uncertain piecewise linear system’s

analysis and design function.

Parameters
Output :

upwlsys

The variable upwlsys contains aggregated data of the uncertain piecewise linear system

model, including state partition information, discrete modes and dynamics for each mode

etc.

See Also
SETUPWL, ADDYNAMICS, ADDREGION

ISATTAIN ISATTAIN

Purpose
Check attainability of the tracking and regulation specification.

Synopsis
[flag] = isattain(spec, upwlsys, nmax)

Description
Check attainability of the tracking and regulation specification, which is defined by calling

commands setspec, addspec, and getspec. The function isattain checks the attainability

based on Theorem 5.3, and calls the function isreach and issafe.

Parameters
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Input :

upwlsys

Specify the UPwlsys object in concern.

spec

Specify the tracking and regulation specification in concern, which is defined by calling

commands setspec, addspec, and getspec.

nmax

Specify the maximal step length allowed.

Output :

flag

flag > 0, if specification spec is attainable.

flag < 0, otherwise.

See Also
ISREACH, ISSAFE

ISREACH ISREACH

Purpose
Check direct reachability between two regions in finite steps.

Synopsis
[flag] = isreach (upwlsys, PL1, PL2, nstep)

Description
Check direct reachability between two piecewise linear (may be non-convex) regions,

described by PL1 and PL2, in a finite number of steps. It is based on the geometric condition

in Theorem 5.2 and calls the function dreach to calculate the finite step controllable sets.

Parameters
Input :

upwlsys

Specify the UPwlsys object in concern.

PL1, PL2

Specify the successive region pair Ω1 and Ω2 in concern. PL1 and PL2 may represent a non-

convex piecewise linear set.

nstep

Specify the maximal step length allowed.

Output :

flag

flag > 0, if region PL1 can direct reach region PL2 in nstep steps or less.

flag < 0, otherwise.
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See Also
DREACH, PRE, PREIN

ISSAFE ISSAFE

Purpose
Check safety of a (non-convex) piecewise linear region.

Synopsis
[flag] = issafe (upwlsys, PL)

Description
Check the safety of a piecewise linear (may be non-convex) region, described by PL. It is

based on the geometric condition in Theorem 5.1 and calls the function pre to calculate the

one-step predecessor set of PL.

Parameters
Input :

upwlsys

Specify the UPwlsys object in concern.

PL

Specify the region Ω in concern. PL may represent a non-convex piecewise linear set.

Output :

flag

flag > 0, if the region in concern is safe.

flag < 0, otherwise.

See Also
PRE

PRE PRE

Purpose
Calculate the one-step predecessor set.

Synopsis
prePL = pre( upwlsys, PL )

Description
pre calculates the one-step predecessor set for the (non-convex) piecewise linear region

described by PL based on the methods developed in Section 4.

Parameters
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Input :

upwlsys

Specify the UPwlsys object in concern.

PL

Specify the piecewise linear region in concern. Note that PL may represent a non-convex

piecewise linear set.

Output :

prePL

Returns the exact one-step predecessor set for region PL.

See Also
PREIN

PREIN PREIN

Purpose
Calculate an inner approximation of the one-step predecessor set.

Synopsis
preinPL = prein( upwlsys, PL )

Description
prein calculates an inner approximation of the one-step predecessor set for the (non-

convex) piecewise linear region described by PL based on the following observation:

Ω =
⋃
i

Ωi ⇒ pre(Ω) ⊇
⋃
i

pre(Ωi).

The command prein does not involve complement operation when dealing with non-convex

piecewise linear set Ω, which makes it more efficient than the command pre. Note that pre

and prein returns the same result for convex set PL.

Parameters
Input :

upwlsys

Specify the UPwlsys object in concern.

PL

Specify the piecewise linear region in concern. Note that PL may represent a non-convex

piecewise linear set.

Output :

preinPL

Returns the inner approximation of the one-step predecessor set for region PL.

See Also
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PRE

REACH REACH

Purpose
Calculating the finite-step backward reachable set for a (non-convex) piecewise linear set,

RN (Ω).

Synopsis
R = reach(upwlsys, PL, nstep)

Description
Calculating (or inner-approximating) the finite-step backward reachable set from region

Ω, which equals to finite-step controllable set from X (whole state region) to Ω, namely,

Ri(Ω) = Ki(X , Ω).

Parameters
upwlsys

Specify the UPwlsys object in concern.

PL

Specify the piecewise linear region in concern. Note that PL may represent a non-convex

piecewise linear set.

nstep

Specify the step need to be calculated. The default value of nstep is 3.

Output :

R

The N-step backward reachable set from region Ω, where N = nstep.

See Also
REACH, PRE, PREIN

REACHREG REACHREG

Purpose
Controller design for the direct reachability specification.

Synopsis
[u, q, flag, mincost] = reachreg( upwlsys, PL1, PL2, x0)

Parameters
Input :

upwlsys
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Specify the UPwlsys object in concern.

PL1, PL2

Specify the successive region pair Ω1 and Ω2 in concern. PL1 and PL2 may represent a non-

convex piecewise linear set.

x0

Specify the initial state which is contained inside PL1.

Output :

u,q

Returns the feasible continuous control signal u and active mode q that satisfy the reacha-

bility specification.

flag

Feasibility of the controller synthesis problem. If flag is positive, then feasible control laws

exist and being calculated. If flag is negative, then the specification is not feasible.

mincost

Returns the cost function value for the best control effort.

See Also
SAFEREG, REGULATOR

REGULATOR REGULATOR

Purpose
Controller design for the tracking and regulation specification.

Synopsis
[u, Reg, qss, xss] = regulator( upwlsys, spec, x0)

Parameters
Input :

upwlsys

Specify the UPwlsys object in concern.

spec

Specify the tracking and regulation specification in concern, which is defined by calling

commands SETSPEC, ADDSPECT, and GETSPEC.

x0

Specify the initial state which is contained inside the initial region in spec.

Output :

u, qss

Returns the sequence feasible continuous control signal u and active mode qss that satisfy

the specification.

xss
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The trajectory of the closed-loop system under nominal condition.

Reg

The sequence of region index that the state trajectory visited.

See Also
REACHREG, SAFEREG, UPWLSIM

SAFEREG SAFEREG

Purpose
Controller design for the safety specification.

Synopsis
[u, q, flag, mincost] = safereg( upwlsys, PL, x0)

Parameters
Input :

upwlsys

Specify the UPwlsys object in concern.

PL

Specify the region ΩM in concern. PL may represent a non-convex piecewise linear set.

x0

Specify the initial state which is contained inside PL.

Output :

u,q

Returns the feasible continuous control signal u and active mode q that satisfy the specifi-

cation.

flag

Feasibility of the controller synthesis problem. If flag is positive, then feasible control laws

exist and being calculated. If flag is negative, then the specification is not feasible.

mincost

Returns the cost function value for the best control effort.

See Also
REACHREG, REGULATOR

SETSPEC SETSPEC

Purpose
Initializes the description of a new specification for the uncertain piecewise linear system
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under concern.

Synopsis
setspec(upwlsys,spec0)

Description
Initializes the description of a new specification for the uncertain piecewise linear system

under concern.

1. To start from scratch, type

setspec(upwlsys,[])

2. To add on to an existing specification spec0, type

setspec(upwlsys,spec0)

See Also
ADDSPEC, GETSPEC

SETUPWL SETUPWL

Purpose
Initializes the description of a new uncertain piecewise linear system.

Synopsis
setupwl(upwlsys0)

Description
Initializes the description of a new uncertain piecewise linear system.

1. To start from scratch, type

setupwl([])

2. To add on to an existing piecewise linear hybrid dynamical system upwlsys0, type

setupwl(upwlsys0)

See Also
ADDYNAMICS, ADDREGION, GETUPWL

UPWLSIM UPWLSIM

Purpose
Simulation for a given UPWL system under nominal assumption.
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Synopsis
[xc,xv] = upwlsim(upwlsys, q0, u, x0)

Description
Simulates an uncertain piecewise linear system. The system should be specified using

SETUPWL, ADDREGION, ADDYNAMICS, and GETUPWL. The state evolution is simulated under

nominal condition, i.e. setting D = {0},
Parameters
Input :

upwlsys

The uncertain piecewise linear system to be simulated.

q0

The active mode to be followed.

u

The continuous control signal, which maybe returned from the synthesis commands like

safereg, reachreg or regulator.

x0

Specify the initial state of the UPwlsys in concern.

Output :

xc

The epi-center of the next continuous sate under nominal assumption.

xv

The cell xv contains a collection of vectors, whose convex combination, conv{xv}, gives all

possible next step continuous sate under nominal assumption.

See Also
REGULATOR
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