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ABSTRACT

It is shown that Fractional Order Hold and
Pulse Amplitude Modulation signal reconstruction
methods can be used to improve, in many cases, the
zero properties of the sampled transfer function
H(z) over the Zero Order Hold reconstruction.
State-Space descriptions and algorithms are used
throughout as they provide a convenient way to
study H(z) for any sampling period T. In addition,
the problem of how well the sampled H(z) models the
continuous G(s) is discussed.

INTRODUCTION

Given a continuous plant G(s), we are inter-
ested in using a reconstruction circuit to obtain
the sampled transfer function E(z). 11(z) in this
case represents the reconstruction circuit (e.g. a
Zero Order Hold (ZOH)) followed in cascade by G(s)
and a sampler. Note that G(s) usually includes the
antialiasing filters. It is known that the recon-
struction circuit can be represented for analysis
purposes as an impulse reconstructor (modulator) in
cascade with Gr(s), the continuous representation
of the reconstruction used. For example, for ZOH
Gr(s) - Go(s) where [1] (T the sampling period)

Go(s) - (1 - e-Ts)/s (1)

It follows that H(z) is the representation of
GrG(s) preceded by the impulse reconstructor and
followed by the sampler, that is

H(z) - Z{GrG(s)1 (2)

where Z{ } denotes the z-transform of the corre-
sponding continuous time signal. Note that in the
case of ZOH

Ho(z) - Z((leCT5)G(s)/s} - (l-zC1)Z{G(s)/s} (3)

Zeros of H(z) inside the unit disc are very
desirable in control design. Unfortunately, a G(s)
with zeros inside the left-half s-plane is not
necessarily transformed to an H(z) with zeros in-
side the unit disc. In contrast, the poles pi of
G(s) are transformed as Pi + exp(piT) a transforma-
tion which maps the left-half plane onto the unit
disc. This problem was studied by Lstro'm et al.
[2] for the case of ZOR reconstruction and it was
shown that continuous systems G(s) with pole excess
larger than two will always give sampled systems
with unstable zeros provided that the sampling
period T is sufficiently small. This implies

that in many cases, where T must be chosen
relatively small to satisfy other criteria, 1(z)
will be inverse unstable.

In view of (2) it is clear that the zeros of
H(z) depend on G(s), the reconstruction method used
GC(s), and the sampling period T. It is of inter-
est to investigate whether the zero properties of
H(z) can be improved when reconstruction methods
other than ZOR are used. Realistic practical al-
ternatives to ZOE should of course be standard per-
haps "off the shelf" reconstruction circuits which
can be readily implemented in digital control.

H1(z) should also be an acceptable approxima-
tion of G(s). Note that good zero properties of
1(z) are of course desirable, but not at the ex-
pense of the adequacy of the model 1(z). For exam-
ple, under certain assumptions, as T + c in ZOH all
the zeros of M(z) go inside the unit disc 121 as
desired but 1(z) becomes a poor approximation of
G(s)- (H(z)-G(O)z-C1) Therefore, in addition to
studying the zero properties of H(z) under differ-
ent reconstruction methods, one should also evalu-
ate how well 11(z) models G(s). Here, the frequency
responses (magnitude and phase) of G(s) and 1(z)
over the interval of interest

-wIT < w < WIT (4)

are used to study this problem. Relation (2)
clearly shows the challenge. 1(z), which must mo-
del G(s) only, is actually the z-transform of the
product Gr(s)G(s). The reconstruction circuit
Gr(s) will, in general, distort the characteristics
of G(s) and H(z) will only be an approximation.

Two reconstruction methods are studied here,
the Fractional Order Hold (FROR), and a method cow-
monly used in Communications, the Pulse Amplitude
Modulation (PAM) reconstruction (Partial Duty Cycle
ZOR).

State space descriptions are used throughout
this paper as they provide a convenient way to
study R(z) for any sampling period T. Expressions
for the zero polynomials of H(z) are easily derived
and the computations are carried out via computer
algorithms in the state space. In addition, note
that the state space approach used allows the work
presented here to be easily extended to the multi-
variable case; it can also be used to study other
reconstruction methods.

FRACTIONAL ORDER HOLD (FROB)
SIGNAL RECONSTRUCTION

Consider the Fractional Order Hold (FROH) sig-
nal reconstruction method described by
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A , u(kT)-u(kT-T)
u(t) - u(kT) + 81 ](t-kT) (5)

T

for kT < t < kT + T, where the approximation u(t)
is forad from the samles u(kT) of the signal u(t)
with T the saspling period; 8 is a real number. If
8-1, (5) describes the First Order Hold (FO7R) re-
construction while for 0-0 it becomes

u(t) - u(kT), kT < t < kT + T (6)

which is the well known "staircase" approximation
called the Zero Order Hold (ZOR).

The continuous transfer function Go(s) of the
FROH reconstruction circuit can be shown to be (3]

G%(s) - (14eCTs) lCT5 + f (l-e-Ts)2 (7)
s Ts2

which readily reduces for 8-0 to the ZOH transfer
function GO(s) of (1).
Using sampled data system analysis [1], the PROH1
transformation of the given plant G(s) can be shown
to be

11(z) - (l-z'1)(l1-zz-1)Z{G(s)/s} +

(8/T)(j1-C1)2Z{G(s)/s2} (8)

We are interested in studying the location of
the zeros of the discrete transfer function Ho(z).
Ho(z) is given by the rather difficult to evaluate
expression (8). The study of zero locations can
perhaps be more conveniently carried out if state-
space representations are introduced and this is
done in the following. An additional important ad-
vantage of the state-space approach is the avail-
ability and accuracy of existing numerical tech-
niques.

State-Space Analysis. Let

x(t) - Fx(t) + Gu(t) , y(t) - Hx(t) (9)

be a minimal realization of G(s). The state x(t)
at the sampling instants is given by

kT+T
x(kT+T) - eFTx(kT) + f eF(kT+T-T)Gu(T)dT (10)

kT

where u(t) - u(t) of (5). Substituting, the sam-
pled system is described by

x(kT+T) + 8A x(kT) r - BA
- + u(kT)

xl(kT+T) 0 0 xl(kT) 1

y(kT) [H 0] x(kT)
(11)

xl(kT)_
A

where xl(kT) - u(kT-T) was introduced so that the
delayed input will not appear in the state equa-
tion. Notice that the sampled system description
under ZOH(8-0) is

x(kT+T) - *x(kT) + ru(kT), y(kT) = Hx(kT). (12)

The matrices in (11) are defined by (1,4J:
T T

#.eFT , r-[f eFndn1G, A-[-f (1-nfT)eFnd]JG (13)
0 0

These matrices can be easily evaluated using the
computer. In particular, write *-I+FT* and r=TG,
where * is defined by

* = ! FiTi/(i+l)!
i-o

(14)

and evaluated using the algorithms suggested in 1,l
Appendix A of Chapter 6]. Similarly, A can be
written as

A - [- I FiTi+l/(1+2)!IG
i-o

(15)

which can also be expressed in terms of 4 for com-
puter implementation [4].

The pole polynomial PB(z) of (11) is PO(z) -

z|zI-+j - zll(z-exp(piT)) - zPo(z). Note that the
pole at the origin reflects the delayed sample
u(kT-T) used in FRO (5). The zero polynomial
ZO(z) of (11) is the determinant of its Rosen-
brock's System matrix (51, which can be written as

zI-t
ZB(Z) - z

-H

r-A zI-$

O -H

= ZZo(z) + 8(Z-l)ZBl(Z)
wi th

zI-0 r zI-*
zo(z)m * Zs3(z)) -

-H 0 -H

OA

0

(16)

A

ol
(17)

where properties of the determinants were used in
the derivation. Therefore an alternative to (8)
expression for HO(z) is

HB(z)=Z8(z)/Po(z)=( 8(z-l)ZOl(z)+zZo(z) ]/ZPo(Z)
(18)

In view of (12) and the definition of PO(z) and
Zo(z), it is clear that Ro(z), the ZOH discrete
equivalent of G(s), is given by

H(z) = Zo(z)/Po(z) (19)

Observe that when 8-0 in (16), the zero at the ori-
gin (in zZO(z)) is not a transmission zero but it
is an output decoupling zero [5]; alternatively,
when 8=0 the eigenvalue at the origin corresponds
to an unobservable mode. This is to be expected as
the description for the ZOR case are given by (12)
and (19).

kstr6m et al [2] (also 16,7]) studied the
zeros of H(z) under ZOR reconstruction. They
showed [2, Theorem 1] that given G(s) with m zeros
and n poles (m<n), as T-O, m zeros of 1(z) go to 1
while the remaining n-m-I zeros of H(z) go to the
zeros of Bn.,(z). These polynomials Bn(z) are the
numerator polynomials of the ZOR discrete equiva-
lent of G(s) - 1/sn, In particular

RO(z) - (Tn/n!yBn(z)/(z-l)n (20)

where Bl(z) - 1, B2(z) - z+l, B3(z) - z2+4z+l, etc
(see [21); notice that the polynomials ½(z) have
zeros outside or on the unit circle for n > 2. It
can be easily seen that the poles and zeros of the
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ZOB discrete equivalent %o(z) of a strictly proper
transfer function G(s) go to the poles and zeros of
the ZOH equivalent of l/sn- as T+0; alternatively,
as T+0, G(s) can be approximated by its high fre-
quency model 1/sn',", leading to the same ZOH equiv-
alent [7].

In [41, the zero polynomial of the FROW dis-
crete equivalent of G(s) 1/sn has been determined
explicitly via a minimal realization {F,G,H} of
G(s) in controllable companion form [8] using the
fact that the matrices in (17), the determinant of
which must be calculated, are in the Ressenberg
form [9]. In particular it has been shown that

ZBz = (z-)8h-(z) + Bo l (z)
nI (n+l)!

Zo(W) - -Bn(z) (21)
n!

In [4] Bn(z) were derived from the state space de-
scriptions; in addition, a novel recursive defining
relation was introduced, namely:

B(z)"kI k j(zjl)n-k-I Bjk(z),Bo(z) 1 (22)

The following Proposition has been shown in the
above analysis.
Proposition 1: Let {F,G,H) a minimal realization
of G(s). Under FROH reconstruction, the zero poly-
nomial Zs(z) of the discrete equivalent H4(z) is
given by (16). In the special case of G(s) - 1/se
an explicit expression for Z8(z) is given by (21).

Root Locus Analysis: The zero polynomial Z8(z) is
given by (16) where 8 is a real number. Notice
that the zeros of ZO(z) and Z8l(z) are the zeros of
the systems {*,r,H) and {O,A,HO; this can be seen
from (17) where the matrices involved are the
Rosenbrock's System matrices [5] of the above state
space descriptions. These zeros can be determined
using any appropriate state-space algorithm. In
[4], the multivariable root-locus algorithm of t10]
was successfully implemented to determine the zeros
of ZO(z) and Z8l(z).

In view of (16), it is clear that the standard
Root-Locus approach can be used to determine the
range of 8 for which the zeros of Z8(z) lie inside
the unit disc. If such 8 exists, the corresponding
FROH reconstruction will give an HO(z) which is in-
verse stable. This method was applied to several
transfer functions. As an example, let G(s) -

l/(s+l)3. It was show in [2] that the ZOH equiva-
lent Huo(z) has a zero outside the unit disc if 0 <
T < 1.8399. Using FPO401 reconstruction, the minimum
T for stable zeros, Tmin, can be significantly re-
duced. One can choose any T < 1.8399 and then
determine via our Root-Locus analysis the appro-
priate range for 8. For example if T - .5, for
-.77 < 8 < -.7572 the zeros are inside the unit
disc (although quite close to the unit circle: for
8 - -.76 the zeros are at -.976 + J.0999, -.36).

In summary, our study has shown that in many
cases the zero locations of H$(z) can be improved
by appropriately choosing 8; the Tmin for stable
zeros can be reduced compared to the ZOR recon-
struction. The FROH circuit is of course more com-
plex than the ZOH; actually it can be implemented
via a configuration involving two ZOR circuits [4J.
The additional complexity can perhaps be justified

by the improved zero properties of 14(z).
There is another important issue which needs

to be addressed when a discrete equivalent H(z) of
G(s) is used, namely, how well H(z) models G(s).
It is understood that the degree of the approxima-
tion required depends very much on the requirements
of the design to be carried out and sany times suc-
cessful designs do not involve highly accurate sig-
nal approximations. On the other hand, if in
studying the zero properties of 1H(z) the accuracy
of the approximation is ignored, one could be led
to erroneous conclusions such as choosing an H(z)
with excellent zero properties which has little to
do with the given G(s) (see example in Introduc-
tion). We have chosen to use the frequency re-
sponse (magnitude and phase plots) as a measure to
study how well EI(z) models G(s). This study will
also help us understand why zeros appear outside
the unit disc.

PrequenSy Response Analysis: Consider first the
ZOB reconstruction. Go(s) (in (1)) has magnitude
and phase given by

|Go(jw)J-T|sinc(wT/2)|, Phase[Go(je)]-wT/2. (23)

%I(z) which should match G(s) over the range -w/T <
w < wIT, is determined from GoG. Notice the ampli-
tude attenuation and the phase shift caused to C as
w + w/T (for wsw/T, there is a phase shift of -90')
which implies that %O(exp( jwT)) will only approxi-
mate G(jw) with the approximation becoming worse as
w approaches w/T. In addition, note that the range
of interest becomes larger (w/T) as T becomes smal-
ler. Consider G(s) - 1/83 with T.5 in which case
HO(z) - (1/48)(zZ+4z+1)/(z_j)3. The magnitude of
%o matches the magnitude of G quite well up to w/T.
There is not much aliasing due to the low pass
character of C(s). There is considerable distor-
tion in the phase due to the ZOH circuit. Notice-
able phase lag appears at .1 rad/sec and at w/T the
phase lag is -wf 2. Notice that %I(z) has three
poles (at +1) and two zeros. These poles and zeros
(plus the gain) contribute to magnitude and phase
and they give the plots of Ho which match those of
GoG. Let's examine what happens at a particular
frequency, say w/2T. The poles are fixed at +1 and
they contribute -405' phase. The phase of GOG at
this frequency is -3159, -270° due to G(s) and -45°
due to Go. The two zeros of %O(at al and a2) must
make this correction and contribute to 90° phase,
that is tanl1[l/alJ + tan-1(l/a21 = 90 . If they
are both inside the unit disc they contribute too
much phase; closer examination shows that we must
have a2 - 1/al which implies that one zero must be
outside the unit disc. This type of analysis can
be applied to any strictly proper G(s) (of order
n). %O(z) always has n poles (at exp(piT)) and n-l
zeros. For each T, the location of the n-I zeros
will be so that together with the poles and the
gain, the frequency (magnitude and phase) charac-
teristics of H%(z) match those of GOG(s).

When the PROR reconstruction is used, the
poles of 14(z) are at the same locations as before
(exp(piT)) with the addition of a pole at the ori-
gin. This is for any 8(8*0). Varying 8 we alter
the frequency characteristics of GC and of CG8
which, in view of the fact that the poles of H8(z)
are fixed, causes a shift in the zero locations of
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H1(z). Indeed, for G(s) - 1/(8+1)3, by using FRO0
with -.77 < 8 < -.7572 and T - .5 (as it was al-
ready discussed), 8(z) is inverse stable, while
using ZOB, %(z) wa inverse unstable for
O < T < 1.8399. Comparing the magnitude and phase
plots of H18(z) and G(s) in this case (8-.76, T-.5)
of Figure 2 as well as with the plots of the ZOR
reconstruction %(z) (T-.5) of Figure 1 it becomes
clear that the discrete equivalent %o(z) is a bet-
ter approximation of G(s) than Ho(z); that is, sta-
ble zeros were obtained at the expense of worsening
the discrete approximation.

In suinry, the discrete equivalent 11(z) is
determined from GrG(s) (see (2)). The reconstruc-
tion circuit Gr(s) generally distorts G(s) and the
frequency response of 1(z) only approximates G(s)
over -w/T < w < W/T. The amount of distortion de-
pends on the type of reconstruction circuit used
and the sampling period T and if the minimum dis-
tortion possible is not acceptable another
reconstruction circuit should be used. The zero
locations of H(z) depend on (the sagnitude and
phase of) GrG(s). Note that the number of poles
and zeros of H(z) is fixed and for given T the pole
locations are also fixed. As it was shown, using
PRO with fixed T, by varying 8 one alters the zero
locations of B(z); % contributes magnitude and
phase to CGG which causes the zeros of H(z) to
shift. The contribution (distortion) of Go can be
such that the zero locations of H(z) improve. The
amount of improvement depends on G(s) and its rela-
tion to the magnitude and phase contributed by the
FRO. It should be noted that in some cases 1(z)
becomes inverse stable only when considerable dis-
tortion is introduced by the reconstruction cir-
cuit, and this was shown above by example. It is
therefore clear that for PRO, H(z) becoming a bet-
ter model of a minimm phase C(s), it does not
necessarily imply that Ho(z) will become inverse
stable. This fact can be used sometimes in our ad-
vantage to obtain inverse stable HQ(z) from a non-
minimum phase G(s).

PULSE AMPLITUDE MODULATION (PAM) RECONSTRUCTION

Consider the Pulse Amplitude Modulation (PAM)
[11] signal reconstruction method described by

( u(kT)
u(t) - I

(0

kT < t < kT+T

kT+T < t ( kT+T
(24)

minimal realization of G(s). The state x(t) at the
sampling instants is given by

kT+r
x(kT+T) - eFTx(kT) + f eF(kT+T)Gu(a)dv (27)

kT
where, in view of (26), u(t) a u(kT). The sampled
system is then described by

x(kT+T) - x(kT) + rlu(kT), y(kT) - Hx(kT) (28)
T

where - e'FT and r1 a If eFndn]G (29)
T-T

Similarly to (13), these matrices can be expressed
in a series form. Let

*(a) = E Fiai/(i+l)! (30)
i-O

Then *(TI - * as defined in (14), * - *(T) where
*(a) - era - I + a+(a) F and r1 - t+(T-T)*(t)G. *
and r1 can be evaluated [4] using the algorithms of
(1, Appendix A of Chapter 61. Notice that these
expressions are similar to the ones describing sam-
pled delay systems in the state space.

It is of interest to determine What happens to
H (z) aS T+O. For this, we shall assume that the
PXM circuit also includes a (normalization) gain
lT. The transfer function (25) now becomes

Gp(s)-(l/Ts)(1-e-'rS)-[l-( TS)/2!+(TS)3/3! . . ] (31)

where the series expansion of e-CT was used. We
are interested in frequencies satisfying -w/T < w <
w/T. So for T+O, T8r- and Gp(s) + 1. Therefore,
the PAM discrete equivalent in this case becomes

Rp(z) + Z(G(s)1. (32)

This relation implies that evaluating the zeros of
the PAM equivalent Hp(z) when T+0 is quite
straightforward. Z(G(s)) can be either found in
transform tables directly or after using partial
fractions. In addition note that the z-transform
of G(s) can also be found from the state space
description {F,G,H}. In particular, in view of the
definition of the z-transform,

Z{G(s)} - Z[r(t)] I r(kT)zCk (33)
k-0

and the fact that r(t) - ReFtG is the impulse re-
sponse,

Z{G(Cs) - z[H(zI-#)1IG] (34)

This signal reconstruction is also known as Partial
Duty Cycle ZOR as the value of the signal u(kT) re-
mains constant for only part (T) of the cycle of
length T. It can be easily shown that the contin-
uous transfer function Gp(s) of the PAM reconstruc-
tion is:

Gp(s) = (le-TS)Is , 0 < T < T (25)

As expected, if T-T, Gp(s) - GO(s) of the ZOR re-
construction. The PAM discrete equivalent of G(s)
is

Hp(z) - Z{(1-e-T8)G(s)/s} (26)

and the state-space descriptions will again be used
to facilitate the analysis.

State-Space Analysis: Let {F,G,H} in (9) be a

where * - eFT. Therefore:

Lena: Let {F,G,HI a minimal realization of G(s).
The z-transform of G(s) is given by (34).

This Lena shows that the zeros of the z-transform
Z(G(s)} can be determined using our state-space
algorithms [4] and the Rosenbrock's System matrix
(5] of {(,G,H} with * - eFT.

Returning to the PAM reconstruction, the fol-
lowing results have been shown above:

Proposition 2: Let {F,G,H} a minimal realization
of G(s). Under PAM reconstruction, the zero poly-
nomial of Hp(z) is given by the determinant of the
Rosenbrock's System matrix of (28). Furthermore,
as X+0, Rp(z) + Z{G(s)).
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As it was shown, if TrO, H(za) + Z(l(s)} and
for TOT H(zf) - Ho(z) the ZCW discrete equivalent.
In view or the fact that the ZOH (3) involves
Z{G(Cs)fsl, the zero properties of Hp(z) as T+O
will, in many cases, isprove because they involve
Z G(s)) ,a lower relative degree transfer function.
Depending on C(s) this improvement may lead to
zeros of H (z) inside the unit disc. As an example
consider Gfs) - l/sn. In view of (20) and (32),

HP(z) = HO(z) -

Hp(z) + Z{G(s)} -

Tn Bn(z)

nI (z-l)n

Tan-1 zBn-l(z)

(n-l)! (z-l)n

(r-T)

(T + 0)

which shows that by allowing T+O we improve the
zero properties by moving the zeros from the zeros
of En to 6n-1. This implies that for n-2, the in-
verse unstable ZOH equivalent %o(z) becomes inverse
stable if PAM with t+O0 i used.

The above suggests the following procedure:
Given G(s), determine the zeros of the ZOR equiva-
lent Ho(z) (TaT). If improvement is desirable,
determine the zeros of Z{G(s)1(t+0). Then choosing
T between 0 and T one could achieve good zero pro-
perties with acceptable T. Note that all these
calculations can be easily carried out using the
computer algorithms described above. In the analy-
sis, T(T) can be kept fixed and T(T) can be varied.
It should be noted that in applications of PAM to
Comunications, T/T - 1/16 is quite common.

The magnitude and phase of the PAM reconstruc-
tion Gp(s) are

XGp(iw)fXntjsinc(WT12)i, Phase[CGp(ia)J1-wT/2 (36)

As t+O (assuming lt gain for normalization) it is
clear that the influence of Cp(s) on C(s) will be-
come negligible as expected. This shows that PAM
is a reconstruction circuit which, for small values
of the parameter, introduces no distortion in
GCG(s), thus leading to a better approximation H(z)
of G(s). In addition, as we saw, we expect the
zero properties of Hp(z) to improve as t becomes
smaller.
As an example, consider G(s) - l/(s+l)3 which was
also studied under FROR reconstruction. When T-.5
the zeros of the ZOR equivalent HO(z) are outside
the unit disc, namely at -2.58 and -.183. Using
PAM reconstruction with t=.l, the zeros of Hp(z)
are inside the unit disc at -.873 and -.007106 with
poles at the same locations as for the ZOR. When
TiT/16 .03125 the zeros are at -.68444 and -.7516 x
1-W3. In addition, the smaller T is the better
model of G(s) Hp(z) is over -w/T < w < w/T. See
Figure 3 and compare with Figures 1 and 2.

PAM reconstruction can be implemented by a
standard "off the shelf" Digital to Analog con-
verter used for ZOH. To force the output to go to
zero after T secs a special device could be design-
ed. In many applications this will not be neces-
sary; the signal processor can just set its output
equal to zero T secs after the sample has appeared
in the output. Zeroing the input to the plant G(s)
might not be practical in certain cases; however,
the antialiasing filter will tend to smooth out the
actual input to the plant thus reducing this unde-
sirable effect.

CONCLDLIDS REMARKS

Motivated by the work of Lstrom et al. in (21,
two alternatives to the Zero Order Hold (ZOE) re-
construction method, the Fractional Order Hold
(FROH) and the Pulse Asplitude Modulation (PAM)
were studied. It was shown that they can be used
to improve the zero properties of the discrete
equivalent H(z) in many cases. H(z) should also be
a good model of the continuous plant G(s), the de-
sired accuracy of- course depending on the parti-
cular application. This problem was studied in
this paper using magnitude and phase plots. In
FROR, an example was given to show that while the
zero properties were improved over ZOH, the dis-
crete equivalent was a poorer approximation of
C(s). It was shown that, one can obtain better
models H(z) when PAM is used; furthermore the zero
locations can also be improved. Note that both re-
construction methods studied reduce to the ZOR for
special values of the parameters.

State-space descriptions and algorithms were
used throughout this paper and efficient ways to
numerically study the zero properties of H(z) for
any value of the sampling period T (not only when
T+O or T "') were introduced. Note that sisilar
methods were used in (4] to study delay systems un-
der ZOR and PAM reconstruction. It should be
pointed out that these state space methods can also
be used to study other reconstruction methods ap-
plied to more general (e.g. multivariable) sys-
tems.
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