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Abstract— In this paper, both the asymptotic stability and
l∞ persistent disturbance attenuation issues are investigated
for a class of Networked Control Systems (NCSs) under
bounded uncertain access delay and packet dropout effects.
The basic idea is to formulate such NCSs as discrete-time
switched systems with arbitrary switchings. Then the NCSs’
stability and performance problems can be reduced to the
corresponding problems of such switched systems. The asymp-
totic stability problem is considered first, and a necessary
and sufficient condition is derived for the NCSs’ asymptotic
stability based on robust stability techniques. Secondly, the
NCSs’ l∞ persistent disturbance attenuation properties are
studied, and an algorithm is proposed to calculate the l∞

induced gain of the NCSs. The decidability issue of the
algorithm is also discussed.

I. INTRODUCTION

By Networked Control Systems (NCSs), we mean feed-
back control systems where networks, typically digital
band-limited serial communication channels, are used for
the connections between spatially distributed system com-
ponents like sensors and actuators to controllers. In tra-
ditional feedback control systems these connections are
established by point-to-point cables. Compared with the
point-to-point cables, the introduction of digital communi-
cation networks has many advantages, such as high system
testability and resource utilization, as well as low weight,
space, power and wiring requirements [12], [14]. These
advantages make the networks connecting sensors/actuators
to controllers more and more popular in many applications,
including traffic control, satellite clusters, mobile robotics,
etc. Recently, modeling, analysis and control of networked
control systems with limited communication capability has
emerged as a topic of significant interest to control com-
munity, see for example [4], [14], [1], [7].

Time delay typically has negative effects on the NCSs’
stability and performance. There are several situations
where time delay may arise. First, transmission delay is
caused by the limited bit rate of the communication chan-
nels. Secondly, the channel in NCSs is usually shared
by multiple sources of data, and the channel is usually
multiplexed by a time-division method. Therefore, there are
delays caused by a node waiting to send out a message
through a busy channel, which is usually called access-
ing delay and serves as the main source of delays in
NCSs. There are also some delays caused by processing
and propagation, which are usually negligible for NCSs.
Another interesting problem in NCSs is the packet dropout
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phenomena. Because of the uncertainties and noise in the
communication channels, there may exist unavoidable errors
in the transmitted packet or even loss. If this happens, the
corrupted packet is dropped and the receiver (controller or
actuator) uses the packet that it received most recently.
In addition, packet dropout may occur when one packet,
say sampled values from the sensor, reaches the destination
later than its successors. In such situation, the old packet
is dropped, and its successive packet is used instead. There
is another important issue in NCSs, that is the quantization
effect. With the finite bit-rate constraints, quantization has
to be taken into consideration in NCSs. Therefore, quan-
tization and limited bit rate issues have attracted many
researchers’ attention, see for example [4], [7].

In this paper, the asymptotic stability and l∞ persistent
disturbance attenuation properties for a class of NCSs under
bounded uncertain access delay and packet dropout effects
are investigated. The basic idea is to formulate such NCSs
as discrete-time switched systems with arbitrary switching
signals. Then the NCSs’ stability and performance problems
can be studied in the switched system framework. The
strength of this approach comes from the solid theoretic
results existing in the literature of switched systems. By
a switched system, we mean a hybrid dynamical system
consisting of a finite number of subsystems described by
differential or difference equations and a logical rule that
orchestrates switching between these subsystems. Properties
of this type of model have been studied for the past
fifty years to consider engineering systems that contain
relays and/or hysteresis. Recently, there has been increasing
interest in the stability analysis and switching control design
of switched systems (see, e.g., [8], [6] and the references
cited therein).

The paper is organized as follows. First, the assumptions
on the network link layer of the NCSs are described in
Section II, and the NCSs with bounded uncertain access
delay and packet dropout effects are modeled as a class of
discrete-time switched linear systems with arbitrary switch-
ings in Section III. Secondly, the stability for such NCSs
is studied in Section IV, and a necessary and sufficient
matrix norm condition is derived for the NCSs’ global
asymptotic stability. Thirdly, the persistent disturbance at-
tenuation properties for such NCSs are studied in Section
V, and a non-conservative bound of the l∞ induced gain
for the NCS is calculated. The techniques are based on the
recent progress on robust performance of switched systems
[10]. A networked controlled perturbed integrator is used
throughout the paper for illustration. Finally, concluding
remarks are presented.

Notation: The letters E ,P ,S · · · denote sets, ∂P the
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boundary of set P , and int{P} its interior. A bounded
polyhedral set P will be presented either by a set of
linear inequalities P = {x : Fix ≤ gi, i = 1, · · · , s},
and compactly by P = {x : Fx ≤ g}, or by the dual
representation in terms of the convex hull of its vertex set
vert{P} = {xj}, denoted by Conv{xj}. For x ∈ R

n,
the l1 and l∞ norms are defined as ‖x‖1 =

∑n
i=1 |xi| and

‖x‖∞ = maxi |xi| respectively. l∞ denotes the space of
bounded vector sequences h = {h(k) ∈ R

n} equipped
with the norm ‖h‖l∞ = supi ‖hi(k)‖∞ < ∞, where
‖hi(k)‖∞ = supk≥0 |hi(k)|.

II. THE ACCESS DELAY AND PACKET DROPOUT

For the network link layer, we assume that the delays
caused by processing and propagation are ignored, and we
only consider the access delay which serves as the main
source of delays in NCSs. Dependent on the data traffic,
the communication bus is either busy or idle (available). If
the link is available, the communication between sender
and receiver is instantaneous. Errors may occur during
the communication and destroy the packet, and this is
considered as a packet dropout.

For simplicity, but without loss of generality, we may
combine all the time delay and packet dropout effects into
the sensor to controller path and assume that the controller-
actuator communicates ideally.

We assume that the plant can be modeled as a continuous-
time linear time-invariant system described by{

ẋ(t) = Acx(t) + Bcu(t) + Ecd(t)
z(t) = Ccx(t) t ∈ R

+ (1)

where R
+ stands for nonnegative real numbers, x(t) ∈ R

n

is the state variable, u(t) ∈ R
m is control input, and z(t) ∈

R
p is the controlled output. The disturbance input d(t) is

contained in D ⊂ R
r. Ac ∈ R

n×n, Bc ∈ R
n×m and Ec ∈

R
n×r are constant matrices related to the system state, and

Cc ∈ R
p×n is the output matrix.

For the above NCS, it is assumed that the plant output
node (sensor) is time driven. In other words, after each
clock cycle (sampling time Ts), the output node attempts
to send a packet containing the most recent state (output)
samples. If the communication bus is idle, then the packet
will be transmitted to the controller. Otherwise, if the bus
is busy, then the output node will wait for some time, say
� < Ts, and try again. After several attempts or when
newer sampled data become available, if the transmission
still can not be completed, then the packet is discarded,
which is also considered as a packet dropout. On the other
hand, the controller and actuator are event driven and work
in a simpler way. The controller, as a receiver, has a
receiving buffer which contains the most recently received
data packet from the sensors (the overflow of the buffer may
be dealt with as packet dropouts). The controller reads the
buffer periodically at a higher frequency than the sampling
frequency, say every Ts

N for some integer N large enough.
Whenever there are new data in the buffer, the controller

0 Ts nTs

Delay or Dropout Dropout

Sucess

Fig. 1. The illustration of uncertain time delay and packet dropout of
Networked Control Systems.

will calculate the new control signal and transmit it to
the actuator. According to the assumption, the controller-
actuator communicates without delay or packet dropouts.
Upon the new control signal arrival, the actuator updates
the output of the Zero-Order-Hold (ZOH) to the new value.

Based on the above assumptions and discussions, a
typical time delay and packet dropout pattern can be shown
in Figure 1. In this figure, the small bullet, •, stands for the
packet being transmitted successfully from the sensor to the
controller’s receiving buffer, maybe with some delay, and
being read by the controller, at some time t = kTs+hTs

N (k
and h are integers), and the new control signal is updated in
the actuator instantly. The actuator will hold this new value
until the next update control signal comes. The symbol, ◦,
denotes the packet being dropped, due to error, bus being
busy, conflict or buffer overflow etc.

III. SWITCHED SYSTEM MODEL FOR NCSS

In this section, we will consider the sampled-data model
of the plant. Because we do not assume the synchronization
between the sampler and the digital controller, the control
signal is no longer of constant value within a sampling
period. Therefore the control signal within a sampling
period has to be divided into subintervals corresponding
to the controller’s reading buffer period, T = Ts

N . Within
each subinterval, the control signal is constant under the
assumptions of the previous section. Hence the continuous-
time plant may be discretized into the following sampled-
data systems

x[k + 1] = Ax[k] + [B B · · ·B]︸ ︷︷ ︸
N

⎡
⎢⎢⎢⎣

u1[k]
u2[k]

...
uN [k]

⎤
⎥⎥⎥⎦ + Ed[k] (2)

where A = eAcTs , B =
∫ Ts

N

0 eAcηBcdη and E =∫ Ts

0
eAcηEcdη. And the controlled output z[k] is given by

z[k] = Cx[k] (3)

where C = Cc. Note that for a linear time-invariant plant
and constant-periodic sampling, the matrices A, B, C and
E are constant.

A. Modeling Uncertain Access Delay

During each sampling period, there are several different
cases that may arise.
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First, if the delay τ = h × T , where T = Ts

N , and h =
1, 2, · · · , dmax

1, then u1[k] = u2[k] = · · · = uh[k] = u[k−
1], uh+1[k] = uh+2[k] = · · · = uN [k] = u[k], and (2) can
be written as:

x[k + 1] = Ax[k] + [B B · · ·B]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u[k − 1]
...

u[k − 1]
u[k]

...
u[k]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ Ed[k]

= Ax[k] + h · Bu[k − 1] + (N − h) · Bu[k] + Ed[k] (4)

Note that h = 0 implies τ = 0, which corresponding to
“no delay” case.

Secondly, if a packet-dropout happens, which may be due
to a corrupted packet or fail in sending out with delay less
than τmax, then the actuator will implement the previous
control signal, i.e. u1[k] = u2[k] = · · · = uN [k] = u[k−1].
Therefor, the state transition equation (2) for this case can
be written as:

x[k + 1] = Ax[k] + [B B · · ·B]

⎡
⎢⎢⎣

u[k − 1]
u[k − 1]

...
u[k − 1]

⎤
⎥⎥⎦ + Ed[k]

= Ax[k] + N · Bu[k − 1] + Ed[k] (5)

In the following, we will model the uncertain multiple
successive packet dropouts.

B. Modeling Packet Dropout

Here, we assume that the maximum number of the
consecutive dropped packets is bounded, say by an integer
Dmax. In this subsection, we will analyze the bounded
uncertain packet dropout pattern and formulate the NCSs
as switched systems with arbitrary switchings.

We first consider the simplified case when the packets
are dropped periodically, with period Tm. Note that Tm is
integer times of the sampling period Ts, i.e. Tm = mTs.
In case of m = Tm

Ts
≥ 2, the first (m − 1) packets are

dropped. Then, for these first (m − 1) steps, the previous
control signal is used. Therefore

x(kTm + Ts) = Ax(kTm) + NBu(kTm − Ts) + Ed(kTm)

x(kTm + 2Ts) = A2x(kTm) + N · (AB + B)u(kTm − Ts)

+AEd(kTm) + Ed(kTm + Ts)

...

x(kTm + (m − 1)Ts) = Am−1x(kTm) + N

m−2∑
i=0

AiBu(kTm − Ts)

+[Am−2E, · · · , E]

⎡
⎢⎣

d(kTm)
...

d(kTm + (m − 2)Ts)

⎤
⎥⎦

Note that the integer N = Ts

T , where T is the period
of the controller reading its receiving buffers. During the

1The value of dmax is determined as the least integer greater than the
positive scalar τmax

T
, where τmax stands for the maximum access delay.

period t ∈ [kTm + (m − 1)Ts, (k + 1)Tm), the new packet
is transmitted successfully with some delay, say τ = hTs

N ,
where h = 0, 1, 2, · · · , dmax. Let us assume that d(kTm) =
d(kTm+1) = · · · = d(kTm+m−1), and that the controller
uses just the time-invariant linear feedback control law,
u(t) = Kx(t). Then, we may obtain

x((k + 1)Tm) = [Am + (N − h)BKAm−1]x(kTm)

+[N
∑m−1

i=1 Ai + (N − h)NBK
∑m−2

i=0 Ai + h]BKx(kTm − Ts)

+[(N − h)BK
∑m−2

i=0 Ai +
∑m−1

i=0 Ai]Ed(kTm)

If we let x̂[k] =
[

x(kTm − Ts)
x(kTm)

]
, then the above

equations can be written as:

x̂[k + 1] =

[
x((k + 1)Tm − Ts)

x((k + 1)Tm)

]

= Φ(m,h)

[
x(kTm − Ts)

x(kTm)

]
+ Emd(kTm)

where Φ(m,h) equals to⎡
⎢⎢⎣

N
∑m−2

i=0 AiBK Am−1

N
∑m−1

i=1 AiBK+

(N − h)NBK
∑m−2

i=0 Ai + h)BK
Am + (N − h)BKAm−1

⎤
⎥⎥⎦

and

Em =

[ ∑m−2
i=0 AiE

(N − h)BK
∑m−2

i=0 AiE +
∑m−1

i=0 AiE

]
.

Here m = Tm

Ts
≥ 2 in this case, and h = 0, 1, · · · , dmax.

For the case of m = 1, namely no packet dropout, the
following dynamic equation is derived:

x̂[k + 1] = Φ(1,h)x̂[k] + E1d[k],

where
Φ(1,h) =

[
0 I

hBK A + (N − h)BK

]
, E1 =

[
0
E

]
.

For the the case of aperiodic packet dropouts, one may
look the delay and packet dropout pattern (Figure 1) of the
NCS as a succession of ramps of various length (Tm1 +h1,
Tm2+h2, · · · , Tmk

+hk,· · · ). Therefore, the NCS along with
a typical aperiodic delay and packet dropout pattern can be
seen as a dynamical system switching among the dynamics
with different periodic delay and packet dropout pattern
Φ(m,h), for m = 1, · · · , Dmax and h = 0, 1, 2, · · · , dmax.
This observation motivate us to model the NCS as a
switched systems as{

x̂[k + 1] = Φ(m,h)x̂[k] + Emd[k]
z[k] =

[
C 0

]
x̂[k] (6)

where Φ(m,h) ∈ {Φ(1,0), Φ(1,1),· · · , Φ(1,Dmax), Φ(2,0), · · · ,
Φ(Dmax,0), · · · , Φ(Dmax,dmax)}. Here Dmax corresponds to
the maximum number of successively dropped packets, and
dmax is the maximum access delay. For notational simplic-
ity, let us denote q = m + h × Dmax as the index of all
the subsystems, and call the collection {1, 2, · · · , Dmax ×
(dmax + 1)} the mode set Q, q ∈ Q. Therefore, we rewrite
(6) as {

x̂[k + 1] = Φqx̂[k] + Eqd[k]
z[k] =

[
C 0

]
x̂[k] (7)
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Associate (7) with a class of piecewise constant functions
of time σ : Z

+ → Q, which is called switching signals.
Note that each switching signal σ corresponds to a (maybe
aperiodic) delay and packet dropout pattern. In order to
study the effects of bounded uncertain access delay and
packet dropouts on the NCSs’ stability and performance,
one needs to consider all possible delay and packet dropout
patterns, which corresponds to considering the arbitrary
switching signals for (7). Therefore, the stability and per-
formance problems for the NCS are equivalent to the
corresponding problems for the switched system (7) with
arbitrary switchings. To illustrate the idea, let us see an
example.

Example 1: Consider the following continuous-time per-
turbed integrator as the plant

ẋ(t) =
[

0 1
0 0

]
x(t) +

[
0
1

]
u(t) +

[
0.1
0.1

]
d(t)

z(t) =
[

1 1
]
x(t)

Assume that the sampling period Ts is 0.1 second. The
controller reads the receiving buffer every T = 0.01s, i.e.
N = Ts

T = 10. It is assumed that the sensor only tries to
send the new sampled state value during the first 0.02s of
each sampling period Ts, from which we may obtain that the
maximum delay (if successively arrived) is τmax = 0.02s
and dmax = 0.02

T = 2. Also assume that at most three
successive packet-dropouts can occur, namely Dmax = 4.
Therefore, the above NCS can be modeled as an arbitrary
switching system with Dmax × (dmax + 1) = 12 modes.
The state matrices for each modes can be determined by
plugging the following matrices

A = eAcTs =

[
1 0.1
0 1

]
, B =

∫ T

0

eActBcdt =

[
0.00005

0.01

]

E =

∫ Ts

0

eActEcdt =

[
0.105
0.1

]
, K =

[ −2 −1
]

into the expression of Φ(m,h) and Em for all possible values
of m ∈ {1, 2, 3, 4} and h = {0, 1, 2}. For instance, the
mode corresponding to the case of two successive packet
dropouts (m = 3) and the third packet arriving with delay
0.02s (h = 2), i.e., the eleventh mode (2×Dmax+3 = 11),
can be described as

x̂[k + 1] =

⎡
⎢⎣

−0.0220 −0.0110 1.0000 0.2000
−0.4000 −0.2000 0 1.0000
−0.1020 −0.0510 0.9992 0.2994
−0.4047 −0.2023 −0.1600 0.8880

⎤
⎥⎦ x̂[k]

+

⎡
⎢⎣

0.2200
0.2000
0.2399
0.1736

⎤
⎥⎦ d[k]

z[k] =
[

1 1 0 0
]
x̂[k]

Now we have modeled the NCS with uncertain access
delay, packet dropout effects as a switched system (7) with
arbitrary switching between its N = Dmax × (dmax +
1) modes. In the following sections, we will study the
asymptotic stability and disturbance attenuation properties

of such NCSs within the framework of switched systems.
For notational simplicity, we will write x̂ as x in the sequel.

IV. STABILITY ANALYSIS

The aim of this paper is to investigate the effects of the
uncertain access delay and packet dropouts on the persistent
disturbance attenuation prosperities, namely the l∞ induced
norm from d[k] to z[k], for the NCSs (7). For such purpose,
it is assumed that the disturbance d[k] is contained in the
l∞ unit ball, i.e., D = {d : ‖d‖l∞ ≤ 1}. The l∞ induced
norm from d[k] to z[k] is defined as

µinf = inf{µ : ‖z[k]‖l∞ ≤ µ, ∀d[k], ‖d[k]‖l∞ ≤ 1}
The first problem we need to answer is
Problem 1: Under what condition the l∞ induced norm

from d[k] to z[k] for the the NCSs with bounded uncertain
access delay and packet dropouts is finite?

The answer for Problem 1 is equivalent to the condi-
tion for an arbitrarily switching system in form of (7)
to have a finite l∞ induced gain. In [10], it is shown
that a necessary and sufficient condition for an arbitrarily
switching system (7) to have a finite µinf is that the
corresponding autonomous switched system x[k + 1] =
Φσx[k] is asymptotically stable under arbitrary switching
signals. Therefore, Problem 1 is transformed into a stability
analysis problem for autonomous switched system under
arbitrary switchings, which has been studied in the literature
extensively, and is typically being dealt with by constructing
a common Lyapunov function; see the survey papers [8],
[6] and the references cited therein. Various attempts have
been made to find a common Lyapunov function for the
family of systems, ensuring the asymptotic stability of
switched systems for any switching signal [5]. However,
most of the work has been restricted to the case of common
quadratic Lyapunov function [13], [9], which only give
sufficient stability test criteria except for some special cases
like pairwise community, symmetric or normal. Here, a
necessary and sufficient condition is given for asymptotic
stability of arbitrary switching systems.

For such purpose, let us first introduce a technical lemma
[2] for the robust stability of linear time variant systems

x[k + 1] = Φ(k)x[k] (8)

where Φ(k) ∈ A=̂Conv{ Φ1, Φ2, · · · , ΦN}
Lemma 1: The polytopic uncertain linear time-variant

system (8) is globally asymptotically stable if and only
if there exists a finite n such that ‖Φi1Φi2 · · ·Φin‖ < 1
for all n-tuple Φij ∈ vert{A} = {Φ1, Φ2, · · · , ΦN}, for
j = 1, · · · , n.

Here the norm ‖ · ‖ stands for either 1 norm or ∞ norm
of a matrix. Asymptotic stability of the switched NCS (7)
can be expressed as the following proposition.

Proposition 1: A switched linear system x[k + 1] =
Φσ(k)x[k], where Φσ(k) ∈ {Φ1, Φ2, · · · , ΦN}, is globally
asymptotically stable under arbitrary switchings if and only
if there exists a finite n such that
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‖Φi1Φi2 · · ·Φin‖ < 1, ∀Φij ∈ {Φ1, Φ2, · · · , ΦN}, (9)

for j = 1, · · · , n.
The proof is omitted here for space limit. For the NCS

example considered in the previous section, we tested the
matrix norm condition
‖Φi1Φi2 · · ·Φi24‖∞ < 1, ∀Φij ∈ {Φ1, Φ2, · · · , Φ12},

which holds for j = 1, · · · , 24. Therefore, by Proposition 1,
the NCS is globally asymptotically stable with the bounded
uncertain access delays and packet dropouts.

In the sequel, we limit our attention to asymptotically
stable switched systems under arbitrary switchings. As a
byproduct, we prove the equivalence between the robust
asymptotic stability for polytopic uncertain linear time-
variant systems and the asymptotic stability for switched
linear systems with arbitrary switchings. It is quite in-
teresting that the study of robust stability of a polytopic
uncertain linear time-variant system, which has infinite
number of possible dynamics (modes), is equivalent to only
considering a finite number of its vertex dynamics as an
arbitrary switching system. Although we only prove the
equivalence in the discrete-time case, this result is also true
in the continuous-time case. This fact bridges two originally
distinct research fields. Therefore, existing results in the
robust stability area, which has been extensively studied
for over two decades, can be directly introduced to study
the arbitrarily switching systems and vice versa.

V. DISTURBANCE ATTENUATION PROPERTY

After the above discussion on the conditions for µinf to
be finite, we shall now calculate a non-conservative bound
on µinf for the NCS with bounded uncertain access delay
and packet dropouts. This leads to the second problem
studied in this paper.

Problem 2: Determine the minimal l∞ induced norm (if
exists) from d[k] to z[k] for NCSs with bounded uncertain
access delay and packet dropouts.

To solve this problem, we consider the disturbance at-
tenuation performance that the switched system (7) can
preserve under arbitrary switchings. We will calculate a
non-conservative bound on µinf for the arbitrarily switching
system (7). The techniques are based on the positive invari-
ant set theory and our recent results on robust performance
for switched linear systems [10].

For such purpose, we first introduce the definition of a
positive disturbance invariant set for the switched system
(7) under arbitrary switching signals.

Definition 1: A set P in the state space is said to be
positive disturbance invariant for the switched system (7)
with arbitrary switchings if for every initial condition x[0] ∈
P we have that x[k] ∈ P , k ≥ 0, for every possible
switching signal σ(k) and every admissible disturbance
d[k] ∈ D.

We now formalize the definition of a limit set.
Definition 2: The limit set L for the switched system (7)

with arbitrary switchings is the set of states x for which

there exist a switching sequence σ(k), admissible sequence
d[k] and a non-decreasing time sequence tk such that

lim
k→+∞

Ξ(0, tk, σ(·), d[·]) = x

where limk→+∞ tk = +∞ and Ξ(0, tk, σ(·), d[·]) denotes
the value at the instant tk of the solution of (7) originating
at x0 = 0 and corresponding to σ and d.

The limit set L has the following property.
Lemma 2: Under the asymptotic stability assumption, the

limit set L is non-empty and the state evolution of the
switched system (7), for every initial condition x[0], all
switching sequences σ(k) and all admissible disturbances
d[k] ∈ D, converges to L. Moreover, L is bounded and
positive disturbance invariant for the switched system (7)
with arbitrary switchings.

The boundedness and convergence of the limit set come
from the asymptotic stability of the switched system under
arbitrary switchings. The invariance can be easily shown
by contradiction. The detailed proof is omitted here due to
space limitation2.

Define now the set

X0(µ) = {x : ‖Cx‖∞ ≤ µ} = {x :
[

C
−C

]
x ≤

[
µ̄
µ̄

]
}

where µ̄ stands for a column vector with µ as its elements.
X0(µ) is a polytope containing the origin in its interior.

A value µ < +∞ is said to be admissible for arbitrary
switching signals if µ > µinf . Clearly, given µ > 0, the
response of the switched system satisfies ‖z[k]‖l∞ ≤ µ
and ‖d[k]‖l∞ ≤ 1 if and only if switched system (7)
admits a positive disturbance invariant set P under arbitrary
switching such that 0 ∈ P ⊆ X0(µ).

In the following, we provide a procedure to compute a
positive disturbance invariant set, for arbitrary switching
signals, containing in X0(µ). This is accomplished by
finding the maximal positive disturbance invariant set for
switched system (7) under arbitrary switchings, i.e., a set
contains any other positive disturbance invariant set under
arbitrary switchings in X0(µ).

Given a compact set P ⊆ R
n, we can define its predeces-

sor set for switched systems (7) under arbitrary switchings,
pre(P), as all the states x that can reach the set P in the
next step in spite of disturbances or switching signals. It
can be calculated as

pre(P) =
⋂
q∈Q

preq(P), (10)

where preq(P) stands for the predecessor set of the q-th
subsystem, that is the set of all states x that are mapped
into P by the transformation Φqx+Eqd, for all admissible
d ∈ D.

By recursively defining the sets P(k), k = 0, 1, · · · as

P(0) = X0(µ), P(k) = P(k−1)
⋂

pre(P(k−1)) (11)

2Similar concepts and lemma were previously given in [3] for uncertain
linear time-varying systems. The results developed here are direct exten-
sions to the switched systems.
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it can be shown that P(∞) is the maximal positive distur-
bance invariant set under arbitrary switching in X0(µ). We
now introduce a lemma guaranteeing that this set can be
expressed by a finite set of linear inequalities (i.e. it is a
polyhedral) and thus can be finitely determined.

Proposition 2: Under the asymptotic stability assump-
tion, if L ⊂ int{X0(µ)} for some µ > 0, then there exists
k such that P(∞) = P(k) and this k can be selected as the
smallest integer such that P(k+1) = P(k).

In order to check whether a given performance level
µ > 0 is admissible for the switched system under arbitrary
switchings, one may compute the maximal positive distur-
bance invariant set P(∞) in X0(µ) and check whether or not
P(∞) contains the origin. If yes, then µ > µinf , otherwise
µ < µinf . Note that in both cases we get an answer in a
finite number of steps. In the first case, this is due to the
above proposition. In the second case, this comes from the
fact that the sequence of closed sets P(k) is ordered by
inclusion and P(∞) is their intersection. Thus 0 /∈ P(∞) if
and only if 0 /∈ P (k) for some k. Thus checking whether
µ > µinf can be obtained by starting from the initial set
X0(µ) and computing the sequence of sets P(k) until some
appropriate stopping criterion is met. In addition, we have
another stop criterion.

Proposition 3: If the set P(k) ⊂ int{X0(µ)} for some k,
then the switched system (7) does not admit a positive dis-
turbance invariant set under arbitrary switchings in X0(µ).
In other words, µ < µinf .

These results suggest the following constructive proce-
dure for finding a robust performance bound.
Procedure 1. Checking whether µ > µinf

1) Initialization: Set k = 1 and set P(0) = X0(µ).
2) Compute the set P(k) = P(k−1)

⋂
pre(P(k−1)).

3) If 0 /∈ P(k+1) or P(k) ⊂ int{X0(µ)} then stop,
the procedure has failed. Thus, the output does not
robustly meet the performance level µ.

4) If the P(k+1) = P(k), then stop, and set P(∞) =
P(k).

5) Set k = k + 1 and go to step 1.

This procedure can then be used together with a bisection
method on µ to approximate arbitrarily close to the optimal
value µinf , which solves the Problem 2. In fact, if the
procedure stops at step 3, we conclude that µ < µinf and
we can increase the value of the output bound µ. Otherwise,
if the procedure stops at step 4, we have determined an
admissible bound for the output, say µ > µinf , that can be
decreased.

Example 2: We calculate a non-conservative bound of
µinf for the switched NCSs under arbitrary switching
sequences. Using the bisection method (with error tolerance
ε = 0.01), we obtain that µinf = 0.809.

VI. CONCLUDING REMARKS

In this paper, we considered a class of Networked Control
Systems (NCSs) affected by bounded uncertain access delay

and packet dropouts, and we modeled them as discrete-time
switched linear systems with arbitrary switchings. Then,
the stability and persistent disturbance attenuation issues
for such NCSs were studied in the framework of arbitrarily
switching systems. A necessary and sufficient condition was
derived for the NCSs’ asymptotic stability. In addition, the
equivalence between the asymptotic stability of arbitrary
switching linear systems and the robust stability of a cor-
responding linear time-variant systems was obtained, thus
bridging two originally distinct research fields. Secondly,
based on recent progress in the robust performance study
of switched systems, the NCSs’ l∞ persistent disturbance
attenuation properties were studied as well.
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