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Abstract— The main contribution of this paper is a nec-
essary and sufficient condition derived for the existence of
asymptotically stabilizing switching laws for a class of switched
linear systems with time-variant parametric uncertainties.
This result improves upon the sufficient only conditions found
in the literature. The method is based on polyhedral Lyapunov-
like functions, which represent generalizations of polytopic
Lyapunov functions in the classical sense.

I. INTRODUCTION

The stability issues of switched systems have been of
increasing interest in the recent decade, see for example
[5], [2] and the references cited therein. One of the most
elusive problems in the switched systems literature has been
the switching stabilizability problem, that is under what
condition it is possible to stabilize a switched system by
properly designing switching control laws.

In the switching stabilization literature, most of the work
has focused on quadratic stabilization. For example, it
was shown in [12] that the existence of a stable convex
combination of two LTI subsystem matrices implies the
existence of a state-dependent switching rule that stabilizes
the switched system along with a quadratic Lyapunov
function. A generalization to more than two LTI subsystems
was introduced in [8] by using a “min-projection strategy”.
In [3], it was shown that the stable convex combination
condition is also necessary for the quadratic stabilizability
of two mode switched LTI system. However, it is only
sufficient for switched LTI systems with more than two
modes. A necessary and sufficient condition for quadratic
stabilizability of switched controller systems was derived
in [14]. There are extensions of [12] to output-dependent
switching and discrete-time case [5], [16]. For robust stabi-
lization, a quadratic stabilizing switching law was derived
for polytopic uncertain switched linear systems based on
LMI techniques in [16]. All of these methods guarantee
stability by using a common quadratic Lyapunov function,
which is conservative in the sense that there are switched
systems that can be asymptotically (or exponentially) stabi-
lized without using a common quadratic Lyapunov function.
Therefore, some recent research efforts focused on using
multiple Lyapunov functions. The first attempt of stabi-
lizing switching law design based on multiple Lyapunov
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functions was proposed in [11], where piecewise quadratic
Lyapunov functions was employed for two mode switched
LTI systems. An LMI based method was proposed in [6]
for the stabilizing state-feedback control design of discrete-
time piecewise affine systems. Exponential stabilization for
switched LTI systems was considered in [9] also based on
piecewise quadratic Lyapunov functions, and the synthesis
problem was formulated as a bilinear matrix inequality
(BMI) problem. In [4], a probabilistic algorithm was pro-
posed for the synthesis of an asymptotically stabilizing
switching law for switched LTI systems along with a
piecewise quadratic Lyapunov function. Notice that these
stabilizability conditions, which may be expressed as the
feasibility of certain LMIs or BMIs, in the existing literature
are basically sufficient only, except for certain cases of
quadratic stabilization. Although necessary and sufficient
conditions for asymptotic stabilizability of second-order
switched LTI systems were derived in [15] by detailed
vector field analysis, it was not apparent how to extend
the method to either higher dimensions or to the parametric
uncertainty case.

This paper focuses on this switching stabilizability prob-
lem, and introduces a necessary and sufficient condition for
asymptotic stabilizability of switched linear systems with
time-variant parametric uncertainties. The rest of the paper
is organized as follows. In Section II, mathematical models
for the uncertain switched linear system are described, and
the robust switching stabilizability problem is formulated.
Section III generalizes the classical polytopic Lyapunov
functions to polyhedral Lyapunov-like functions so as to
deal with the unstable subsystems. In Section IV, a neces-
sary and sufficient condition for the asymptotic switching
stabilizability is derived, which formulates the main result
of the paper. In addition, the sufficiency proof is given
in a constructive way, and provides a systematic method
for stabilizing switching law synthesis. Finally, concluding
remarks are presented and future work is proposed.

Notation: The letters E ,P ,S · · · denote sets, ∂P the
boundary of set P , and int{P} its interior. For any real
λ ≥ 0, the set λS is defined as {x = λy, y ∈ S}. The
term C-set stands for a convex and compact set containing
the origin in its interior.

II. PROBLEM FORMULATION

We consider a collection of continuous-time linear sys-
tems described by the differential equations with parametric
uncertainties

ẋ(t) = Aq(w)x(t), t ∈ R
+, q ∈ Q = {1, · · · , N} (1)
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where R
+ denotes non-negative real numbers. In the above

uncertain continuous-time state equations, the state variable
x(t) ∈ R

n. Note that the origin xe = 0 is an equilibrium
(maybe unstable) for the systems described in (1). The
finite set Q stands for the collection of discrete modes. In
particular, for all q ∈ Q, Aq(w) : W → R

n×n, and the
entries of Aq(w) are assumed to be continuous functions
of w ∈ W , where W ⊂ R

v is a given compact set.
Combining the family of continuous-time uncertain linear

systems (1) with a class of piecewise constant functions, σ :
R

+ → Q, which serve as the switching signals between the
collection of continuous-time systems (1). The continuous-
time switched linear system can be described by

ẋ(t) = Aσ(t)(w)x(t), t ∈ R
+ (2)

where the switching signal is generated by

σ(t) = δ(σ(t−), x(t)) (3)

with δ : Q × R
n → Q and t− = limτ→0,τ≥0(t − τ). The

discrete mode is determined by the current continuous state
x(t) and the previous mode σ(t−). It is assumed that there
are finite switchings within any finite time interval.

For this uncertain continuous-time switched system (2)-
(3), we are interested in the following problem.
Problem: Given the continuous-time switched system (2),
derive necessary and sufficient conditions, under which
there exist switching control laws (3) that make the closed-
loop switched system globally asymptotically stable.

It is assumed that each subsystem (1) is unstable and
satisfies the following assumption.
Assumption: There exists a full row rank matrix Lq ∈
R

mq×n, where mq < n, such that the auxiliary system for
the q-th subsystem (1)

ξ̇(t) = LqAq(w)Rqξ(t), t ∈ R
+ (4)

is asymptotically stable. Here Rq ∈ R
n×mq is a right

inverse of Lq .
The above auxiliary system is derived through the gener-

alized similarity transformation Rqξ = x. Notice that even
when all parts of the states of the original system (1) are
unstable, there still may exist L to satisfy the assumption.

Example 1: Consider a continuous-time linear system,

ẋ(t) =
[

0.5 w
0 1

]
x(t)

where the uncertain parameter 1 ≤ w ≤ 2. The above
continuous-time system is obviously unstable. However, we

may select L =
[

1 0
]

and R =
[

1
−1

]
to obtain

LA(w)R =
[

1 0
] [

0.5 w
0 1

] [
1
−1

]
= 0.5−w < 0,

for all w ∈ [1, 2]. Therefore, the auxiliary system

ξ̇(t) = (0.5 − w)ξ(t)

is asymptotically stable. In fact, there may exist more than
one pair of matrices Lq and Rq that satisfy the above
assumption. For example, one may pick another R =[

1
−a

]
with a > 0.5, to obtain a stable auxiliary system

ξ̇(t) = (0.5 − aw)ξ(t).

Based on the existence of the stable auxiliary system, we
may conclude that all the states x contained in the range
space of R asymptotically converge to the null space of
L =

[
1 0

]
, i.e., the y-axis. The partial convergence

property of the original system is captured by a polyhedral
Lyapunov-like function that is developed in the next section.

It can be shown that for the LTI case1, ẋ(t) = Ax(t),
there always exist L and R satisfying the above assumption,
except for the case when all the eigenvalues of A are
the same positive real number λ > 0 and the geometric
multiplicity of the eigenvalue λ equals n. The proof of this
claim explores the structure of the Jordan canonical form
of A and uses straight-forward computations. Details are
omitted here.

For the case that there does not exist L to satisfy the
above assumption for a particular subsystem, we simply set
L as the null row vector, which implies that the correspond-
ing subsystem makes no contribution to the stabilization
of the switched system. To justify this, note that in this
case the matrix A is similar to the matrix λI for some
positive real number λ > 0. Here I stands for the identity
matrix. If we look at the phase plane of the LTI system,
ẋ(t) = λIx(t), all the field vectors point to infinity along
the radial directions. Intuitively speaking, the dynamics are
explosive and do nothing but drag all the states to infinity.
Therefore, we set L to be a null vector so to contribute
nothing to the rank condition in Theorem 1 below.

III. POLYHEDRAL LYAPUNOV-LIKE FUNCTIONS

It is known that the robust asymptotic stability of time-
varying linear systems implies the existence of a polytopic
Lyapunov function [7]. Therefore, the asymptotic stability
of the auxiliary system (4) in R

mq implies the existence of
a polytopic Lyapunov function

Φq(ξ) = max
1≤i≤sq

{fiξ},

which can be constructed by either algebraic or numerical
methods. Let Fq ∈ R

sq×mq (sq ≥ mq) be the matrix with
fi ∈ R

1×mq as its i-th row vector. The Lyapunov level set

Pq = {ξ ∈ R
mq : Φq(ξ) ≤ 1} = {ξ ∈ R

mq : Fqξ ≤ 1̄} (5)

is an invariant set [1], where 1̄ stands for a column vector
in R

mq with all elements being 1 and ≤ is component-wise.
The next step is to shape the polytopic Lyapunov func-

tion Φq(ξ) for the auxiliary system (4) into a polyhedral
Lyapunov-like function for the original system (1).

1This corresponds to the uncertain parameter set W being a singleton.
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For this, we need to introduce the Euler Approximate
System (EAS) for the auxiliary system (4):

ξ[k + 1] = Lq[I + τAq(w)]Rqξ[k], k ∈ Z
+. (6)

The connection between the continuous-time system (4) and
its corresponding discrete-time EAS (6) is based on the
concept of a contractive set.

Definition 1: Given a positive scalar λ, 0 < λ < 1, a
set P is said λ-contractive with respect to the discrete-time
EAS (6), if, for any ξ ∈ P , all the possible next step states
through the transition (6) are contained in the set λP , that
is

Lq[I + τAq(w)]Rqξ ∈ λP ,

holds for any w ∈ W .
It is shown in [1], that for an asymptotically stable system

(4), there always exist a positive scalar τ̄ > 0 and a positive
constant λ < 1 such that, for all 0 < τ ≤ τ̄ , the level set
Pq = {ξ : Fqξ ≤ 1̄} in (5) is λ-contractive for the
corresponding discrete-time EAS (6).

Therefore, we obtain that

FqLq[I + τAq(w)]Rqξ ≤ λ1̄

holds for all ξ ∈ Pq = {ξ : Fqξ ≤ 1̄}, for all w ∈ W and
for τ small enough.

For all the states x contained in the range space of Rq,
one may represent x = Rqξ. Note that the range space
of Rq, denoted as image(Rq), is a linear subspace of R

n.
Hence, for all x ∈ {x : FqLqx ≤ 1̄}⋂

image(Rq),

FqLq[I + τAq(w)]x ≤ λ1̄

holds for all w ∈ W and for all 0 < τ ≤ τ̄ . As it has been
pointed out in Example 1, the matrix Rq that satisfies the
assumption (4) and admits Pq as a λ-contractive set, is not
unique for a given Lq. It is straight forward to verify that
all the states in the union of the range space of these Rq,
denoted as

Mq =
⋃
Rq

image(Rq), (7)

also have the convergence property, that is for all x ∈ {x :
FqLqx ≤ 1̄}⋂Mq

FqLq[I + τAq(w)]x ≤ λ1̄

for all w ∈ W and for all 0 < τ ≤ τ̄ . This case is referred
to as the set

Sq = {x : FqLqx ≤ 1̄}, (8)

which may be an unbounded polyhedral set, is a partial
λ-contractive set for the discrete-time system

x[k + 1] = [I + τAq(w)]x[k] (9)

along Mq. If the set Mq, which contains a union of linear
subspaces of R

n, is the whole state space R
n, then we

obtain the usual contractiveness for the set Sq with respect
to (9).

Notice that the above discrete-time system (9) is the EAS
of the original subsystem (1). In the following, we will
show that the existence of such partial contractive set Sq for
the EAS (9) implies a polyhedral Lyapunov-like function,
which is defined below, for the subsystem (1).

Denote FqLq ∈ R
sq×n as Hq , and hi as the i-th row

vector of Hq . Then the polyhedral Lyapunov-like function
candidate from the polyhedron Sq can be defined as

Ψq(x) = max
1≤i≤sq

{hix, 0}. (10)

It is straightforward to verify that Ψq(x) ≥ 0 for all x ∈
R

n, and that Ψq(x) is convex, continuous and piecewise
linear for x. However, Ψq(x) = 0 does not imply that x is
the origin. In fact, for all x contained in the convex cone

Cq = {x : Hqx ≤ 0̄},
we have Ψq(x) = 0. This is one of the main differences
from the classical Lyapunov function, so we call Ψq(x) a
Lyapunov-like function.

Next, we will show that the Dini derivative of Ψq along
the trajectory of the continuous-time system (1) is negative
for all x contained in Mq and outside the cone Cq, where
the Dini derivative D+Ψq(x(t)) is defined as

D+Ψq(x(t)) = lim sup
τ→0,τ≥0

Ψq(x(t + τ)) − Ψq(x(t))
τ

.

It was shown in [1] that the Dini derivative of Ψq at
the time instant t, for x(t) = x, and w(t) = w, can be
calculated as

D+Ψq(x(t)) = lim sup
τ→0,τ≥0

Ψq(x + τAq(w)x) − Ψq(x)
τ

.

The following property of the partial contractive sets for
EAS (9) is essential to prove that the Dini derivative of Ψq

is negative along the trajectory of (1).
Lemma 1: If S is a partial λ-contractive set for the EAS

(9) along Mq , then µS is so for all µ > 0.
Proof : First, for all x ∈ µS ⋂Mq and any positive scalar
µ > 0, µ−1x ∈ S ⋂Mq , because of the fact that Mq is
a union of linear subspaces. Secondly, for such state x ∈
µS ⋂Mq , the following inequality

FqLq[I + τAq(w)]x = µFqLq[I + τAq(w)]µ−1x ≤ µλ1̄

holds for all w ∈ W and for all 0 < τ ≤ τ̄ . This implies
that the set µS is a partial λ-contractive set for the EAS
(9) along Mq . �

The next lemma shows that the partial contractiveness
of the polyhedral set Sq for the EAS (9) implies the
negativeness of the Dini derivative of Ψq for (1). The proof
is omitted here for space limit.

Lemma 2: If there exist scalars 0 < λ < 1 and τ̄ > 0,
such that the polyhedral set Sq = {x : Hqx ≤ 1̄} is a
partial λ-contractive set for the EAS (9) along Mq with all
0 < τ < τ̄ , then the Dini derivative D+Ψq(x(t)) for all
x(t) contained in Mq and outside the cone Cq is negative
along the trajectory of the continuous-time system (1).
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In summary, we started from Assumption (4) and
proved the existence of a polyhedral Lyapunov-like function
Ψq(x(t)) for the subsystems (1). The determination of
such polyhedral Lyapunov-like function can be reduced
to the determination of a polytopic Lyapunov function of
the auxiliary system (4) if the matrix Lq is given. It was
shown in [1] that a polytopic Lyapunov function may be
derived by numerical algorithms involving polyhedral sets.
To calculate the matrix Lq that satisfies the assumption, a
systematic method can be developed for the LTI case by
exploring the Jordan canonical form. In the next section,
we will derive a necessary and sufficient condition for the
asymptotic stabilizability of the switched linear system (2)-
(3). The techniques are based on the polyhedral Lyapunov-
like functions developed here.

IV. MAIN RESULTS

First, we introduce some notations corresponding to the
intersection of the polyhedral sets Sq in (8) for q ∈ Q.
Assume that S =

⋂
q∈Q Sq is a bounded polyhedral set

with the origin in its interior, i.e., a polyhedral C-set. Let
vert(S) = {v1, v2, · · · , ve} stand for its finite vertices,
while face(S) = {F1, F2, · · · , FM} denote its facets. The
hyperplane that corresponds to the k-th facet Fk is defined
by

Hk = {x ∈ R
n : fkx = 1} (11)

where fk ∈ R
1×n is the corresponding gradient vector

of facet Fk. The set of vertices of Fk can be found as
vert(Fk) = vert(P) ∩ Fk. We denote the cone generated
by the vertices of Fk by

cone(Fk) = {x :
∑

i

αivki , αi ≥ 0, vki ∈ vert(Fk)} (12)

Note that if S is a polyhedral C-set, then the union of the
cones is the whole state space, i.e.,

⋃
k=1,··· ,M cone(Fk) =

R
n.
For each facet of S, Fk , there exists at least one mode q

such that the gradient vector of facet Fk, namely fk, is one
of the (non-redundant) row vectors of Hq . This is simply
because of the fact that S is the intersection of Sq for q ∈ Q.
Collect all such modes q and call them active modes for
cone(Fk), which are denoted as Act{cone(Fk)}.

It can be shown that these active modes in cone(Fk) have
the following properties. First, for two different modes q1,
q2 ∈ Act{cone(Fk)}, the equality Ψq1(x) = Ψq2(x) holds
for all x ∈ cone(Fk). Secondly, for any q ∈ Act{cone(Fk)}
and any another mode q′ ∈ Q, Ψq(x) ≥ Ψq′(x) holds for
all x ∈ cone(Fk). The results are not surprising, if one
considers the geometric interpretation of the Lyapunov-like
function which is basically a distance measure from a point
to the boundaries of a polyhedral set.

A. Main Theorem

A necessary and sufficient condition for the robust
asymptotic stabilizability of the uncertain switched linear
systems (2)-(3) can be stated as the following theorem.

Theorem 1: The switched linear system (2)-(3) with
time-variant uncertainties can be globally asymptotically
stabilized by a switching law, if and only if there exist
matrices Lq, which satisfy the assumption (4) for each
subsystem respectively, such that the matrix⎡

⎢⎢⎢⎣
L1

L2

...
LN

⎤
⎥⎥⎥⎦ ∈ R

∑
q mq×n, (13)

has n linear independent row vectors, and⋃
q∈Q

Ωq = R
n (14)

where Ωq are the union of the cones cone(Fk) (12) that
q ∈ Act{cone(Fk)} and cone(Fk) ⊆ Mq (8).

B. Sufficiency of Theorem 1

This subsection is devoted to the sufficiency proof of
Theorem 1, which is given in a constructive way. In the
following, a stabilizing switching law is constructed and a
global Lyapunov function is composed for the switched sys-
tem. The techniques are based on the polyhedral Lyapunov-
like function Ψq(x(t)) for each (unstable) subsystem.

First, we give a necessary and sufficient condition for a
0-symmetric polyhedrons, i.e., if x ∈ P then −x ∈ P , to be
bounded. Note that a bounded polyhedron is usually called
a polytope.

Lemma 3: A non-empty 0-symmetric polyhedral set

P = {x ∈ R
n : |Hx| ≤ g}

is bounded, if and only if the matrix H ∈ R
s×n (s ≥ n)

has n linear independent row vectors, or equivalently the
rank of H equals n.

In particular, for the intersection of Sq , we have the
following corollary.

Corollary 1: If all the polyhedral sets Pq in R
mq are

0-symmetric, then so are the Sq in R
n, for all q ∈

Q = {1, 2, · · · , N}. In addition, the intersection of all the
polyhedral sets Sq is bounded, if and only if the matrix (13)
has n linear independent row vectors, or equivalently it has
rank n.

From Corollary 1, we obtain that the rank condition (13)
implies that the intersection of Sq , that is the set S, is
a polyhedral C-set. Therefore, we may partition the state
space R

n into finite cones which are induced from the facets
of S, and relabel these cones as corresponding Ωq . Because
of the condition (14), a conic partition of the state space R

n

is given by Ωq, q ∈ Q. We define the switching law as:

x ∈ Ωq ⇒ δ(·, x) = q (15)

It can be shown that the switching law defined above can
guarantee the uniformly ultimate boundedness (UUB) for
the uncertain switched system (2)-(3) into S =

⋂
q∈Q Sq .

Basically, the term UUB means all the trajectories would
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converge to S and stay inside S, which can be guaranteed
by the existence of a Lyapunov function outside S [1].

Proposition 1: Consider the class of switching laws de-
fined by δ(·, x) = q if x is contained in Ωq. Then, the
uncertain continuous-time switched system (2)-(3) is UUB
in the polyhedral C-set

⋂
q∈Q Sq .

Proof : Define the function V (x) = maxq∈Q Ψq(x). For all
x(t) /∈ ⋂

q∈Q Sq , V (x(t)) = maxq∈Q Ψq(x) > 1. Assume
that x(t) ∈ Ωq and current mode σ(t) = q. If no switching
occurs at t, then there exists τ̄ > 0 such that ∀0 < τ ≤ τ̄ ,
x(t + τ) ∈ Ωq and x(t + τ) /∈ int(Sq). Then V (x(t)) =
maxq∈Q Ψq(x(t)) = Ψq(x(t)) and V (x(t+τ)) = Ψq(x(t+
τ)). Then, according to Lemma 2

D+V (x(t)) = D+Ψq(x(t)) < 0

Else, if switching occurs at time t, then there exists τ̄ >
0such that ∀0 < τ ≤ τ̄ , x(t + τ) ∈ Ωq′ and x(t +
τ) /∈ int(Sq′). Then V (x(t)) = maxq∈Q Ψq(x(t)) =
Ψq(x(t)) = Ψq′(x(t)) and V (x(t + τ)) = Ψq′(x(t + τ)).
Therefore, according to Lemma 2

D+V (x(t)) = lim sup
τ→0+

Ψq′(x(t + τ)) − Ψq′(x(t))
τ

< 0.

Therefore, the uncertain switched system (2)-(3) is UUB
with respect to the region

⋂
q∈Q Sq . �

Because of Lemma 1 and the above UUB result, the
switching control law can drive all the state trajectories into
µS for all µ > 0 within a finite time interval. Select any
decreasing sequence of µk with limk→∞ µk = 0; then all
the trajectories will finally be driven to the origin. This
implies globally asymptotic stability for the switched linear
system (2)-(3).

The last point for the sufficiency proof is to show that it
is always possible to pick 0-symmetric polyhedral set Sq .
This is simply because that the asymptotic stability of the q-
th auxiliary system (4) implies the existence of a polytopic
Lyapunov function Ψq in the infinite norm form [7], for
example

Ψq(ξ) = ‖Fqξ‖∞.

By the arguments in the previous section, the polytopic
Lyapunov function Ψq implies a contractive polytope for
the EAS (6), which can be represented as

Pq = {ξ ∈ R
mq : |Fqξ| ≤ 1̄}.

So the generated contractive polyhedral for the original
system (1) in R

n can be represented as

Sq = {x ∈ R
n : |FqLqx| ≤ 1̄},

which is 0-symmetric. With the satisfaction of the rank
condition (13), we know that S =

⋂
q Sq is a C-set by

Corollary 1. Therefore, a conic partition based stabilizing
switching law can be constructed, and a global Lyapunov
function V (x) can be composed as above.

This completes the sufficiency proof of Theorem 1.

C. Necessity of Theorem 1

To show the necessity of Theorem 1, we need the
following lemma.

Lemma 4: A switched system can be globally asymptot-
ically stabilized by a switching law if and only if it can be
stabilized by a conic partition switching law.
Proof : Because of the fact that a conic partition switching
law is a specific class of switching law, the necessity is
obvious.

To prove sufficiency, it is assumed that the switched sys-
tem can be globally asymptotically stabilized by a properly
designed switching law. Therefore, there exists a switching
signal σ(t) such that the closed-loop switched system

ẋ(t) = Aσ(t)(w)x(t)

is globally asymptotically stable. Then, a polytopic Lya-
punov function Ψ(x) for the closed-loop switched linear
system exists [7], and its level set

P = {x ∈ Rn : Ψ(x) ≤ 1}
is a C-set [1].

For any x ∈ ∂P , according to the above asymptotic
stability assumption, there exists at least one mode q such
that the Dini derivative of Ψ(x) is negative along the
dynamics of mode q. Similar to the arguments in [1], there
exists a positive constant τ̄ > 0 and a scalar 0 < λ < 1,
such that

[I + τAq(w)]x ⊂ λP ,

holds for all 0 < τ ≤ τ̄ . In addition, for any positive scalar
µ > 0,

[I + τAq(w)]µx ⊂ λµP ,

holds for all 0 < τ ≤ τ̄ . This implies that the Dini derivative
of Ψ(µx) is negative along the dynamics of mode q [1].

Because of the continuity, there exists a small neighbor-
hood of x, Br(x), such that for all y ∈ ∂P ⋂

Br(x),

[I + τAq(w)]y ⊂ λP ,

holds for all 0 < τ ≤ τ̄ . Note that

∂P ⊆
⋃

x∈∂P
∂P ∩ Br(x),

and the fact that ∂P is closed and bounded in Rn, namely
compact. Therefore, there exists a finite cover for ∂P , which
induces a finite partition of the faces of P . With each
partition of ∂P , a conic cone can be generated and the
union of these cones is the whole state space. Within each
cone, following the previous arguments, one mode q can be
selected to make the Dini derivative of Ψ(x) negative along
the dynamics of mode q. This generates a conic switching
law which globally asymptotically stabilizes the switched
system. �

Because of the above lemma, the existence of an asymp-
totically stabilizing switching law for the switched system
(2)-(3) implies the existence of a conic partition based
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switching law which globally asymptotically stabilizes the
closed-loop switched system. In the following, we will show
that the existence of such conic partition based stabilizing
switching law implies (13) and (14).

First, we show that (14) is necessary. Assume that this
is not the case. Hence, there exists a point x̂ such that the
Dini derivative of Ψ(x̂) is negative along the mode q but
the point x̂ is not contained in the union of range spaces
Mq. Similarly to the arguments in Lemma 4, it can be
shown that the Dini derivative of Ψ(x) is negative along
the mode q for all the points x = µx̂ with µ > 0. If the
level set of Ψ(x), P , is 0-symmetric, then the negativeness
of the Dini derivative of Ψ(x) along mode q holds for all µx̂
with µ �= 0. Note that one may always pick a 0-symmetric
polytope P without loss of generality [7]. All the points
µx̂ form a linear subspace in R

n, and the scalar µ equals
zero corresponds to the origin. This linear subspace can
be represented as a range space of a vector Rq. Notice
that Ψ(x) is piecewise linear and can be represented in the
following form [7]

Ψ(x) = max
1≤i≤s

{|fix|}.

Denote i0 = arg max1≤i≤s{|fiµx̂|} and select the row vec-
tor fi0 as Lq. Then, the negativeness of the Dini derivative
of Ψ(x), in fact |fiµx̂|, along mode q for all µx̂, implies
that the auxiliary system

ξ̇(t) = LqAq(w)Rqξ(t)

is asymptotically stable. The condition that LqRq = 1 can
be easily satisfied by a scaling factor since LqRq �= 0. This
implies that the point x̂ is contained in the union of range
space Mq , which leads to a contradiction.

Next, we show that the rank condition (13) is necessary
for the construction of a conic partition switching law.
Let us denote the conic partition derived in the proof of
Lemma 4 as Ωq , then ⋃

q∈Q

Ωq = R
n.

As proved in Lemma 4, within the cone Ωq , the Dini
derivative of Ψ(x) is negative along the dynamics of the
mode q. This means that the cone

C =
⋂
q

Cq

contains only the null vector, which implies that the inter-
section of Sq (q ∈ Q) is bounded. By Corollary 1, the rank
condition (13) is obtained.

This completes the necessity proof. �

V. CONCLUDING REMARKS

In this paper, continuous-time switched linear systems
affected by parameter variations were considered. The ro-
bust stabilizability problem for such uncertain switched
linear systems was investigated. A necessary and sufficient
condition for the existence of a switching control law to

assure the asymptotic stability of the closed-loop switched
systems was derived. The sufficiency proof also led to
a constructive method for the stabilizing switching law
synthesis, which is characterized by a conic partition of
the state space.

The generalized similarity transformation (4), especially
in the parametric uncertainty case, needs to be better
understood and is currently under study. Two problems
are of particular interest. One is the existence of a stable
generalized system similar to (1) with uncertainties. The
second problem is how to develop an efficient method to
determine or to parameterize the similarity transformation
matrix Lq for a given subsystem (1).
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