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Switching Stabilizability for Continuous-Time
Uncertain Switched Linear Systems

Hai Lin, Member, IEEE, and Panos J. Antsaklis, Fellow, IEEE

Abstract—This paper investigates the switching stabilizability
problem for a class of continuous-time switched linear systems
with time-variant parametric uncertainties. First, a necessary
and sufficient condition for the asymptotic stabilizability of such
uncertain switched linear system is derived, under the assumption
that the closed-loop switched system does not generate sliding
motions. Then, an additional condition is introduced to exclude
the possibility of unstable sliding motions. Finally, a necessary
and sufficient for the asymptotic stabilizability of such contin-
uous-time uncertain switched linear systems is presented. This
result improves upon conditions found in the literature which are
either sufficient only or necessary only.

Index Terms—Set-induced Lyapunov functions, stabilization,
switched systems, uncertainty.

I. INTRODUCTION

ASWITCHED system is a dynamical system that consists
of a finite number of subsystems described by differen-

tial or difference equations and a logical rule that orchestrates
switching between these subsystems. Properties of this type of
model have been studied for the past fifty years to consider engi-
neering systems that contain relays and/or hysteresis. Due to its
success in application and importance in theory, the last decade
has seen increasing research activities in stability [8], [19], [22],
controllability [34], [35], observability [1], [10], [14], stabiliza-
tion [16], [25], [33], and switching optimal control [2], [39] of
switched systems.

Among these research topics, stability and stabilization is-
sues in switched systems have attracted most of the attention;
see, e.g., the survey papers [8], [19], [20], [33], the recent books
[18], [34], and the references cited therein. It is known that
even when all the subsystems are unstable, the switched system
may still generate convergent trajectories under certain class of
switching signals. Then, a very interesting question is how “un-
stable” these subsystems can be while there still exists stabi-
lizing switching signals. This is usually referred to in the litera-
ture as the switching stabilizability problem.

Early efforts on this issue focused on quadratic stabilization
using a common quadratic Lyapunov function. For example, a
quadratic stabilization switching law between two linear time
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invariant (LTI) systems was considered in [37], where it was
shown that the existence of a stable convex combination of the
two subsystem matrices implies the existence of a state-depen-
dent switching rule that stabilizes the switched system along
a quadratic Lyapunov function. A generalization to more than
two LTI subsystems was suggested in [27] by using a “min-pro-
jection strategy.” In [12], it was shown that the stable convex
combination condition is also necessary for the quadratic stabi-
lizability of two mode switched LTI system. However, it is only
sufficient for switched LTI systems with more than two modes.
A necessary and sufficient condition for quadratic stabilizability
of switched controller systems was derived in [31]. There are
extensions of [37] to output-dependent switching and to the dis-
crete-time case [19], [41]. For robust stabilization, a quadratic
stabilizing switching law was designed for polytopic uncertain
switched linear systems based on linear matrix inequality (LMI)
techniques in [41]. All of these methods guarantee stability by
using a common quadratic Lyapunov function, which is con-
servative in the sense that there are switched systems that can
be asymptotically (or exponentially) stabilized without using a
common quadratic Lyapunov function [14].

More recent efforts were based on multiple Lyapunov func-
tions, especially piecewise quadratic Lyapunov functions, to
construct stabilizing switching signals. For example, in [36],
piecewise quadratic Lyapunov functions were employed for
two mode switched LTI systems. Exponential stabilization
for switched LTI systems was considered in [25], also based
on piecewise quadratic Lyapunov functions, and the synthesis
problem was formulated as a bilinear matrix inequality (BMI)
problem. In [15], a probabilistic algorithm was proposed for
the synthesis of an asymptotically stabilizing switching law
for switched LTI systems along with a piecewise quadratic
Lyapunov function. In [5], exponentially stabilizing switching
laws were designed based on solving extended LQR optimal
problems.

Related to the switching stabilization literature as described
above, there is work on state or output feedback stabilization
of switched systems or piecewise affine systems. For feedback
stabilization, the switching signals are assumed to be given or
restricted, while the continuous-variable control laws, in the
form of state or output feedback, are designed to stabilize the
switched systems under these given switching signals. Several
classes of switching signals are considered in the literature,
for example arbitrary switching [7], [11], slow switching [4],
[13], restricted switching induced by partitions of the state
space [6], [17], [29], [30] etc. The focus of this paper is on a
typical switching stabilizability problem, where the switching
signals are assumed to be free design variable, while no contin-
uous-variable inputs are considered.
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Notice that the existing switching stabilizability conditions,
which may be expressed as the feasibility of certain LMIs or
BMIs, are sufficient only, except for certain cases of quadratic
stabilization. An algebraic necessary condition for switching
stabilizability of switched LTI was proposed in [32]. However,
the proposed necessary condition was not sufficient except
for the simplest case of one dimensional system. A neces-
sary and sufficient condition for asymptotic stabilizability of
second-order switched LTI systems was derived in [38] by
detailed vector field analysis. However, it was not apparent
how to extend the method to either higher dimensions or to the
parametric uncertainty case.

This paper aims to derive a necessary and sufficient condi-
tion for asymptotic stabilizability of switched linear systems.
In particular, it focuses on global asymptotic stabilizability
(through static state feedback switching) for a class of switched
linear systems with time-variant parametric uncertainties.
The rest of the paper is organized as follows. In Section II,
mathematical models for the uncertain switched linear system
are described, and the asymptotic stabilizability problem is
formulated. Section III generalizes the classical polytopic
Lyapunov functions to polyhedral Lyapunov-like functions.
Based on these Lyapunov-like functions, a stabilizing switching
law is constructed and a global Lyapunov function is com-
posed in Section IV, which guarantees asymptotic stability for
the closed-loop switched linear system if no sliding motion
occurs. The condition is proved to be also necessary for the
existence of an asymptotically stabilizing switching control
law without sliding motions. To handle sliding motions, an
additional condition is introduced in Section V, which excludes
the occurrence of unstable sliding motions in the closed-loop
switched systems. It is shown that this additional condition is
not conservative in the sense that it is automatically satisfied if
the switched system can be asymptotically stabilized. Finally,
concluding remarks are presented and future work is proposed.

Notation

In this paper, we use the letters to denote sets.
stands for the boundary of set , and its interior. A poly-
hedron in is a (convex) set given by the intersection of a finite
number of open and/or closed half-spaces in . A polytope is
a closed and bounded (i.e., compact) polyhedron. A polytope
(bounded polyhedral set) will be presented either by a set of
linear inequalities , and
compactly by , or by the dual representa-
tion in terms of the convex hull of its vertex set , denoted
by . For any real , the set is defined as

. The term C-set stands for a convex and com-
pact set containing the origin in its interior.

II. PROBLEM FORMULATION

We consider a collection of continuous-time linear systems
described by the differential equations with parametric uncer-
tainties

(1)

where the state variable , the finite set stands for
the collection of discrete modes, and denotes non-negative

real numbers. In particular, for all ,
, and the entries of are assumed to be continuous

functions of , where is a given compact set in . The
parametric uncertainty is assumed to be time-variant, and with
unknown dependence on time . Note that the origin is
an equilibrium (maybe unstable) for the systems described in
(1).

Combine the family of continuous-time uncertain linear sys-
tems (1) with a class of piecewise constant functions,

, which serves as the switching signal between the collection
of continuous-time systems (1). The continuous-time switched
linear system can be described as

(2)

and the switching signal is assumed to be generated by

(3)

where . In other words, the discrete mode is deter-
mined by a form of static state feedback.

For this uncertain continuous-time switched system (2)–(3),
an interesting question is: under what conditions it is possible
to design switching laws such that the switched linear system is
asymptotically stable. It is also desirable that the asymptotic sta-
bility property should be robust with respect to the parametric
uncertainties. The main goal of this paper is to propose a neces-
sary and sufficient condition for the existence of asymptotically
stable switching laws for (2)–(3). The problem can be formu-
lated as follows.

Problem: Given the continuous-time switched system
(2)–(3), derive necessary and sufficient conditions, under which
there exist switching control laws that make the closed-loop
switched system globally asymptotically stable.

It is obvious that when one of the subsystems is stable, then
this question has a trivial solution, i.e., just staying with this
stable subsystem. Therefore, it is assumed that all the subsys-
tems are unstable. The following assumption is made for these
unstable subsystems (1).

Assumption: It is assumed that there exists a full row rank
matrix , where , such that the auxiliary
system for the -th subsystem (1)

(4)

is asymptotically stable. Here is a right inverse of
.
Intuitively, the previous assumption can be interpreted as

considering a linear combination of the states of the original
system (1) that evolves in an asymptotically stable manner in a
subspace. The auxiliary system evolves in a lower dimensional
state–space to which the original system can be projected for
stability.

An interesting fact about the auxiliary system is that even
when all parts of the state are unbounded, there still may
exist to satisfy the assumption. For example,

Example 1: Consider a continuous-time linear system
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where the uncertain parameter . The previous con-
tinuous-time system is obviously unstable. However, we may

select and to obtain

for all . Therefore, the auxiliary system

is asymptotically stable. Note that one may pick another , for

example, with , to obtain a stable auxiliary

system

Based on the existence of a stable auxiliary system, the states
contained in the range space of tend to converge to the

null space of . This partial convergence property of
the original system is captured by a polyhedral Lyapunov-like
function that is developed in the next section.

If the subsystem is LTI, i.e., (1) becomes ,
which corresponds to the uncertain parameter set in (1) being
a singleton, then it can be shown that there always exist and

satisfying the above assumption, except when
for some positive real . Here, is the identity matrix
of dimension . The proof of this claim is quite straightforward
using the structure of the Jordan canonical form of .

For the case that , , there does not exist
any stable auxiliary system. If we look at the phase plane of this
subsystem, , all the field vectors point to infinity
along the radial directions. Intuitively speaking, the dynamics
are explosive and do nothing but drive all the states to infinity,
which we would like to avoid since no contribution is made to
the stabilization purpose of a switched system. For this case,
one may simply remove these subsystems with the dynamics of

.
For the parametric uncertainty case, ,

it will be shown in Section IV-B by contradiction that if the
switched linear systems is stabilizable then there always exist

and satisfying the aforementioned assumption. There-
fore, the assumption on the existence of and does not
cause loss of generality.

III. POLYHEDRAL LYAPUNOV-LIKE FUNCTIONS

A. Polytopic Lyapunov Functions

Following the discussion in the previous section, each sub-
system has an asymptotically stable auxiliary system

in a lower dimensional . In this section, the discussion is
restricted to a single subsystem, i.e., is fixed.

According to the converse Lyapunov theorem in [21], [23]
for linear time-variant systems, the asymptotic stability of the
auxiliary system implies the existence of a polytopic Lyapunov

function, denoted as . Following the notation in [3], [21],
the polytopic Lyapunov function can be represented as

where is a nonzero row vector and is an integer
greater than . In addition, has the following properties
[3]: , ; for ,

; and , .
is continuous and piecewise linear. In fact, it defines a

distance of from the origin which is linear in any direction.
Consider the following closed set:

It is known from [3] that the previous set is a bounded poly-
hedral set with the origin in its interior, so it is a polyhedral
C-set. If one takes to be the matrix with

as its th row vector, then can be represented as

(5)

where stands for a column vector in with all elements
being 1 and “ ” is component-wise.

It is worth pointing out that the polytopic Lyapunov function
is the Minkowski function of [3], i.e.,

Therefore, the polytopic Lyapunov function is induced
from a polyhedral C-set, so it is also called a set-induced Lya-
punov function.

If the polyhedral C-set is also 0-symmetric, i.e.,
implies as well, then the induced polytopic Lyapunov
function can be expressed as

(6)

where stands for the infinity vector norm.
It is interesting that the results in [21] not only imply the ex-

istence of a polytopic Lyapunov function for an asymptotically
stable auxiliary system, but also the Lyapunov function can al-
ways be selected to be of the above weighted -norm form.
Hence, the set can always be selected as 0-symmetric.

Several methods for automated construction of the polyhe-
dral Lyapunov function have been proposed in the literature.
Early results include [9], where the Lyapunov function construc-
tion was reduced to the design of a balanced polytope satisfying
some invariance properties. An alternative approach was given
by Molchanov and Pyatnitskiy in [23], where algebraic stability
conditions based on weighted infinity norms were proposed. A
linear programming based method for solving these conditions
was given by Polański in [28]. Recently, in [40], Yfoulis and
Shorten proposed a numerical approach, called ray-griding, to
calculate polyhedral Lyapunov functions based on uniform par-
titions of the state-space in terms of ray directions.
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B. Extension to Polyhedral Lyapunov-Like Functions

Notice that all the derivations so far are restricted to the stable
auxiliary system (4), which evolves in a lower dimensional state
space . In the following, we will consider the original un-
stable subsystem (1) in . Since it is unstable, there does not
exist a Lyapunov function in the classical sense. However, as il-
lustrated in Example 1, the existence of a stable auxiliary system
implies that some linear combinations of the states converge
within certain subspaces. This kind of partial convergence prop-
erty is captured by the existence of a polyhedral Lyapunov-like
function for (1). The main aim of this section is to transform the
polyhedral Lyapunov function of the auxiliary system (4)
into a polyhedral Lyapunov-like function for the original sub-
system (1) in .

For this, we need to introduce the Euler Approximate System
(EAS) for the auxiliary system (4)

(7)

where is a positive scalar.
In [3], Blanchini exploited the connection between the contin-

uous-time system (4) and its corresponding discrete-time EAS
(7), which is based on the concept of a contractive set for (7).

Definition 1: Given a positive scalar , , a set is
said to be -contractive with respect to the discrete-time EAS
(7), if, for any , all the possible next step states through
the transition (7) are contained in the set . That is

holds for any , .
It is shown in [3], that for an asymptotically stable system

(4), there always exist a positive scalar and a positive
constant such that, for all , the level set

in (5) is -contractive for the corresponding
discrete-time EAS (7).

Therefore, for the auxiliary system (4), we obtain that

holds for all , for all and for
small enough.
For all the states contained in the range space of , one

may represent . Note that the range space of , de-
noted as image , is a linear subspace of . Hence, for all

image

holds for all and for all . As it has been
pointed out in Example 1, the matrix that satisfies the as-
sumption (4) and the corresponding EAS (7) admits as a

-contractive set, is not unique for a given . Denote the union
of the range space of all these as

image (8)

and for all states

for all and for all .
Note that the discrete-time system

(9)

is the corresponding EAS for the original subsystem (1). Let us
denote the (convex but unbounded) polyhedral set

. One remarkable feature of the polyhedron is
that it is -contractive for the EAS (9) along . Hence, the set

is called partial contractive along . This is a generaliza-
tion of the usual contractive set definition.1

In the following, it is shown that the existence of such par-
tial contractive set for the EAS (9) implies a polyhedral
Lyapunov-like function, defined below, for the continuous-time
subsystem (1).

Denote as , and as the th row vector
of . Then, the polyhedral Lyapunov-like function candidate
from the polyhedron can be defined as

(10)

Note that by definition, and that is contin-
uous and piecewise linear for , and

by definition. However, does not imply that .
In fact, for all contained in the convex cone

we have . This is one of the main differences from the
classical Lyapunov function, so we call a Lyapunov-like
function. The above Lyapunov-like function represents a non-
trivial generalization of the classical polytopic Lyapunov func-
tions.

Since the set-induced function is continuous but not con-
tinuously differentiable [23], so is , we consider the (upper
right) Dini derivative of along the trajectory of the contin-
uous-time system (1), which is defined as

It was shown in [3] that the Dini derivative of at the time
instant , for , and , can be calculated as

In the sequel, we will show that the Dini derivative of is
negative for all contained in and outside the cone . The
following property of the partial contractive sets for EAS (9) is

1If the setM is the whole state space , then one obtains the usual con-
tractiveness.
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essential to prove that the Dini derivative of is negative along
the trajectory of (1).

Lemma 1: If is a partial -contractive set for the EAS (9)
along , then is so for all .

The next lemma shows that the partial contractiveness of the
polyhedral set for the EAS (9) implies the negativeness of
the Dini derivative of for (1).

Lemma 2: If there exist scalars and ,
such that the polyhedral set is a partial

-contractive set for the EAS (9) along for all ,
then the Dini derivative for all contained in

and outside the cone is negative along the trajectory of
the continuous-time system (1).

The previous two lemmas are direct extensions of the results
in [3], and the proofs are omitted due to space limitation.

Notice that the intersection of and only contains the
origin. This is because

where the set only contains . This is due to
the positiveness of . Therefore, the condition “outside the
cone ” is automatically satisfied for non-zero contained in

.
The previous two lemmas can be seen as generalizations of

the corresponding results in [3] to the case of unstable uncertain
systems. Here, the negativeness of the Dini derivative is only
guaranteed for part of the states, i.e., contained in . A
state trajectory starting in such regions may leave these regions,
and the polyhedral Lyapunov-like function may then increase its
value. Hence, from a single polyhedral Lyapunov-like function,
one could not say much about the global stability of a switched
system. However, if one patches these multiple polyhedral Lya-
punov-like functions together in such a way that the union of
these is the whole and the intersection of is just the
origin, then it is possible to deduce the switched system stability.
This is exactly the main idea that will be employed in the sequel
of this paper. Before the presentation of the main results, let us
first take a look at a simple example to gain insight into the par-
tial contractiveness of the polyhedral Lyapunov-like function.

Example 2: Consider a continuous-time linear system

where . It is not asymptotically stable, but we may

select and parameterize as , we

obtain

It is easy to verify that and the auxiliary system

Fig. 1. Illustration of S andM for Example 2.

is asymptotically stable when . All these stable auxiliary
systems admit as their polytopic Lyapunov function,
and the interval is a contractive set for
the EASs of these auxiliary systems. In this example, the matrix

, and

Therefore, we obtain the polyhedral set in

from which a polyhedral Lyapunov-like function can be
defined as

Finally, we calculate the set defined in (8) as

which is illustrated in Fig. 1. The level set of , i.e.,
, is also plotted in Fig. 1.

To illustrate the negativeness of the Dini derivative of ,

we select . Note that . In fact, is con-

tained in the range space of for . For the state

The Dini derivative of at is

Note that .
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Note that a single subsystem could have more than one poly-
hedral Lyapunov-like functions with different selections of
and/or . This provides flexibility to assign several dif-
ferent polyhedral Lyapunov-like functions to the same single
subsystem, and to treat them as different “new” modes for the
switching stabilization. This argument makes it reasonable to
only consider the case where is a row vector, i.e., .
When is a row vector, the auxiliary system becomes a scalar
systems and makes the computation of and very simple,
which can to be solved by linear programming. This is further
discussed in the conclusion part of this paper.

IV. MAIN RESULTS

In this section, we will derive a necessary and sufficient con-
dition for the asymptotic stabilizability of the switched linear
system (2)–(3) under the assumption that the closed-loop system
does not generate sliding motions. In other words, we assume
that there are only finite switchings within any finite time in-
terval. Once sliding motion occurs, which is easy to detect by
vector field analysis along switching surfaces, additional care
should be exercised, and this will be dealt with in Section V.

The basic idea here is to patch together the polyhedral Lya-
punov-like functions developed in the previous section. The way
to patch them together is through the intersection of their level
sets, i.e.,

The set is a finite intersection of polyhedral sets, so is a poly-
hedron as well. In addition, is nonempty, since every set
contains the origin in its interior. It is assumed that is bounded
too2. So is a polyhedral C-set. Therefore, the Minkowski func-
tion of

is non-negative, continuous, convex and piecewise linear and
measures the distance of from the boundary of as an inner
product.

Let us introduce some notation for the polyhedral C-set .
First, stands for its finite vertices,
while denotes its facets. The hy-
perplane that corresponds to the th facet is defined by

(11)

where is the corresponding gradient vector of facet
. The set of vertices of can be found as

. We denote the cone generated by the vertices
of by , and

(12)

2The necessary and sufficient condition for the intersection of S to be
bounded is given in Section IV-A.

Fig. 2. Illustration of facet F , hyperplaneH and cone cone(F )(= 
 ).

Note that

Hence, we obtain a conic partition of the whole state–space .
For each facet of , , there exists at least one mode such

that . This is simply because of the fact that
is the intersection of for , and both and
are the measure of the distance of from the boundary of (the
intersected boundaries of ). Collect all such modes such that

, and call them feasible modes for ,
denoted as . If for certain
feasible mode that , then label the cone

as . An illustration of these concepts is given in
Fig. 2.

A necessary and sufficient condition for switching stabiliz-
ability can now be presented, under the assumption that there is
no sliding motion in the closed-loop switched system.

Theorem 1: Assume that there is no sliding motion in the
closed-loop switched system. The switched linear system
(2)–(3) with time-variant uncertainties can be globally asymp-
totically stabilized by a switching law (3), if and only if there
exist matrices , which satisfy the assumption (4) for each
subsystem, such that the matrix

...
(13)

has linear independent row vectors, and

(14)

A. Sufficiency of Theorem 1

This subsection is devoted to the sufficiency proof of The-
orem 1. In the following, a stabilizing switching law is con-
structed and a global Lyapunov function is composed for the
switched system.
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First, we give a necessary and sufficient condition for a poly-
hedron to be bounded. Note that a bounded polyhedron is called
a polytope.

Lemma 3: [24] A nonempty polyhedral set, e.g.,

is bounded, if and only if the cone

only contains the null vector .
For 0-symmetric polyhedrons, the boundedness checking can

be reduced to the following simple rank condition.
Lemma 4: A nonempty 0-symmetric polyhedral set, e.g.,

is bounded, if and only if the matrix ( ) has
linear independent row vectors, or equivalently the rank of

equals .
In particular, for the intersection of , , we have the fol-

lowing corollary. The proof is given in the Appendix .
Corollary 1: If all the polyhedral sets in are 0-sym-

metric, then so are the in , for all .
In addition, the intersection of all the polyhedral sets is
bounded, if and only if the matrix (13) has linear independent
row vectors or, equivalently, it has rank .

Notice that one may always make the level set of the polytopic
Lyapunov function, , 0-symmetric [21]. From Corollary 1, we
obtain that the rank condition (13) implies that the intersection
of , namely the set , is a polyhedral C-set. Therefore, we may
partition the state space into finite cones which are induced
by the facets of , and relabel these cones as . Because of
condition (14), a conic partition of the whole state–space is
given by these , . We define the switching law as

(15)

It can now be shown that this switching law can guarantee
the uniformly ultimate boundedness (UUB) of the uncertain
switched system (2)–(3) into ; that is for any ini-
tial condition outside , there exists a finite time such that

for all .
Proposition 1: Consider the class of switching laws defined

by , when is contained in . Then, the uncertain
continuous-time switched system (2)–(3) is UUB in the polyhe-
dral C-set .

Proof: Consider the Minkowski function of , . For
states outside , assume that and current mode

. If no switching occurs at , then there exists
such that , . So
and . Then, we obtain

in view of Lemma 2 and the fact that by definition.
Else, if switching occurs at time , then there exists

(due to no sliding motion assumption) such that ,
. Then and

. The equality between
and at the switching surface is simply because for all
the states , which is the switching hyperplane
passing the origin, by definition.
Here, is the Minkowski function of and continuous.
Therefore

for all states outside . Therefore, the uncertain switched system
(2)–(3) is UUB with respect to the region .

Because of Lemma 1 and the above UUB result, the switching
control law can drive all the state trajectories into for all

within a finite time interval. Select any decreasing sequence of
with ; then all the trajectories will finally be

driven to the origin. This implies globally asymptotic stability
for the switched linear system (2)–(3).

This completes the sufficiency proof of Theorem 1.

B. Necessity of Theorem 1

To show the necessity of Theorem 1, we need the following
lemma.

Lemma 5: Assume that no sliding motion occurs. A switched
system can be globally asymptotically stabilized by a switching
law if and only if it can be stabilized by a conic partition
switching law.

Proof: Because of the fact that a conic partition switching
law is a specific case of a switching law, the sufficiency is ob-
vious.

To prove the necessity, it is assumed that the switched system
can be globally asymptotically stabilized by a properly designed
switching law for all initial conditions . In particular,
consider the unit sphere

where stands for the Euclidian norm of .
For any initial condition , there exists a switching

signal such that the trajectories starting from and fol-
lowing the dynamics:

asymptotically converge to the origin.
In view of the results in [21] and [3] for uncertain linear time-

variant systems, there exists a polyhedral C-set with
, a positive constant and a scalar , such

that

holds for all and for all . In addition, for any
positive scalar

holds for all . Denote as in the sequel.
If we represent the polyhedral C-set canonically as

(16)
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then the Minkowski function can be written as

(17)

where is the gradient vector of facet of , for
.

Assume that for the initial condition , .
Then

where for some . This in-
equality holds uniformly for all .

Therefore

(18)

Let us denote the hyperplane with which the facet is affili-
ated as . The plane can be represented as

or

We now define a scalar function induced from the
plane as

for all the points in .
Note that

Since for all ,

for all , and for any positive scalar , we have

Similarly to the proof of Lemma 2, one can show that the Dini
derivative of for all the states on the ray passing through

is negative along the mode .
Because of the continuity, there exists a small neighborhood

of , , such that for all , the Dini deriva-
tive of is negative. This procedure can be applied to all the
points on the unit sphere , to obtain an open cover for as

Also based on the compactness of the unit sphere , we derive
a finite cover, for

In addition, one may select these on the unit sphere
dense enough such that the intersection of a finite number of
half-spaces

where , is a bounded poly-
hedral set with the origin in its interior. Notice one may always
choose the pair and at the same time, so that the induced
polyhedron be 0-symmetric.

Denote the Minkowski function of the polyhedral C-set , as
, expressed as

(19)

The function is piecewise linear continuous function,
and has the following properties.

1) Non-negativeness: , ;
2) Radius-unboundedness: for any ,

;
3) Convexity: , .
Basically, defines a distance of from the origin

which is linear in any direction.
Similarly to the conic partition switching law constructed in

the sufficiency proof, we may induce from each facet of the
polyhedral C-set a polyhedral convex cone, and assign a
mode to guarantee the decreasing of . This generates
a conic switching law which globally asymptotically stabilizes
the switched system, and serves as a (control) Lya-
punov function for the switched system.

Because of Lemma 5, the existence of an asymptotically sta-
bilizing switching law (without sliding motion) for the switched
system (2)–(3) implies the existence of a conic partition based
switching law which globally asymptotically stabilizes the
closed-loop switched system. In the following, we will show
that the existence of such conic partition based stabilizing
switching law implies conditions (13) and (14).

Proof by Contradiction: Assume that there exists a point
such that is not contained in the union of range spaces .
Following the arguments in Lemma 5, the Dini derivative of

is negative along certain mode for all points
with . Since the level set of , , is 0-symmetric,
the negativeness of the Dini derivative of along mode
holds for all with as well. All the points form a
linear subspace in (a line passing through the origin), with

corresponding to the origin. This linear subspace can be
represented as a range space of a vector , e.g., set .
Notice that is piecewise linear and can be represented as

Denote and select the row vector
as . Then, the negativeness of the Dini derivative of ,
i.e., for all , implies that the auxiliary
system
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which is a scalar system with negative right hand side, is asymp-
totically stable. The condition that can be easily sat-
isfied by a scaling factor since . This implies
that the point is contained in , which leads to a contradic-
tion.

Next, we show that the rank condition (13) is also necessary
for the construction of a conic partition switching law. Let us
denote the conic partition derived in the proof of Lemma 5 as

, then

As proved in Lemma 5, within the cone , the Dini derivative
of is negative along the dynamics of the mode . This
means that the cone

contains only the null vector, which implies that the intersection
of ( ) is bounded. By Corollary 1, the rank condition
(13) is obtained.

This completes the necessity proof.

V. HANDLING SLIDING MOTION

So far, all our arguments are under the assumption that no
sliding motion is generated by the switched systems. However,
sliding motions may occur through the proposed conic parti-
tion based switching laws. It is also possible that the generated
sliding motion causes instability in the closed-loop switched
systems. Therefore, it is important to explicitly consider sliding
motions. Similar issues arise in the methods for switching sta-
bilization based on piecewise quadratic Lyapunov functions,
where special care needs to be taken; see, e.g., [26]. In this sec-
tion, we identify conditions under which unstable sliding mo-
tions can be avoided. We further show that these conditions are
automatically satisfied in the cases of stable sliding motion and
stable nonsliding switchings. Finally, a more general statement
of the stabilizability result is presented.

We first consider a way to distinguish a stable sliding motion
from an unstable one.

Without loss of generality, assume that a sliding motion oc-
curs between the subsystem and along the intersection hy-
perplane of conic regions and . From the sufficiency
proof in Section IV-A, we know that these conic regions
and are cones generated from two facets, e.g., and ,
respectively. Let the hyperplane that corresponds to the facet
be denoted as

(20)

where is the corresponding gradient vector of facet
( here). Therefore, the sliding motion is contained

in the hyperplane , which is passing through the
origin.

If the sliding motion is stable, then one may pick appro-
priate and to project the trajectories of closed-loop
switched systems to the sliding hyperplane .

Fig. 3. Case of stable sliding motion.

Because the sliding motion is stable, the projected one-dimen-
sional dynamics are stable as well, that is

for and .
For example, one may set as and ,

where is an nonzero point on the sliding hyperplane,
. Another interpretation of the previous inequality is

that all the vectors and point to the negative
side of the plane for all and on the sliding
surface. The case of stable sling motion is illustrated in Fig. 3.

Therefore, for the case of stable sliding motion, one can al-
ways find a row vector such that

for all and . In addition, .
If now the sliding motion is unstable, the trajectories will go

to infinity along the switching hyperplane.
This implies that the sliding motion generates

kind of dynamics. Therefore, in view of earlier discussion, one
cannot find and ( ) such that

for and . In fact, for certain values of
and , the matrix is similar to

for some positive real . This is illustrated in Fig. 4.
So the existence of such can serve as a distinctive fea-

ture between stable and unstable sliding motions. It is possible
to include such requirement in the design procedure so to avoid
unstable sliding motions. The next question is whether this addi-
tional requirement will cause the loss of necessity. Fortunately,
this condition is automatically satisfied for the case of stable
nonsliding switchings as well.

To see this, for the states on the switching surface,
, if no sliding motion occur, then both and
point to the same side of the switching hyperplane, for

example the positive side as illustrated in Fig. 5.
In addition, if the switched system is stabilizable, i.e, satis-

fying the conditions in Theorem 1, then points towards
the negative side of and points towards the
negative side of .
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Fig. 4. Case of unstable sliding motion.

Fig. 5. Case of no sliding motion occurring.

For the case illustrated in Fig. 5, the vector may be
selected as , while for on the the hyperplane

.
By construction, points towards the negative side of

. Actually, also points towards the negative
side of . This is simply because of convexity. Note
that the intersection of the negative side of and the
positive side of is contained inside the negative
side of . Therefore, both

hold for all . Hence

for all and . The argument is the same for
the case when both and point to the negative
side of the switching hyperplane.

In view of this, the additional requirement of common and
on the switching surface is not conservative, in the sense that

it excludes exactly the unstable sliding motions; and, clearly,
a switched system is stabilizable only when it can be done so

without unstable sliding motions. Therefore, the proposed nec-
essary and sufficient condition for the asymptotic switching sta-
bilizability can be extended as follows.

Theorem 2: The switched linear system (2)–(3) with time-
variant uncertainties can be globally asymptotically stabilized
by a (static state feedback) switching law (3), if and only if

1) there exist matrices , which satisfy the assumption (4)
for each subsystem and the rank condition (13);

2) the induced conic cones cover the whole state space, i.e.,

3) when , there exists a row vector such
that

for and . Here, is selected such that
and is contained in the range

space of .
Note that the first two conditions are exactly the same as The-

orem 1, while condition (3) is added to exclude possible unstable
sliding motions.

VI. NUMERICAL EXAMPLE

To illustrate the results, let us consider the following example.
A similar example without parametric uncertainties was used in
[8] to show that switching between two unstable systems may
exhibit stable behavior.

Example 3: Consider the following continuous-time
switched linear system:

In this example, the mode set , and the corre-
sponding state matrices for each subsystem are given by

where .
For the first subsystem, the existence of stable auxiliary sys-

tems and the parameterization of the corresponding and
have been studied in Example 2. For the second subsystem, if

we let and parameterize as , then

The auxiliary system for mode can be written as
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which is asymptotically stable for . The interval
is contractive for the second auxiliary system, which

induces the polyhedral region

The range space can be determined as the sector region
between line and line , and it is shown
in Fig. 6.

It is clear from the sufficiency proof that the active region, i.e.,
of each mode, should be constrained inside . Therefore,

we select a switching surface candidate inside as the line
, which intersect the boundary of at point

and .
For the first subsystem, if we select and

, then

The auxiliary system for mode can be written as

which is asymptotically stable when .
If one selects as the interval , which is con-

tractive for the above auxiliary system, then the polyhedral re-
gion

is obtained. and are shown in Fig. 6.
For this choice, the points and are among the intersec-

tion points of the boundaries of and . Another intersection
point for the boundaries of and are
and . Connecting the origin and , we
obtain the other switching surface candidate ,
which also passes .

Note that the rank condition (13) is satisfied, namely

rank rank

Hence, the intersection of and is a polyhedral C-set, which
has , , , and as its vertices. In particular

which is 0-symmetric. The (control) polytopic Lyapunov func-
tion induced from can be represented as

Fig. 6. Illustration of S ,M , S , andM .

The state–space is divided into four cones corresponding
to the four facets of . For example, the cone generated by
the facet between vertices and , denoted as
with some abuse of notation, has as its active mode and

. Relabel as . Similarly, re-
label the other three cones and the condition (14) is verified.
Therefore, the switched linear systems can be globally asymp-
totically stabilized through proper switching, and the stabilizing
switching control law can be constructed following (15).

To verify that the Dini derivative of is negative fol-
lowing the conic partition switching law, pick a state

, which lies in . Note that
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So, following the second mode:

where .
To make sure that no unstable sliding motion occurs,

we need to check condition (3) in Theorem 2. For illus-
tration, consider the switching surface , select

, and , then

for all , and

for all as well. Similarly, it can be checked for
the switching surface . Therefore, the designed
switching law stabilizes the switched system.

This gives us a switching control law quite similar to the one
proposed in [8]; see [8] for simulations. Using our approach,
it is possible to derive different stabilizing switching laws for
this example by choosing different and/or different contrac-
tive regions for the auxiliary systems. In fact, one may obtain a
whole class of switching control laws that asymptotically stabi-
lize this switched system.

VII. CONCLUDING REMARKS

In thispaper, continuous-timeswitchedlinearsystemsaffected
by parameter variations were considered, and the switching sta-
bilizability problem for such uncertain switched linear systems
was investigated. A necessary and sufficient condition for the
existence of a switching control law (in a static state feedback
form) to assure the asymptotic stability of the closed-loop
switched systems was derived. It is also very interesting to note
that if a switched linear system can be asymptotically stabilized
by a static state feedback switching law without sliding motion,
then one can always implement it in a conic partition based
switching law. However, it is not known yet whether a switching
stabilizable switched system can always be stabilized by a
switching law in a static state feedback form.

Although the conditions given in this paper were proved to be
necessary and sufficient, the checking of the necessity is not easy,
as it requires to parameterize all and that satisfy (4). The
calculation of such and for a given subsystem could be te-
dious,andsystematicapproachesneedtobedevelopedforparam-
eterization of such generalized similarity matrices. Fortunately,
it is always possible to restrict the search to the vector case, i.e.,

, , and . This makes it is possible
to formulate the determination of and into an optimization
problem. Inaddition, for theparametricuncertaintycase, it ispos-
sible to represent the uncertain dynamics as an equivalent poly-

Fig.7. IntersectionofS andS andits inducedconicpartition-basedstabilizing
switching law.

topic uncertain different inclusion. The benefit of formulating it
as a polytopic uncertainty is that in calculation one only needs to
consider the finite vertex matrices. Nevertheless, the properties
of such generalized similarity transformations and the parame-
terization of such and need further study.

APPENDIX

PROOF OF COROLLARY 1

Assume that the 0-symmetric polyhedral set has the fol-
lowing form:

Then

Hence, is 0-symmetric, so is the intersection of

...

The nonemptiness is easy to verify by observing that the origin
is contained in for all .

By Lemma 4, is bounded if and only if the matrix

...
(21)

has linear independent row vectors, or namely its rank equals
.
Note that , , and has rank ,

where

...
...

...
. . .

...
...



LIN AND ANTSAKLIS: SWITCHING STABILIZABILITY FOR CONTINUOUS-TIME UNCERTAIN SWITCHED LINEAR SYSTEMS 645

Because each has rank , the rank of equals
, which is greater or equal to .

Therefore, because of the Sylvester rank inequality, the rank
of the matrix (13) equals .
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