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Abstract— In this paper, we study the disturbance atten-
uation properties for some classes of discrete-time uncertain
piecewise linear hybrid/switched systems, which are affected
by both time-variant parameter variations and persistent
exterior disturbances. The problem of determining non-
conservative bounds on thel∞ induced gain from the dis-
turbance to controlled output for the closed-loop uncertain
linear hybrid system is investigated. A procedure is given to
determine such minimal l1 norm of the uncertain piecewise
linear systems. However, the termination of the procedure
developed for general uncertain piecewise linear systems is not
guaranteed. Therefore, it is important to specify a subclass of
piecewise linear systems whosel1 norm can be determined in
finite number of steps. For such a purpose, we simplify the
discrete event dynamics of the uncertain hybrid systems and
obtain its subclass called uncertain switched linear systems. It
is shown that the uncertain switched linear systems’l1 norm
can be determined in finite number of steps.

I. I NTRODUCTION

The dynamic uncertainty and robust control of hy-
brid/switched systems is a highly promising and challenging
field, which has been attracting more and more researchers’
attention. However, the literature on this topic is relatively
sparse. Some of the contributions include modelling uncer-
tain hybrid/switched systems, reachability analysis, stability
analysis and so on. For example, impulse differential inclu-
sions were proposed as a modeling framework for uncertain
hybrid/switched systems in [2], and some theoretic results
for viability and invariance analysis in classical differen-
tial inclusions were extended to the impulse differential
inclusions. Some reachability analysis results for uncertain
hybrid/switched systems have appeared in [15], which was
based on the backward reachability analysis techniques.
There are also a few related works on robust controller de-
sign. In [17], the authors gave an abstract algorithm, based
on modal logic formalism, to design the switching mecha-
nism among a finite number of continuous variable systems.
It was shown that the closed-loop system formed a hybrid
automaton and satisfied certain specifications robustly. In
[16], a robust tracking and regulation controller was de-
signed for uncertain piecewise linear hybrid systems based
on linear programming techniques. In [10], the authors
proposed logically supervised switching multiple controllers
to control uncertain dynamical systems, and the closed-loop
system formed a class of uncertain switched systems. The
advantages of switching controllers over classical adaptive
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controllers were discussed in [10] as well. These advantages
partially explain the increasing interest in switched systems
during the past decade. For robust stabilization of uncertain
switched systems, a quadratic stabilizing switching law was
designed for polytopic uncertain switched systems based on
LMI techniques in [21].

In this paper, we will focus on the induced gain anal-
ysis for uncertain linear hybrid/switched systems. There
are some related works in the literature on analyzing the
induced gain in switched systems. In [19], theL2 gain
of continuous-time switched linear systems was studied
by an average dwell time approach incorporated with a
piecewise quadratic Lyapunov function, and the results were
extended to discrete-time case in [20]. In [9], the root-mean-
square (RMS) gain of a continuous-time switched linear
system with slow switchings was computed in terms of
the solutions to a collection of Riccati equations. However,
these robust performance problems considered are both in
the signal’s energy sense, and assume that the disturbances
are constrained to have finite energy, i.e. boundedL2 norm.
In practice, there are disturbances that do not satisfy this
condition and act more or less continuously over time. Such
disturbances are called persistent [7], and can not be treated
in the above framework. Therefore, in this paper we con-
sider l∞ induced gain to deal with the robust performance
problems in the signal’s magnitude sense, i.e. time domain
specifications. Moreover, we explicitly consider dynamic
uncertainty in the hybrid system model here. Dynamics
uncertainty in the plant model is one of the main challenges
in control theory, and being able to deal with dynamical
uncertainties explicitly is of practical importance.

This paper is organized as follows. In Section II, we first
define the uncertain piecewise linear systems, and then for-
mulate the correspondingl∞ induced gain analysis problem.
The goal is to determine the optimal disturbance attenuation
level that can be achieved by the available control mecha-
nism. In Section IV, thel∞ induced gain analysis problem is
transformed into checking the robust controlled invariance
of the disturbance attenuation performance level set. Invari-
ant set theory has been studied in the literature for decades,
see for example [6], [4], [3] and references therein. The
invariance checking and calculation are based on backward
reachability analysis and symbolic model checking method,
which are studied in Section III. Based on the geometric
condition for robust controlled invariance, a condition for
checking whether there exist control mechanisms to achieve
a given disturbance attenuation level is given. In Section IV,
a bisection based procedure is proposed to determine a non-
conservative bound on the optimal disturbance attenuation
level that can be achieved for the uncertain piecewise



linear systems. However, the termination of the proposed
procedure in finite number of steps is not guaranteed. This
is mainly because of the fact that the reachability problem
is undecidable for general hybrid systems [1]. Hence, an
important question is to specify the decidable class for the
robust performance analysis problem. In Section V, we will
focus on the decidability of thel∞ disturbance attenuation
problem, and specify a decidable subclass of the uncertain
piecewise linear systems, called uncertain switched linear
systems. The determination of an nonconservative upper
bounds on thel∞ induced gain for uncertain switched linear
systems can terminate in finite number of steps. It should
be pointed out that thel∞ disturbance attenuation problem
for a class of switched linear systems without continuous
inputs were previously studied in [13]. Section V is an
extension of [13] to a more general case, namely to the case
of continuous control law and switching signal co-design.
Notation: The letters E ,P ,S · · · denote sets,∂P the
boundary of setP , and int{P} its interior. A polytope
(bounded polyhedral set)P will be presented either by
a set of linear inequalitiesP = {x : Fix ≤ gi, i =
1, · · · , s}, and compactly byP = {x : Fx ≤ g}, or by
the dual representation in terms of the convex hull of its
vertex set{xj}, denoted byConv{xj}. For x ∈ R

n, the
l1 and l∞ norms are defined as‖x‖1 =

∑n
i=1 |xi| and

‖x‖∞ = maxi |xi| respectively.l∞ denotes the space of
bounded vector sequencesh = {h(k) ∈ R

n} equipped
with the norm ‖h‖l∞ = supi ‖hi(k)‖∞ < ∞, where
‖hi(k)‖∞ = supk≥0 |hi(k)|.

II. PROBLEM FORMULATION

We consider discrete-time uncertain piecewise linear sys-
tems of the form

x(t + 1) = Aq(w(t))x(t) + Bq(w(t))u(t) + Ed(t),
t ∈ Z

+, if x ∈ Pq
(1)

wherex(t) ∈ R
n is the state variable,u(t) ∈ Uq ⊂ R

m is
the control input, and the disturbance inputd(t) is contained
in D ⊂ R

r, the l∞ unit ball, i.e.D = {d : ‖d‖l∞ ≤ 1}.
The uncertain parameterw(t) ∈ W ⊂ R

v. It is assumed
thatUq andW are polytopes assigned to each modeq.

Let the finite setQ stand for the collection of discrete
modesq. The partition of the state spaceX is given as a
finite set of polyhedra{Pq : q ∈ Q}, wherePq ⊆ X and⋃

q∈Q Pq = X . The continuous variable dynamics of mode
q is defined by the parametric uncertain matricesAq(w),
Bq(w) and constant matrixE, and it is assumed that the
entries ofAq(w) andBq(w) are continuous functions ofw
for every modeq.

A possible evolution of the uncertain piecewise linear
systems from a given initial conditionx0 ∈ X can be
described as follows. First, there exists at least one discrete
mode q0 ∈ Q such thatx0 ∈ Pq0 , and the modeq0

is called the feasible mode for statex0
1. Then the next

continuous variable state is given by the transitionx1 =
Aq0(w)x0 + Bq0(w)u + Ed for some possiblew ∈ W ,
d ∈ D and specificu ∈ Uq0 . Then the above procedure is
repeated for statex1 to determine the next possible state
x2, and so on.

Associated with the uncertain piecewise linear system (1),
a controlled outputz(t) is considered.

z(t) = C(w(t))x(t) (2)

whereC(w) ∈ R
p×n andz(t) ∈ R

p. It is also assumed that
the entries ofC(w) are continuous functions ofw.

For this uncertain piecewise linear system (1)-(2), we are
interested in determining a non-conservative bound for the
l∞ induced norm fromd(t) to z(t), which is defined as

µinf = inf{µ | ∃q(t) ∈ Q, u(t) ∈ Uq(t) : ‖z(t)‖l∞ ≤ µ,
∀‖d(t)‖l∞ ≤ 1}

The first problem considered in this paper can be formu-
lated as follows.
Problem: Given the uncertain piecewise linear system (1)-
(2), determine the minimall∞ induced gain fromd(t) to
z(t) that can be achieved by some admissible control law.

The basic idea employed in this paper is to translate
the required level of performance into constraints on the
controlled system, which can be dealt with by the invariant
set theory. Therefore, we introduce the controlled robust
invariant set for the uncertain hybrid systems as follows.

Definition 1: The setΩ ⊂ X is controlled robust in-
variant for the uncertain piecewise linear system (1)-(2) if
∀x0 ∈ Ω, there exists feasible modes and admissible control
inputs, such thatx(t) ∈ Ω, ∀t ≥ 0, despite disturbances and
uncertainties.

In this paper, the invariance checking and calculation
for Ω is based on the backward reachability analysis and
robust predecessor operator, which will be introduced and
developed for the uncertain piecewise linear system in the
next section.

III. ROBUST BACKWARD REACHABILITY ANALYSIS

A. Robust One-Step Predecessor Set

The basic building block to be used for backward reach-
ability analysis is therobust one-step predecessor operator,
which is defined below.

Definition 2: The robust one-step predecessor set,
pre(Ω), is the set of states inX , for which admissible
control inputs exist and drive these states intoΩ in one
step, despite disturbances and uncertainties, i.e.

pre(Ω) = {x(t) ∈ X|∃q ∈ Q, u(t) ∈ Uq : x(t) ∈ Pq,
Aq(w)x(t) + Bq(w)u(t) + Ed(t) ∈ Ω, ∀d(t) ∈ D, w ∈ W}
1In the definition here, it is not required that the partitionPq have

mutually empty intersections. Therefore, for the initial statex0 there may
exists more than one feasible discrete modes. For such case, it is assumed
the current active mode,q0 here, is selected from these feasible modes
according to certain criteria or just randomly.



We can also define the one-step predecessor set under
the q-th mode,preq(Ω), as the set of all statesx ∈ Pq,
for which an admissible control inputu ∈ Uq exists and
guarantees that the system will be driven toΩ by the
transformationAq(w)x + Bq(w)u + Ed for all allowable
disturbances and uncertainties.

Proposition 1: 2 The robust one-step predecessor set
pre(Ω) for an uncertain piecewise linear system can be
computed as follows:

pre(Ω) =
⋃
q∈Q

preq(Ω)

Therefore, we only need to calculate the one-step prede-
cessor set for eachq-th subsystem.

B. Predecessor Sets for Subsystems

The difficulty of the calculation ofpreq(Ω) mainly comes
from the fact that the regionΩ is usually non-convex.
Even if one starts with convex sets, it usually deduces
non-convex sets for piecewise linear systems after one-step
predecessor operation. Because of the non-convexity, some
of the linearity and convexity arguments do not hold and
extra care should be taken.

In the sequel, we will focus on polytopic uncertainty in
Aq(w) and Bq(w) for every modeq ∈ Q. It is assumed
that

Aq(w) =
vq∑

k=1

wk
q Ak

q , Bq(w) =
vq∑

k=1

wk
q Bk

q ,

where wk
q ≥ 0 and

∑vq

k=1 wk
q = 1. The pair

(Aq(w), Bq(w)) represents the model uncertainty which be-
longs to the polytopic setConv{(Ak

q , Bk
q ), k = 1, · · · , vq}

for each modeq ∈ Q. This is referred to as polytopic
uncertainty and provides a classical description of model
uncertainty. Similarly, we assume polytopic uncertainty in
C(w) as well, in particular

C(w) =
N∑

l=1

wlC
l,

wherewl ≥ 0 and
∑N

l=1 wl = 1. Notice that the coefficients
wk andwl are unknown and possibly time varying.

Under the polytopic uncertainty assumption, the calcula-
tion of the predecessor set for piecewise linear sets can be
simplified, as implied by the following proposition.

Proposition 2: 2 For polytopic uncertain piecewise linear
systems, the robust one-step predecessor set for an assigned
piecewise linear setΩ (may be non-convex) under theq-th
subsystem can be calculated as

preq(Ω) =
vq⋂

k=1

prek
q (Ω),

whereprek
q (Ω) stands for the one-step predecessor operator

of the k-th vertex state matrix(Ak
q , Bk

q ), i.e. prek
q (Ω) =

2Proof is omitted here for space limit, see [16] for details.

{x ∈ Pq| ∃u ∈ Uq : Ak
qx + Bk

q u + Ed ∈ Ω, ∀d ∈ Dq}, for
1 ≤ k ≤ vq.

Therefore, we derived the relationship between robust
one-step predecessor operator for the polytopic uncertain
systems,preq(·), and the one-step predecessor set of the
vertex dynamics,prek

q (·) for k = 1, · · · , vq. It turns out that
the robust one-step predecessor set for a piecewise linear set
Ω under polytopic uncertain linear dynamics can be boiled
down to the finite intersection of one-step predecessor sets
corresponding to the dynamic matrix polytope vertices,
which have no parametric uncertainty. The predecessor set
under deterministic linear dynamics,prek

q (Ω), has been
studied extensively in the literature and can be computed by
Fourier-Motzkin elimination [18] and linear programming
techniques, see e.g. [4], [11].

Proposition 3: 2 The robust one-step predecessor set for
a (non-convex) piecewise linear setΩ, pre(Ω), can be
written as finite union of polyhedra.

Although the convexity is not preserved under the one-
step predecessor operation, the piecewise linearity remains
unchanged as Proposition 3 implies. Therefore, one can
apply the predecessor operation recursively, which will be
explored in the next section.

IV. H YBRID ROBUST PERFORMANCEANALYSIS

In this section, we will determine the minimall∞ in-
duced gain fromd(t) to z(t) that can be achieved by
some admissible control laws for the closed-loop piecewise
linear systems. For such purpose, we first introduce the
performance levelµ set as

Ωµ = {x : ‖C(w)x‖∞ ≤ µ}

= {x : ‖
N∑

l=1

wlC
lx‖∞ ≤ µ}

=
N⋂

l=1

{x : ‖Clx‖∞ ≤ µ}

=
N⋂

l=1

{x :
[

Cl

−Cl

]
x ≤

[
µ̄
µ̄

]
}

whereµ̄ stands for a column vector withµ as its elements.
Ωµ is finite intersection of polytopes containing the origin
in their interior. Therefore,Ωµ is a polytope containing the
origin in its interior.

A value µ < +∞ is said to be admissible ifµ > µinf .
Clearly, a sufficient condition forµ to be admissible is that
the hybrid performance level setΩµ is controlled robust
invariant. Therefore, thel∞ induced gain analysis problem
is transformed into checking the controlled robust invariance
of the disturbance attenuation performance level set. The
following is an important, well-known geometric condition
[6] for a set to be controlled invariant.

Theorem 1:The setΩµ is a controlled robust invariant
set if and only if Ωµ ⊆ pre(Ωµ).

In general, a given setΩµ is not controlled robust invari-
ant. However,Ωµ may contain controlled robust invariant



subsets. In other words, the sufficient condition forµ to
be admissible maybe too conservative. In order to get
necessary and sufficient condition for the admissibility of
µ, we introduce the following definition.

Definition 3: The setC∞(Ωµ) is themaximal controlled
robust invariant setcontained inΩµ for the uncertain piece-
wise linear system (1)-(2) ifC∞(Ωµ) is controlled robust
invariant and contains all the controlled robust invariant sets
contained inΩµ.

The existence and uniqueness of the maximal controlled
robust invariant setC∞(Ωµ) follow immediately from the
fact that the union of two controlled robust invariant sets
is still controlled robust invariant. In order to calculate the
maximal controlled robust invariant set inΩµ, we introduce
the one-step controllable set ofΩµ as

C1(Ωµ) = pre(Ωµ) ∩ Ωµ.

It follows from Proposition 3 that the one-step controllable
set C1(Ωµ) is a piecewise linear set ifΩµ is given as a
piecewise linear set. Therefore, the one-step controllable set
operator can be used recessively to definei-step controllable
setCi(Ωµ) as follows.

Ci(Ωµ) = C1(Ci−1(Ωµ)) = pre(Ci−1(Ωµ)) ∩ Ci−1(Ωµ),

for i ≥ 2. The sequence of finite-step controllable sets
Ci(Ωµ) has the following property.

Proposition 4: The sequence of finite step controllable
setsCi(Ωµ) is decreasing in the sense of

Ci(Ωµ) ⊆ Ci−1(Ωµ),

for i ≥ 1 and C0(Ωµ) = Ωµ. The maximal controlled
invariant set inΩµ for the uncertain piecewise linear system
(1) is given by

C∞(Ωµ) =
∞⋂

i=0

Ci(Ωµ).

The proof can be adopted from the proof of Theorem 3.1
in [4], which is not difficult, so it is omitted here.

Based on the notation of the maximal controlled robust
invariant setC∞(Ω), we state now the basic result of
this section which will be used to give a solution to the
disturbance attenuation property analysis problem.

Proposition 5: A value µ < +∞ is admissible, i.e.µ >
µinf , if and only if the maximal controlled robust invariant
subset ofΩµ, C∞(Ωµ), is non-empty.

This result suggests the following constructive procedure
for finding a robust performance bound.
Procedure 1.Checking whetherµ > µinf

1) Initialization: Seti = 0 and setC0 = Ωµ.
2) Compute the setCi+1(Ωµ) = pre(Ci(Ωµ)) ∩ Ci(Ωµ).
3) If 0 /∈ Ci+1 then stop, the procedure has failed. thus,

the output does not robustly meet the performance
level µ.

4) If the Ci(Ωµ) = Ci−1(Ωµ), then stop, and set
C∞(Ωµ) = Ci(Ωµ).

5) Seti = i + 1 and go to step 1.

This procedure can then be used together with a bisection
method onµ to approximate arbitrarily close to the opti-
mal valueµinf , which solves the disturbance attenuation
property analysis problem. In fact, if the procedure stops at
step 3, which comes from the fact that ifC∞(Ωµ) 6= ∅ then
0 ∈ Ci+1. we conclude thatµ < µinf and we can increase
the value of the output boundµ. Else, if the procedure stops
at step 4, we have determined an admissible bound for the
output, sayµ > µinf , that can be decreased. The above
discussion can be formalized as a bisection algorithm as
follows:

Algorithm 1: Algorithm for Calculatingµinf

1) Initialization: Choose the initial interval[µ1, µ2] such
that µ1 ≤ µinf < µ2. Chooseε > 0, the tolerance
level. If no knowledge of lower bounds ofµinf is
available,µ1 may be chosen asµ1 = ε.

2) While (µ2 − µ1) > ε, set µ3 = µ1+µ2
2 , and check

whetherµ3 > µinf by the above Procedure. Ifµ3 >
µinf , then setµ2 = µ3, else setµ1 = µ3.

3) Outputµinf = µ1+µ2
2 .

However, the reachability problem for general hybrid
systems is undecidable, see for example [1]. Therefore, the
bisection method onµ to approximate the optimal value
µinf can not be guaranteed to terminate in finite number of
steps. Nevertheless, the possibility of an endless loop can
be averted by putting ana priori limit on the number of
iterations or by employing a grid based approximation as
a termination condition. We will focus on the decidability
issue in the next section.

V. DECIDABLE UNCERTAIN SWITCHED LINEAR

SYSTEMS

In the previous section, we studied the robust perfor-
mance analysis problem of the polytopic uncertain piece-
wise linear systems. However, the termination of the pro-
posed procedure in finite number of steps is not guaranteed.
Hence, an important question is to specify the decidable
class for the robust performance problems. Two kinds of
simplification may be employed to make the procedures
decidable. One way to obtain such decidable class is to
simplify the continuous variable dynamics, see for example
[1]. However, this approach may not be attractive to control
applications, where simple continuous variable dynamics
may not be adequate to capture the system’s dynamics.
Alternatively, one may restrict the discrete event dynamics
of the uncertain linear hybrid systems. In this section,
we will focus on the decidability of thel∞ disturbance
attenuation problem, and specify a decidable subclass of
the uncertain piecewise linear systems, called uncertain
switched linear systems. The decidability comes from the
simplicity of the discrete event dynamics. In particular, for
the switched linear systems, we do not consider partition of
the state spacePq. In other words, the transitions between
modes may happen at any point in the state space. Notice
that previous work along this line appeared in [13], in
which a class of switched autonomous linear systems was



investigated. This section considers a more general model,
and extends the results in [13].

A. Uncertain Switched Linear Systems

In this section, we consider a family of discrete-time un-
certain linear systems described by the following difference
equations.

x(t + 1) = Aq(w)x(t) + Bq(w)u(t) + Ed(t), t ∈ Z
+ (3)

wherex(t) ∈ R
n is the state variable,u(t) ∈ Uq ⊂ R

m is
the continuous control input, and the disturbance inputd(t)
is contained inD ⊂ R

r, the l∞ unit ball. The continuous
variable dynamics of modeq is defined by the parametric
uncertain matricesAq(w), Bq(w) and constant matrixE
for every modeq. The finite setQ = {q1, q2, · · · , qn} is
called the set ofmodes.

Combine the family of discrete-time uncertain linear
systems (3) with a class of piecewise constant functions of
time s : Z

+ → Q. Then we can define the following time-
varying system as a discrete-time switched linear system

x(t + 1) = As(t)(w)x(t) + Bs(t)(w)u(t) + Ed(t), t ∈ Z
+

(4)
The signals(t) is called aswitching signal. Let us denote
the collection of all possible switching signals asSa, which
is usually calledarbitrary switching signalsin the literature
[12], [8].

Associated with the switched linear system (4), a con-
trolled outputz(t) is considered.

z(t) = C(w)x(t) (5)

where C(w) ∈ R
p×n and z(t) ∈ R

p. It is also assumed
that the entries ofAq(w), Bq(w) andC(w) are continuous
function ofw ∈ W , whereW ⊂ R

v is an assigned compact
set.

For this switched linear system (4)-(5), we are interested
in determining a non-conservative bound for thel∞ induced
norm fromd(t) to z(t), which is defined as

µinf = inf{µ | ∃s ∈ Sa, ∃u(t) ∈ U : ‖z(t)‖l∞ ≤ µ,
∀w(t) ∈ W , ∀d(t), ‖d(t)‖l∞ ≤ 1}

It is known that [13] the switched system (4)-(5) has finite
l∞ induced gain if and only if its autonomous system
is asymptotically stable. Therefore, we restrict our search
only in the collection of asymptotically stabilizing control
signals, (s(t), u(t)), which is denoted asSs × Us. It is
assumed that there exist asymptotically stabilizing control
signals,(s(t), u(t)), namelySs × Us is nonempty. In the
sequel, we will develop a procedure to determineµinf for
uncertain switched linear systems (4)-(5).

B. l1 Norm for Switched Systems

We first introduce the definition ofcontrolled invariant
set for the switched system (4).

Definition 4: Considering the switched system (4), a set
P ⊂ R

n is said to becontrolled invariantfor this switched

system if for every initial conditionx(0) ∈ P , for every
admissible disturbanced(t) ∈ D and parameter variation
w(t) ∈ W , there exist admissible control signalu(t) ∈ U
and switching laws ∈ Sa, such thatx(t) ∈ P for t ≥ 0.

We then formalize the definition of limit set,L(s,u), under
given admissible control signalu(t) ∈ U and switching law
s ∈ Sa.

Definition 5: The limit setL(s,u) for the switched system
(4), under given admissible control signalu(t) ∈ U and
switching sequences ∈ Sa, is the set of statesx for which
there exist admissible sequencew(t) and d(t) and a non-
decreasing time sequencetk (with limk→+∞ tk = +∞)
such that

lim
k→+∞

Φ(0, tk, s(·), u(·), w(·), d(·)) = x

whereΦ(0, tk, s(·), u(·), w(·), d(·)) denotes the value at the
instanttk of the solution of (4) originating atx0 = 0 and
corresponding tos, u, w andd.

For the asymptotically stabilizing control signals(s, u) ∈
Ss×Us, we know that the limit setL(s,u) has the following
property [5].

Lemma 1:For the asymptotically stabilizing control law
(s, u), the limit setL(s,u) is nonempty and the state evolu-
tion of the switched system (4), for every initial condition
x(0) and admissible sequencew(t) ∈ W and d(t) ∈ D,
converges toL(s,u). Moreover,L(s,u) is bounded and if
x(t) ∈ L(s,u) thenx(t+1) = As(t)(w)x(t)+Bs(t)(w)u(t)+
Ed(t) ∈ L(s,u) for all possibled(t) ∈ D, andw ∈ W .

Next, we define the limit set for the switched linear
system (4) as

L = inf{
⋂

(s,u)∈Ss×Us

L(s,u)},

where the intersection is with respect to any finite collection
of the admissible control laws(s, u) that asymptotically
stabilize the switched system (4). It can be shown thatL
has the property as follows. The proof of the following
propositions can be adopted from the proofs in [13], so
they are omitted here for space limit.

Proposition 6: The setL is bounded and nonempty. For
every initial conditionx(0), admissiblew(t) ∈ W and
d(t) ∈ D, there exists an admissible control laws(s, u)
such that the state evolution of the switched system (4)
converges toL. In addition,L is controlled invariant for
the switched system (4).

It should be pointed out that the introduction of the limit
set L(s,u) andL is for the purpose of proving the decid-
ability of the procedures forl1 analysis later, namely the
termination in finite number of steps. There is no necessary
to calculate these limit setL(s,u) or L to implement the
procedures for the determination of induced gains.

Similarly, define the performance levelµ set as

Ωµ = {x : ‖C(w)x‖∞ ≤ µ} (6)



Recursively define the setsCk, k = 0, 1, · · · as

C0 = Ωµ, Ck = Ck−1

⋂
pre(Ck−1) (7)

where the predecessor set for the switched system (4),
pre(C), is the set of statesx from which, despite distur-
bances and dynamic uncertainties, there exist a subsystem
(switching signals) and continuous control signalu ∈ U
driving the states toC in one step.

By construction,C∞ has the property that there exists
a switching signals(t) and continuous control signalu(t)
with respect to whichC∞ is positive controlled invariant
for the switched system (4). Also it can be shown thatC∞
is the maximal controlled invariant subset contained inΩµ.
Then, givenµ > 0, there exists a switching signals(t) and
continuous control signalu(t) such that the response of the
switched system satisfies‖z(t)‖l∞ ≤ µ for all w(t) ∈ W
and ‖d(t)‖l∞ ≤ 1 if and only if the maximal controlled
invariant subset contained inΩµ, C∞, is nonempty and0 ∈
C∞ ⊆ Ωµ.

We now give a proposition which guarantees thatC∞ can
be finitely determined.

Proposition 7: If L ⊂ int{Ωµ} for someµ > 0, then
there existsk such thatC∞ = Ck and thisk can be selected
as the smallest integer such thatCk+1 = Ck.

The calculation ofµinf for uncertain switched systems
(4)-(5) can now be solved by determining the maximal
controlled invariant setC∞ in Ωµ for several values ofµ
and checking whether or not it contains the origin. Note that
in both cases we get an answer in a finite number of steps,
although there is noa-priori bound for such a number. In
the first case this is due to the above theorem. In the second
case, this follows by the fact that the sequence of closed sets
Ck is ordered by inclusion andC∞ is their intersection. Thus
0 /∈ C∞ if and only if 0 /∈ Ck for somek. These results
suggest that the bisection algorithm (Algorithm 1) can be
employed to approximate arbitrarily close to the optimal
valueµinf .

VI. CONCLUDING REMARKS

In this paper, we put the robust performance analysis
problems of uncertain linear hybrid/switched systems into
the framework of invariant set theory. The robust perfor-
mance problem was transformed into robustly controlled
invariance problems for a specific region decided by the
performance level. Based on the geometric condition for
robust controlled invariance, a bisection based procedure
was proposed to determine the optimal disturbance atten-
uation level µinf . The decidability issue of the robust
performance analysis problem was discussed, and switched
linear systems were specified as a decidable subclass of
the uncertain piecewise linear hybrid systems. The decid-
ability comes from the simplicity of the discrete event
dynamics. It is worth to point out that this specific simple
subclass of hybrid systems still can model a large class
of practical systems, such as multi-controller supervisory
control systems, controller failures, fault diagnosis and

control reconfiguration etc. For example, in [15], [14], a
class of networked control systems with uncertain delay
and package dropout effects was modeled as such switched
system.
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