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Abstract— In this paper we introduce a new class of
controlled invariant sets, called controllable invariant sets.
Intuitively, a controllable invariant set has the property that
from any “large enough” connected region of the set it is
possible to reach any such other region of the set, regardless
of disturbances. Disturbances are assumed to be bounded.
The range of the control inputs is assumed to be given and
is allowed to be bounded. The main result of the paper is
a nonrecursive approach for the computation of controllable
invariants. The other results of the paper deal with properties
of the proposed method and of controllable invariance. The
results of the paper assume hybrid system modes with linear
discrete-time dynamics.

I. I NTRODUCTION

Controlled invariant sets have been used in the hybrid
systems literature for the solution to the safety problem
(e.g. [7]). This paper introduces a new class of controlled
invariant sets, called controllable invariant sets. The context
is that of mode dynamics of hybrid systems with control
inputs and bounded disturbances. The controllable invariant
sets are defined as follows. Given a closed neighborhood of
the originΩ, let Ωx denote the neighborhoodΩ aroundx
(i.e. Ωx = {y : y − x ∈ Ω}). Then J is a controllable
invariant set ifΩx is a controlled invariant at all points
x of J , and for all pointsx1 andx2 of J it is possible to
reachΩx2 from any point ofΩx1 , regardless of disturbances.
Thus, this definition implies a certain reversibility, meaning
that as long as we keep the state withinJ , it is always
possible to return it to the initial condition (i.e., initial
neighborhood). Such a reversibility fits most engineering
systems. Note that in general the controllable invariant sets
are proper subsets of a maximum controlled invariant set.
In practice, one factor that may cause a controlled invariant
set to be not controllable is the bounded range of the control
inputs.

In this paper we approach the computation of the con-
trollable invariant sets for linear discrete-time dynamics
and rectangular neighborhoodsΩ. The computational ap-
proach is nearly optimal, in the sense that the controllable
invariant set J that is obtained is an open set whose
closureJ contains all controllable invariant sets with the
same neighborhood typeΩ asJ . The computation involves
linear programming and projections (also known as Fourier-
Motzkin eliminations). Related approaches have been used
in [5], [10] for predecessor operator computations, in [3],
[11] for the computation of the maximal controlled invariant
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set, and also in other contexts, e.g. [4], [2]. Note that
some model uncertainties could be incorporated in this
framework [6]. To our knowledge, the entire material of
this paper is new.

The paper is organized as follows. After presenting
our notation and definitions in section II, a motivation is
presented in section III. The motivation shows the rele-
vance of the controllable invariant sets to a hybrid system
abstraction problem. Then, the computation is approached
in section IV. The approach is formally proved in the
same section. Section IV includes also an investigation of
the properties of the computational approach and of the
controllable invariant sets, in general.

II. D EFINITIONS

This is our notation. Given a hybrid system of set of
modesQ, we denote byInv(q) the invariant set of the mode
q ∈ Q. Also, let X denote the domain of the continuous
state variablex. In this paper we assume that the dynamics
of each modeq can be described by

x(t + 1) = A(q)x(t) + B(q)u(t) + E(q)d(t) (1)

whereu is the control input andd is the disturbance, which
will be assumed bounded. For each modeq, we define the
following

• The operatorPre represents thepredecessor operator.
That is,Pre(M) is the set of continuous states from
which M can be robustly reached. In other words,
∀x0 ∈ Pre(M) there is a control policy (which may
depend onx0) which, no matter of disturbances, leads
the continuous statex from x0 to somexf ∈ M .

• I ⊆ Inv(q) is a controlled invariant set if for all
x ∈ I there is an admissible control law such that
for all subsequent timest: x(t) ∈ I, regardless of the
disturbance input.

• Let Reach : X → P(P(X)), where for M ⊂ X
we haveM ∈ Reach(x) if it is possible to robustly
reachM starting fromx (i.e. no matter of disturbances,
it is possible to reachM from x.)1 In other words
Reach(x) is the collection of setsM with the property
that it is possible to robustly reachM from x.

In this paper, we introduce the following class of con-
trolled invariant sets, that we call controllable invariant sets.
Let Ωo denote the interior ofΩ.

Definition 2.1 Given a setΩ ⊂ R
n, let Ωx = {z ∈

R
n : ∃y ∈ Ω, z = y + x}. For someq ∈ Q we say that

I ⊆ Inv(q) is a controllable invariant set if a connected
compact setΩ ⊂ R

n exists such that0 ∈ Ωo and

1P(Y ) = {E : E ⊆ Y } denotes the collection of all subsets ofY .
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Fig. 1. Illustration of a desirable situation in the controlled behavior of a
hybrid system. (a) A hybrid system mode with input setI and output sets
O1, O2 andO3 corresponding to the thick lines, controlled invariant set
J and Pre(O1), Pre(O2), Pre(O3) and Pre(J) represented through
the shaded areas. (b) Equivalent DE abstraction of the mode, where the
selfloop corresponds toJ and the other transitions to the transitions exiting
O1, O2 andO3.

1) ∀x ∈ I: Ωx is a controlled invariant set
2)

⋃
x∈I

Ωx ⊆ Inv(q)

3) ∀x1, x2 ∈ I, ∀x ∈ Ωx1 : Ωx2 ∈ Reach(x).

III. M OTIVATION

The ability to move between any desirable setpoints is
clearly an interesting benefit of the controllable invariant
sets. In this section we show that the controllable invariant
sets can be useful also in the discrete-event (DE) abstraction
of hybrid systems.

Given(Q, Edg), the state machine of a hybrid automaton
with time-invariant mode-dynamics, consider the abstrac-
tions (Q′, Edg′) with the following property. There are
maps ν : Q′ → Q and χ : Q′ → X , such that if
(q′1, q′2) ∈ Edg′ is a controllable transition, then∀x1 ∈
χ(q′1), there is a control law yielding a trajectory from
(q1, x1, 0) to (q2, x2, t2) for somex2 ∈ χ(q′2) and time
t2 ≥ 0, regardless of disturbances, and at all intermediary
states(q, x, t), 0 ≤ t < t2, it is true thatq = q1 and
x ∈ χ(q′1). Note thatq1 and q2 denoteν(q′1) and ν(q′2),
respectively.

A process by which such abstractions could be found is
not presented in this paper. However, note two favorable
situations an abstraction process should take advantage of.
First, we define for every modeq ∈ Q the following sets:

(i) Jq ⊆ Inv(q) ∩ Safe(q), where Safe(q) is the set
specifying the safety specification for the modeq (that
is, Inv(q) \ Safe(q) is the forbidden state set of the
modeq.)

(ii) For every (q, q′) ∈ Edg, let Oq→q′ ⊆ Inv(q) ∩
Safe(q) denote the continuous states for which there
is an input leading the system fromq to q′, no matter
of disturbances.

(iii) Let Iq be the set of continuous states in which the
modeq may be entered from the modesqc such that
(qc, q) ∈ Edg.

(iv) Let’s write q′ ∈ q → if q andq′ satisfy(q, q′) ∈ Edg.

Note that the setIq could be reduced by an appropriate
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Fig. 2. Illustration of another desirable situation in the controlled behavior
of a hybrid system. (a) A hybrid system mode with input setI and output
setsO1, O2 andO3 corresponding to the thick lines, controllable invari-
ant setJ and Pre(O1), Pre(O2), Pre(O3) and Pre(J) represented
through the shaded areas. (b) Equivalent DE abstraction of the mode, where
the selfloop corresponds toJ and the other transitions to the transitions
exiting O1, O2 andO3.

control law. An ideal situation for the DE abstraction is
when for allq ∈ Q there isJq such that:
(a) Jq is a controlled invariant set.
(b) Iq ⊆ Pre(Jq).
(c) Jq ⊆ ⋂

q′∈q→
Pre(Oq→q′ ).

This situation is illustrated in Figure 1, together with the DE
abstraction of the mode. Thus, once we have the setsIq and
Oq→q′ , we are interested to compute the maximal controlled
invariant setJq satisfying (i) and (c). Indeed, if the maximal
controlled invariant set does not satisfy (b), there is no
controlled invariant setJq satisfying (a-c). However, even
when (b) is not satisfied, we may still be able to reduce the
setIq (through a control law) such that (b) is satisfied. An
interesting variant of the requirements (a-c) is given below:
(a′) Jq is a controllable invariant set with a setΩ such that⋃

x∈Jq

Ωx ⊆ Inv(q) ∩ Safe(q).

(b′) Iq ⊆ Pre(Jq).
(c′) ∀q′ ∈ q → ∃x ∈ Jq: Ωx ⊆ Pre(Oq→q′ ).
This situation is illustrated in Figure 2, together with the
DE abstraction of the mode. Again, once we have the sets
Iq andOq→q′ , we are interested to compute a controllable
invariant setJq satisfying (a′) and (c′). This can be achieved
by computing a maximal controllable invariant set satisfying
(a′). Then, if (c′) is not satisfied andJq is maximal no
solution to (a′-c′) exists, but if (b′) is not satisfied, we may
still be able to reduce the setIq.

Note that the conditions (a′-c′) are a variant of (a-c). In-
deed, by the definition of the controllable invariant set, (c′)
implies Jq ⊆ Pre(Oq→q′ ). ThusJq ⊆ ⋂

q′∈q→
Pre(Oq→q′ ).

Further, every controllable invariant set is a controlled
invariant set. (However, the converse is not true.) The (a′-
c′) variant may be computationally advantageous when it
is not easy to computePre(Oq→q′ ); then we do not need
to compute the whole setsPre(Oq→q′ ), but only to show
that they intersectJq as shown at (c′). This quality may be
of interest especially in the discrete-time case, in which the
computation of the predecessor operator is iterative and may



not terminate. Note also that here the controllable invariant
set is computed first, and then the predecessor sets. On the
other hand, in the previous situation the maximal controlled
invariant set was computed only after the computation of
the predecessor sets.

IV. COMPUTATION

A. The Intuition

Considering a system of dynamics

x(t + 1) = Ax(t) + Bu(t) + Ed(t) (2)

if the system is stabilizable, there is a state feedback con-
troller u = Kx such that the system is stable. Furthermore,
for eachu = Kx + r, where r is a constant, there is a
point x∗ to which (in the absence of disturbances) the state
converges. Intuitively it is clear that there is a region of
attraction aroundx∗, such that no matter of the disturbances
(which are assumed to be bounded), that region is invariant
for the givenr. Furthermore, if each such pointx∗ has a
region of attraction, the statex can be moved from one
region to another. Indeed, ifx is in the region of(x∗

1, r1),
by applying the controlu = Kx + r2 we can move it to
the region of(x∗

2, r2). Also, in order to keep the control
u = Kx + r within its admissible domainU , we can
“slowly” changer from r1 to r2. Therefore, the controllable
invariant set would correspond to the pointsx∗. While linear
state feedback was used in this illustration, we are not going
to refer to it in what follows. We consider a more general
state feedback solution.

B. The Computation

We consider the dynamics of equation (2) and setsΩ (see
Definition 2.1) of the formΩ = {x : |x| ≤ b} whereb ∈ R

n

and b > 0. Recall, givenx∗, Ωx∗ = {x : |x − x∗| ≤ b}.
Let U denote the domain of the control input andD the
(bounded) domain of the disturbance.

Given x∗
1, the set of pointsx∗

2 satisfying that∃u(t) ∈ U
∀x(t) ∈ Ωx∗

1
: x(t + 1) ∈ Ωx∗

2
can be expressed as

∃u ∈ U , ∀x ∈ Ωx∗
1

:
{

Ax + Bu + d+ ≤ x∗
2 + b

Ax + Bu − d− ≥ x∗
2 − b

(3)

where x = x(t), u = u(t), d+ = max
d∈D

Ed, and d− =
−min

d∈D
Ed and the maximum/minimum is taken separately

on each row ofEd. Note that the requirement thatΩx∗
1

be
invariant corresponds to (3) whenx∗

2 = x∗
1.

Assuming a convex domainU = {u : Luu ≤ bu},
the inputu can be eliminated from (3) using the Fourier-
Motzkin elimination2 (FME) [8], [9]. The result is of the
form:

∀x ∈ Ωx∗
1

: Gx + Hb + Mx∗
2 ≤ g (4)

2Given a system of inequalities∆x ≤ γ and a variablexj to be
eliminated, the FME generates a new system∆′x ≤ γ′ in which xj does
not appear. The new system contains the inequalities of∆x ≤ γ that do
not involvexj , and the inequalities obtained from all pairs of inequalities
i andk with ∆ij > 0 and∆kj < 0, by a weighted sum with appropriate
positive weights. Geometrically,∆′x ≤ γ′ describes the projection of the
polyhedron∆x ≤ γ on the hyperplanesxj = a, a ∈ R.

or

∀α ∈ {x : |x| ≤ b} : (G+M)x∗
1+Gα+Hb+Mβ ≤ g (5)

whereα = x−x∗
1 andβ = x∗

2−x∗
1. Note thatα can too be

eliminated, as max
α∈{x:|x|≤b}

Gα = |G|b, where the maximum

is taken separately on each row ofGα, and |G| = [|Gij |]
denotes the absolute value ofG. We obtain:

(G + M)x∗
1 + (|G| + H)b + Mβ ≤ g (6)

To satisfy (6) for allβ ∈ [−δ, δ], whereδ ∈ R
n, δ ≥ 0, is

given, the following constraint is obtained:

(G + M)x∗
1 + (|G| + H)b + |M |δ ≤ g (7)

Note that (7) describes the set of pointsx∗
1 such thatΩx∗

1

is a controlled invariant and from all pointsx ∈ Ωx∗
1

it is
possible to reach anyΩx∗

2
with |x∗

2 − x∗
1| ≤ δ in one time

step. Obviously, we would like this set of pointsx∗
1 to be as

large as possible. At the same time, we are also interested
in having the setsΩx∗ as small as possible (i.e.,b as small
as possible). In view of (3) the minimum value ofb is:

b ≥ d+ + d−

2
(8)

On the other hand, the minimum value ofδ is 0. From (7)
with δ = 0 we derive the controllable invariant set

(G + M)x + (|G| + H)b < g (9)

Note that< denotes strict inequality on all elements, that
is, y < z ⇒ yi < zi for all indices i.

Example 4.1 Assume a system described by the dynamics

x(t + 1) = ax(t) + u(t) + d(t) (10)

wherea ∈ R. Assumed+ = d− = d0 and the control input
domain−u0 ≤ u ≤ u0. The relation (3) can be written as

∃u ∈ U , ∀x ∈ Ωx∗
1

:
{

ax + u + d0 ≤ x∗
2 + b

−ax − u + d0 ≤ −x∗
2 + b

(11)
Then (4) becomes

∀x ∈ Ωx∗
1

:




d0 ≤ b
ax + d0 ≤ x∗

2 + u0 + b
−ax + d0 ≤ −x∗

2 + u0 + b
(12)

while (7) is


d0 ≤ b
(a − 1)x∗

1 + (|a| − 1)b + δ + d0 ≤ u0

(−a + 1)x∗
1 + (|a| − 1)b + δ + d0 ≤ u0

(13)

We see that there is no solution unless|a|d0 < u0 or
|a| < 1. Once these conditions are satisfied, the controllable
invariant is given by:{

(a − 1)x + (|a| − 1)b + d0 < u0

(−a + 1)x + (|a| − 1)b + d0 < u0
(14)

for a b such thatb ≥ d0 and (|a| − 1)b + d0 < u0. 2



The following results establish properties of the con-
trollable invariant sets computed this way. Notably, we
prove that (9) describes a controllable invariant set and that,
with the possible exception of (some of) its boundary, it
coincides with the maximal controllable invariant set with
Ω = {x : |x| ≤ b}. For the moment, we assume that in
Definition 2.1Inv(q) = R

n.
Let Jδ = {x : (G + M)x + (|G| + H)b + |M |δ ≤ g},

where the notation of (7) is used.

Proposition 4.1 The setJδ is a controllable invariant of
setΩ = {x : |x| ≤ b}.

Proof: The proof is divided in three parts. Part (a)
shows that∀x∗

1 ∈ Jδ ∀x∗
2 ∈ [x∗

1 − δ, x∗
1 + δ] ∀x(t) ∈ Ωx∗

1∃u ∈ U ∀d ∈ D: x(t + 1) ∈ Ωx∗
2
. Part (b) shows thatΩx∗

is a controlled invariant for allx∗ ∈ Jδ. Part (c) shows that
∀x∗

1, x
∗
2 ∈ Jδ ∀x ∈ Ωx∗

1
: Ωx∗

2
∈ Reach(x).

(a) Letα = x−x∗
1 andβ = x∗

2−x∗
1. Fromβ ≤ δ we get

that Mβ ≤ |M |δ. Sincex∗
1 satisfies (7), it follows that (6)

is also satisfied. Similarly, we derive(G + M)x∗
1 + Gα +

Hb + Mβ ≤ g, and soGx + Hb + Mx∗
2 ≤ g. However,

this is the projection of{
Ax + Bu + d+ ≤ x∗

2 + b
Ax + Bu − d− ≥ x∗

2 − b
(15)

that removes the variableu ∈ U . Therefore, there isu ∈ U
such that (15) is satisfied for the givenx andx∗

2 ∀d ∈ D.
However, (15) is precisely the condition that somex(t+1) ∈
Ωx∗

2
is reached fromx(t) = x by applying the inputu.

(b) This results from (a) forx∗
1 = x∗

2 = x∗.
(c) Let x∗

1, x
∗
2 ∈ Jδ be chosen arbitrarily. Letn > 0 be

an integer such that|x∗
2 − x∗

1| ≤ nδ. Let z∗0 , z∗1 , . . . z∗n be
such thatz∗k = k

nx∗
1 + n−k

n x∗
2 for k = 0 . . . n. SinceJδ is

convex,z∗k ∈ Jδ for all k = 0 . . . n. Further,|z∗k+1−z∗k| ≤ δ
for k = 0 . . . n − 1. Then, in view of (a), we reachΩx∗

2
in

n steps by going fromx(t) ∈ Ωx∗
1

to Ωz∗
1
, then toΩz∗

2
, and

so on toΩz∗
n
.

Proposition 4.2x∗ satisfies(G + M)x∗ + (|G|+ H)b ≤ g
if and only if Ωx∗ is a controlled invariant.

Proof: “⇒” Let x ∈ Ωx∗ . From(G +M)x∗ + (|G|+
H)b ≤ g andG(x−x∗) ≤ |G|b we getGx+Hb+Mx∗ ≤ g.
SinceGx + Hb + Mx∗ ≤ g is the projection of{

Ax + Bu + d+ ≤ x∗ + b
Ax + Bu − d− ≥ x∗ − b

(16)

that removes the variableu ∈ U , it follows that there is
u ∈ U such that whenx(t) = x ∈ Ωx∗ , ∀d ∈ D: x(t+1) ∈
Ωx∗ .

“⇐” If Ωx∗ is a controlled invariant, then (3) is satisfied
for x∗

1 = x∗
2 = x∗. This is also true of (4) and (6) with

β = 0. So the conclusion follows.

Proposition 4.3The setJ = {x : (G+M)x+(|G|+H)b <
g} is a controllable invariant.

Proof: By Proposition 4.2,Ωx is a controlled invariant
for all x ∈ J . It remains to show that for anyx∗

1, x
∗
2 ∈ J ,

δ1

δ3

δ1 < δ2 < δ3, 

J

δ2J

J

J, 

J = int(J)

J

Fig. 3. Illustration of the (inclusion) relation among the setsJδ , J , and
J .

Ωx∗
2

can be reached from anyx ∈ Ωx∗
1
. Letx∗

1, x
∗
2 ∈ J . Note

that∃δ1, δ2 > 0: (G+M)x∗
1 +(|G|+H)b+ |M |δ1 ≤ g and

(G+M)x∗
2+(|G|+H)b+ |M |δ2 ≤ g. Let δ = min(δ1, δ2).

It follows that x∗
1, x

∗
2 ∈ Jδ, and so the conclusion follows

by Proposition 4.1.

Proposition 4.4 All controllable invariant sets of setΩ =
{x : |x| ≤ b} are subsets of the setJ = {x : (G + M)x +
(|G| + H)b ≤ g}.

Proof: For any controllable invariant setI, the setΩx

for x ∈ I should be a controlled invariant. Therefore, the
conclusion follows immediately from Proposition 4.2.

Propositions 4.3 and 4.4 indicate that the construction
of the controllable setJ in (9) is nearly optimal, as all
controllable invariant setsI of setΩ satisfyI ⊆ J . Further,
if the maximal controllable setJm exists, it satisfiesJ ⊆
Jm ⊆ J . Note thatJ is the interior ofJ . So J is a very
tight approximation of the optimum.

The computation of the setJ has been done assuming
Inv(q) = R

n. In the general case, a controllable invariant
set can be computed as follows. LetW = {x ∈ Inv(q) :
Ωx ⊆ Inv(q)}. AssumingW to be connected, note that a
controllable invariant set isJ0 = J ∩W . This construction
ensures that regardless of the current statex, as long as
x ∈ Ωx′ for somex′ ∈ J0, the state is insideInv(q).

Note that the computation of the controllable invariant
sets J is not recursive (there are no iterations, and so
no termination issues). In contrast, the computation of the
maximal controlled invariant sets is recursive [3], [10].
Since controllable invariants are also controlled invariants,
we could use the approach of this section for a nonrecursive
computation of controlled invariants. However, if we are
only interested in the computation of controlled invariants,
a better (larger) controlled invariant thanJ and its closure
J can be obtained by eliminatingb from (G+M)x+(|G|+
H)b ≤ g via FME.

A question to be addressed is what happens in our ap-
proach when no nonempty controllable invariant set exists.



To this end, we show thatJ = ∅ if and only if there is no
nonempty controllable invariant of setΩ = {x : |x| ≤ b}.
This result has the weakness that the class of nonempty
controllable invariants include the singletonsI = {x} such
that Ωx is a controlled invariant. Future work is to find
conditions in terms of nontrivial controllable invariants,
where a controllable invariant set is nontrivial if containing
more than one element.

Proposition 4.5 A nonempty controllable invariant of set
Ω = {x : |x| ≤ b} exists if and only ifJ = {x : (G +
M)x + (|G| + H)b ≤ g} 6= ∅.

Proof: If J 6= ∅ there isx ∈ J , and soI = {x}
is a nonempty (but trivial) controllable invariant set, by
definition and Proposition 4.2. On the other hand, ifJ = ∅,
there is no nonempty controllable invariant of setΩ, by
Proposition 4.4.

The relation between controllability and the existence
of nonempty controllable invariant sets is also of interest.
First we show that controllability is neither sufficient nor
necessary.

Proposition 4.6 The controllability of (A, B) is neither
sufficient nor necessary for the existence of a nonempty
controllable invariant set.

Proof: The proof is by examples. For the nonsuffi-
ciency proof, the system (10) is considered with arbitrary
setsΩ and “large” disturbances. Then we show that not
even for controllable invariants of setsΩ = {x : |x| ≤ b}
is controllability necessary.

Nonsufficiency:The proof is by contradiction. Assume a
nonempty controllable invariant setI exists. Letx∗ ∈ I
and x(0) ∈ Ωx∗ such thatx(0) 6= 0. Without loss of
generality, assumex(0) > 0. Now consider the system (10)
with a > 1 andd0 > u0. The system(a, 1) is controllable.
Assumed(k) = d0 for all k. Then, x(t) = atx(0) +∑t

k=1 at−k(u(k − 1) + d(k − 1)), and sox(t) → ∞ as
k → ∞, regardless ofu(k). It follows the input cannot keep
the state inΩx∗ , so I cannot be a controllable invariant.

Non-necessity:Assume a system consisting of two state
variablesx and x′, wherex obeys (10) andx′(t + 1) =
a′x′(t) + d′(t), −d0 ≤ d′(t) ≤ d0 for all t, and |a′| < 1.
Clearly, the system is not controllable, asu has no effect
on x′. Note that forb′ ≥ d0/(1−|a′|) the setΩ′ = [−b′, b′]
is an invariant ofx′(t+1) = a′x′(t)+d′(t). It follows that
if I is a controllable invariant of setΩ for the system (10),
a controllable invariant for our system isI ′ = I × {0} of
set Ω × Ω′. Moreover, nonempty controllable invariantsI
of set Ω = {x : |x| ≤ b} can be constructed, as shown in
Example 4.1.

The fact that controllability is neither sufficient nor nec-
essary may be surprising. Intuitively, nonsufficiency results
from the fact that large enough disturbances can render
controllability ineffective. On the other hand, in case of
partial controllability, a controllable invariant set may be
the Cartesian product of the origin and of a portion of

the subspace of the state space that can be affected by the
control input. Naturally, this would suggest the uncontrol-
lable part of the system should be stable. The next results
shows that under common circumstances the existence of a
nonempty controllable invariant requires the uncontrollable
eigenvalues of the system(A, B) to be in or on the unity
circle. Recall, the pair(A, B) can be transformed by a
similarity transformation to(Â, B̂) such that

Â =
[

A1 A12

0 A2

]
B̂ =

[
B1

0

]
(17)

and (A1, B1) is controllable [1]. Thus, the eigenvalues of
A2 are called the uncontrollable eigenvalues of(A, B).

Proposition 4.7 Assume0 ∈ D. Then a nonempty control-
lable invariant exists only if all uncontrollable eigenvalues
λ of (A, B) satisfy|λ| ≤ 1.

Proof: Assume a nonempty controllable invariant
I of set Ω exists. LetQ be a similarity transformation
transforming(A, B) to the standard form (17). We have
Â = Q−1AQ, B̂ = Q−1B, Ê = Q−1E and x̂ = Qx.
Note that (17) has the nonempty controllable invariant
Î = {x̂ : Q−1x̂ ∈ I} of set Ω̂ = {x̂ : Q−1x̂ ∈ Ω}.
We can write x̂(t + 1) = Âx̂(t) + B̂u(t) + Êd(t) as
x1(t + 1) = A1x1(t) + A12x2(t) + B1u(t) + E1d(t) and
x2(t + 1) = A2x2(t) + E2d(t) for x̂ = [xT

1 , xT
2 ]T and

Ê = [ET
1 , ET

2 ]T . Let x∗ ∈ Î. Then Ω̂x∗ is a controlled
invariant. Let x(t) ∈ Ωx∗ such thatx2(t) 6= 0. Assume
d2(t + i) = 0 ∀i = 0 . . . k. We have thatx2(t + k) =
Ak

2x2(t). Let λ be an eigenvalue ofA2 and w its left
eigenvector. Thenwx2(t + k) = λkwx2(t). SinceΩ̂x∗ is a
controlled invariant, in order to havex(t + k) ∈ Ω̂x∗ we
need a boundedwx2(t + k) at all k, and so|λ| ≤ 1.

V. CONCLUSIONS

This paper has introduced the controllable invariant sets,
as a subclass of the controlled invariant sets. A nearly opti-
mal method for the computation of the controllable invariant
sets has been proposed. The computation approach assumes
linear discrete-time dynamics with bounded disturbances.
This approach is very dissimilar to the approaches used
for the computation of controlled invariant sets in that it
involves no iterations, and so has guaranteed termination.
Extensions to classes of nonlinear dynamics are possible,
and may be considered in the future work.
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