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Abstract The supervision based on place invariants (SBPI) is an efficient technique
for the supervisory control of Petri nets. This paper reveals the significance of the
SBPI based on a literature survey, applications, and an analysis of problems and
supervisory settings that can be addressed using SBPI. Special attention is given
to the various settings within which the problem can be formulated. Such settings
can be distinguished based on the concurrency type, the type of controllability and
observability, and the centralized or decentralized type of supervision. As we show,
it is possible to approach the most general settings in a purely structural way, without
resorting to reachability analysis. We begin by describing the SBPI problem and
the literature methods that address this problem or are related to it. Then, we
proceed to show classes of problems that can be reduced to the SBPI problem. In
the SBPI, the specification is described as a system of inequalities that the Petri
net marking must satisfy at any time. However, as we show, problems involving
more general specifications can be approached in the SBPI setting, sometimes under
additional assumptions, by performing net and/or specification transformations. Four
of the specifications we will consider are logic constraints, language specifications,
disjunctions of linear constraints, and liveness. We conclude with a presentation of
possible applications of the SBPI approach to programming with semaphores, fault
tolerance, and synchronic-distance based designs.
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1 Introduction

Petri nets (PNs) are an important class of discrete event systems, allowing a compact
representation of concurrent systems. The literature on the supervision of PNs
contains numerous references to the enforcement of specifications consisting of
linear inequalities on the PN marking. Such constraints have the form

Lμ ≤ b (1)

where μ is the marking, L ∈ Z
nc×m, b ∈ Z

nc , Z is the set of integers, m is the number
of places of the PN, and nc the number of constraints. The constraints (1) are
sometimes called generalized mutual exclusion constraints (Giua et al., 1992), since
a simpler form of (1) correspond to mutual exclusion specifications.

The constraints (1) have been proposed for a variety of applications: a con-
strained optimal control problem of chemical processes (Yamalidou and Kantor,
1991), the coordination of AGVs (Krogh and Holloway, 1991), manufacturing
constraints (Moody and Antsaklis, 1998), and mutual exclusion in batch pro-
cessing (Tittus and Egardt, 1999). Moreover, by considering also classes of con-
straints that can be reduced to (1) on transformed PNs, specifically the generalized
linear constraints of (Iordache and Antsaklis, 2003b), other applications can be men-
tioned here as well: supervisory control of railway networks (Giua and Seatzu, 2001)
and fairness enforcement, such as bounding the difference between the number of
occurrences of two events, in protocols (Genrich et al., 1980) and manufacturing (Li
and Wonham, 1993).

Other interesting qualities of the constraints (1) are as follows. They can describe
any forbidden marking specification on safe Petri nets (Yamalidou et al., 1996; Giua
et al., 1992), where a Petri net is safe if all reachable markings are binary vectors
(i.e. consisting of 0 and 1 elements). This property is very interesting for supervision
problems on certain subclasses of Petri nets, and notably on marked graphs. Further,
as we show in this paper, more general specifications can be reduced to specifications
(1) on transformed PNs. Such specifications include language specifications on
labeled PNs and disjunctions of constraints (1), under certain boundedness assump-
tions. Note that a labeled PN is a PN in which the transitions are labeled with (not
necessarily distinct) events, just as in the automata setting. Further, a disjunction of
constraints (1) is described by

[
L1μ ≤ b 1

] ∨ [
L2μ ≤ b 2

] ∨ . . .
[
Lpμ ≤ bp

]
, requiring

the marking μ to satisfy at least one of Liμ ≤ bi, i = 1 . . . p. Note also that the
constraints (1) are also interesting in the representation of deadlock prevention and
liveness specifications (Iordache et al., 2002; Iordache and Antsaklis, 2003a).

From a historical perspective, the supervisory control of discrete event systems has
been related to the problem of Church (1963), in Computer Science. In Computer
Science, this line of thought was continued with work on program synthesis for
open systems (e.g. Pnueli and Rosner, 1989), with focus on automata models and
specifications on infinite sequences of events (temporal logic, ω-languages). In
Control Systems, the supervisory control was proposed by Ramadge and Wonham
(1989), with focus on automata and specifications on finite sequences of events. The
results of Ramadge and Wonham prompted also research work on the supervisory
control of PNs. However, note that the supervision of PNs can also be traced back to
earlier work, such as the use of monitors for liveness enforcement by Lautenbach and
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Thiagarajan (1979). The initial work on the supervision of PNs considered forbidden
state problems (Krogh, 1987) and specifications requiring a PN to reach a target state
with additional constraints on the firing sequence (Ichikawa et al., 1985; Ichikawa
and Hiraishi, 1988). In the subsequent developments on the supervision of PNs,
several major approaches can be identified, as follows. First, the supervision of PNs
for forbidden state specifications has been approached with path-based methods, as
in (Holloway and Krogh, 1990; Krogh and Holloway, 1991; Zhang and Holloway,
1995), and also with monitor-based solutions, as in the supervision based on place
invariants (Giua et al., 1992; Yamalidou et al., 1996; Moody and Antsaklis, 2000).
Then, there is also an extension of the Ramadge and Wonham (1989) supervisory
control to PNs by Li and Wonham (1993, 1994, 1995) as well as work on the
enforcement of languages on labeled PNs, e.g. by Giua and DiCesare (1994, 1995)
and Kumar and Holloway (1996). Excellent surveys on the methods proposed for the
supervision of Petri nets can be found in Holloway et al. (1997) and also in (Holloway
and Krogh, 1994). While these surveys focus on the path-based approach, here we
survey work that is most relevant to the SBPI and present new results that emphasize
the significance of this approach. Note also that much of the work surveyed here was
not available at the time of Holloway et al. (1997).

The contribution and the organization of the paper is as follows. First, the
supervision based on place invariants (SBPI) is introduced in Section 3. The notation
of the paper and several important definitions are also included in this section. To
simplify the introduction of the SBPI, Section 3 considers the simpler case of full
controllability and observability. Then, Section 4 presents the various ways partial
controllability and partial observability is modeled in the literature. These include
individually controllable/observable transitions, controlled PNs (CtlPNs), labeled
PNs, and marking observation. In Section 4 we also introduce a new concept, which
we call double-labeled PNs. Double-labeled PNs are shown to be able to represent
the systems described by any of the previous modeling techniques (CtlPNs, labeled
PNs, PNs with individually controllable/observable transitions). Further, as shown in
the following Section 5, the admissibility based methods for the SBPI (e.g. in Moody
and Antsaklis, 1998) can be adapted for double-labeled PNs.

After outlining the principle of the admissibility-based methods and present-
ing structural admissibility tests in Section 5, the literature approaches that can
deal with specifications (1) are overviewed in Section 6. The literature survey
of Section 6 is classified according to the type of the methods, such as methods
based on structural conditions for admissibility, or on a path analysis, or on the
computation of the maximal controlled-invariant set, or for decentralized control.
Section 7 deals with the expressiveness of the constraints (1). This section overviews
several results showing how various supervision problems can be reduced to the
enforcement of constraints (1). Thus, we overview logic constraints, the generalized
linear constraints of (Iordache and Antsaklis, 2003b), the representation of liveness
constraints in the form (1), and two very recent results (Iordache and Antsaklis,
2005) on language constraints and disjunctive constraints. We emphasize the results
on language constraints and disjunctive constraints, as they significantly expand the
area of applicability of the supervision methods for constraints (1).

In Section 8 we show three applications of the constraints (1). First, we examine
the relation between the SBPI and programming with semaphores, discussing also
the implications to automated code generation in software engineering. Then, we
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present a new result showing that the constraints (1) and one of their extensions can
be used to represent redundant embeddings for fault tolerant applications. Finally we
show that one of the extensions of (1) can represent a class of specifications arising
in the context of the Theory of Synchrony.

2 Notation

A Petri net (PN) will be denoted by the structure N = (
P, T, D−, D+)

, where P is
the set of places, T the set of transitions, D−, D+ ∈ N

|P|×|T| are the input and output
matrices, and N is the set of nonnegative integers. Further, we denote by D = D+ −
D− the incidence matrix and by μ the marking. A Petri net with initial marking μ0

will be denoted by
(
N , μ0

)
.

In this survey we will distinguish between the firing vector q, the Parikh vector v
and the firing count vector σ . The firing vector q describes the transition(s) that fire
at a firing instance. The Parikh vector is a state variable, indicating how many times
each transition has fired since the initialization of the system. Finally, the firing count
vector σ is defined with respect to a finite firing sequence σ , indicating how many
times each transition t occurs in σ . In particular, if σ is the sequence fired since the
initialization of the system, v = σ .

The set of reachable markings of
(
N , μ0

)
will be denoted by R

(
N , μ0

)
. Recall, a

Petri net (N , μ0) in which all reachable markings are binary vectors
(
i.e. R

(
N , μ0

) ⊆
{0, 1}|P|) is said to be safe.

We call (1) a set of constraints, because it consists of the constraints L(i, ·)μ ≤
b(i), for i = 1 . . . k, and k the number of rows of L. Further, we also say that (1) is a
conjunction of constraints, since all L(i, ·)μ ≤ b(i), i = 1 . . . k, must be satisfied when
(1) is satisfied. In contrast, a disjunction of constraints liμ ≤ ci, i = 1 . . . k, describes
the requirement that at all times there is i such that μ satisfies liμ ≤ ci. We denote
the disjunction of constraints by

∨
i

[
liμ ≤ ci

]
.

3 The supervision based on place invariants

This section introduces the supervision based on place invariants (SBPI). The
presentation of this section focuses on the simplest case: no concurrency and full con-
trollability and observability. At the end of the section we will present also various
concurrency settings, together with the simple extension of the SBPI for concurrency.
The SBPI under partial controllability and observability is more involved, and will be
presented in subsequent sections.

In the SBPI, the system to be controlled is called plant, and is assumed to be given
in the form of a PN N = (

P, T, D−, D+)
. The SBPI provides a supervisor enforcing

(1) in the form of a PN Ns = (
Ps, T, D−

s , D+
s

)
with

Ds = −LD (2)

μ0,s = b − Lμ0 (3)

where Ds is the incidence matrix of the supervisor, μ0,s the initial marking of the
supervisor, and μ0 is the initial marking of N . The places of the supervisor are called
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Fig. 1 Example of plant and closed-loop system

monitors1 (Giua et al., 1992). The supervised system, that is the closed-loop system,
is a PN Nc of incidence matrix:

Dc =
[

D
−LD

]
(4)

The relation to place invariants is as follows. Recall that a place invariant of N is
an integer vector x ∈ Z

1×|P| such that xD = 0. Recall also that for a place invariant
x, xμ = xμ0 for all reachable markings μ. Note that all rows of [L, I] are place
invariants of Nc. Then, from (3) it follows that at all reachable markings of the closed
loop:

μs = b − Lμ (5)

Since μs, the marking of the monitors, is nonnegative, (1) is enforced. Furthermore,
we can say that (1) is enforced by creating the invariants

[
L, I

]
in the closed-loop.

This is why the approach is “based on place invariants.”

control places, to avoid confusion with the quite different concept of control places of the CtlPN
approach to the supervision of PNs (Krogh, 1987; Holloway and Krogh, 1990; Krogh and Holloway,
1991).

1 In much of the literature, the monitors are called control places. In this paper we do not call them
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Example 1 The PN of Fig. 1(a) adapts a PN model from (Moody and Antsaklis,
1998) of an unreliable machine (Desrochers and Al’Jaar, 1995). Let’s denote μ(pi)

by μi. Assume we desire to enforce

μ1 + μ2 + μ5 ≤ 1 (6)

μ3 + μ7 ≤ 1 (7)

By (2) and (3), we obtain the supervisor shown in Fig. 1(b), consisting of the monitors
p8 and p9. Thus, (5) is described by

μ8 = 1 − μ1 − μ2 − μ5 (8)

μ9 = 1 − μ3 − μ7 (9)

where (8) and (9) correspond to the two place invariants created by p8 and p9.

The supervisors constructed as above are optimal (Giua et al., 1992; Moody and
Antsaklis, 1998; Yamalidou et al., 1996). Following Moody and Antsaklis (1998), the
optimality can be stated as follows:

Theorem 1 (Moody and Antsaklis, 1998) If Lμ0 ≤ b then the PN supervisor with in-
cidence matrix Ds = −LD and initial marking μ0,s = b − Lμ0 enforces the constraint
Lμ ≤ b when included in the closed-loop system Dc = [DT , DT

s ]T. Furthermore, the
supervision is least restrictive.

Much of the PN literature is written under the assumption that only one transition
may fire at a time. This is known as the no concurrency assumption. This will also
be the usual assumption in this survey. However, since many results are not limited
to this setting, we will consider also other concurrency assumptions. A very good
presentation of the various concurrency settings can be found in Stremersch (2001).

Let q denote the firing vector. Under the no concurrency assumption, q ∈ {0, 1}|T|,∑
t∈T q(t) = 1, and the entry with q(t) = 1 indicates the transition that is to fire.

Another concurrency setting is under the concurrency assumption. Under this as-
sumption, groups of transitions may fire at the same time. In this case, q ∈ {0, 1}|T|
and {t : q(t) = 1} identifies the transitions t that are to be fired at the same time. Still
another setting corresponds to the transition-bag assumption. Under this assumption,
the transitions in a group may be fired each several times, at the same firing
instance. Thus, q ∈ N

|T| and for each t, q(t) indicates how many times t is fired.
Following Stremersch (2001), we can incorporate these concurrency assumptions in
a general setting in which we require q ∈ �, for a given � ⊆ N

|T|.
Under any concurrency setting, a firing vector q is enabled by the plant at the

marking μ when

μ ≥ D−q (10)

While under the no concurrency assumption it is convenient to consider that a
supervisor enables transitions, for the general case we consider that a supervisor
enables firing vectors. Following Stremersch (2001), we restrict our attention to the
supervisors with the property that if they enable q, then they enable every q′ ≤ q.

Note that the SBPI design remains optimal under concurrency, as Theorem 1 still
applies. This has been formally proved in Stremersch (2001).
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In the literature, the study of the SBPI began with the work of Giua et al.
(1992). The paper deals with the redundancy, equivalence and modeling power of the
specifications (1), and the enforcement of (1) for fully controllable and observable
PNs. The authors show how to construct the supervisor based on L, D and μ0, and
prove a result equivalent to Theorem 1. While the results of Giua et al. (1992) assume
that L and b in (1) have nonnegative elements, most results there apply also in the
general case.

The benefits of the SBPI were further detailed in Yamalidou et al. (1996), which
considers also a more general set of linear constraints that involve both the marking
μ and the firing vector. A simple approach for the conversion of boolean expressions
to (1) for safe PNs appears also in the paper. Moody and Antsaklis (1998, 2000)
provide a very accessible presentation of the SBPI, together with extensions for PNs
with uncontrollable and unobservable transitions. For the most part, our notation
follows that of Moody and Antsaklis (1998, 2000).

As seen in this section, the SBPI design is both simple and optimal in the case of
fully controllable and observable PNs. Thus, in the literature, the focus has been on
the development of design methods for PNs with partial controllability and partial
observability. Before surveying this part of the literature, we present the various
concepts of controllability and observability that have been used.

4 Uncontrollability and unobservability

Our developments in the previous section rely on the assumptions that (a) all
transitions of the PN can be disabled at will, that is, are controllable; (b) the firings of
any transition can be detected; (c) each transition firing produces a distinct event. By
relaxing (a), (b), and (c) we obtain PNs with partial controllability, partial observ-
ability, and with a labeling, respectively.

In the literature, we can distinguish two main types of uncontrollability and
unobservability. In the first one, events can be controlled and observed, as in the
Ramadge and Wonham (1989) setting. Thus, when the transitions have distinct event
labels, individual transitions can be controlled/observed. Another view of partial
controllability has been introduced by Krogh (1987), who proposed the controlled
PNs. In the controlled PN setting, sets of transitions (as opposed to individual
transitions) may be disabled. Further, a different kind of partial observability results
when the supervisor is assumed to rely on the state (marking) rather than transition
firings. In this section we describe and compare the various controllability and
observability settings. In particular, we will introduce a class of PNs, called double-
labeled PNs, and show that it can model or simulate all types of uncontrollability
while modeling also event unobservability. This result is significant, as we will show
in the next section that double-labeled PNs can be approached by structural methods
of supervisor design.

4.1 Individually controllable and observable transitions

In this setting, the set of transitions T is partitioned in T = Tc ∪ Tuc and T = To ∪
Tuo, where Tc (To) is the set of controllable (observable) transitions and Tuc (Tuo) is
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Fig. 2 Illustrations of various controllability and observability settings

the set of observable (unobservable) transitions. Thus, a supervisor has the ability to
control only the transitions t ∈ Tc and to observe only the firings of t ∈ To.

As an illustration, consider the PN of Fig. 2(c), modeling a part of a manufacturing
system. In the manufacturing system, AGVs going in opposite directions can enter
a common loading area. In the model, firing t1 (t2) corresponds to AGVs entering
(exiting) in one direction, and firing t3 (t4) corresponds to AGVs entering (exiting)
from the other direction. Thus, t1 ∈ To corresponds to the case in which we can detect
when an AGV enters the loading area from one of the two directions. Further, t1, t3 ∈
Tc corresponds to the case when we can prevent AGVs from entering the loading
area from either direction.

A possible way to generalize this setting appears in Basile et al. (2000), which
proposes replacing Tuc and Tuo with control and observation costs. Other ways to
generalize this setting are discussed in the remaining part of this section.

4.2 Controlled PNs (CtlPNs)

This setting introduces a different kind of uncontrollability. Following Holloway
et al. (1997), a controlled PN (CtlPN) is a triple N c = (N , C,B), where N =
(P, T, F) is an ordinary PN, C is a finite set of control places, C ∩ P = ∅, and B ⊆
C × T is a set of directed arcs. As expected, given a marking μ of N , a transition
t is enabled by the plant, or state enabled, when for all places p ∈ P, (p, t) ∈ F ⇒
μ(p) ≥ 1. A control for a CtlPN is a function u : C → {0, 1}. Given a control u, a
transition t is control enabled when for all control places c, (c, t) ∈ B ⇒ u(c) = 1. Of
course, a transition can be fired only when it is both control and state enabled. In
a concurrency setting, the control allows all control-enabled transitions to be fired
simultaneously.

Note that firing a transition has no effect on the control (there are no tokens
flowing out of the control places). This distinguishes the control places of CtlPNs
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from the monitors in the context of the SBPI, which behave completely like the
normal places of a PN.

As an example, consider Fig. 2(a). The control places in the CtlPN shown there
are c1 . . . c4. The firings of t2 and t5 cannot be controlled, as no control places
are connected to t2 and t5. On the other hand, c1 . . . c4 control the firings of the
other transitions. For instance, t7 may be fired only if u(c1) = 1 and t6 only if both
u(c3) = 1 and u(c4) = 1. In a CtlPN, it may not be possible to disable individually
each “controllable” transition. For instance, if u(c1) = 0, both t7 and t4 are disabled,
and if u(c1) = 1, both t7 and t4 are control-enabled. This makes the controllability
concept of CtlPNs more general than the one of Section 4.1.

A modeling example illustrating this kind of controllability is as follows. Consider
a train-gate controller, at the crossing of a railway with a two-way road. There are
two gates, one for each direction of the traffic. The system is modeled in Fig. 2(b):
firing t1 corresponds to a vehicle entering the crossing from one direction, and firing
t3 corresponds to a vehicle entering from the other direction. The controller is only
given the ability to either lower both gates or raise both gates. Thus, the controller
cannot have one gate lowered and the other raised. This is modeled by controlling t1
and t3 with the same control place c1.

4.3 State observation

In the structural setting, transition firings are observed. However, we could observe
instead markings (the state). In this case, limited observability corresponds to limited
information on the marking of the system. As shown in Holloway et al. (1997), this
can be modeled by a function O : M → {o1, o2, . . . on}, mapping the set of markings
M onto a set of observability classes o1, o2, . . . on.

As an illustration, consider again the manufacturing model of Fig. 2(c). Recall that
AGVs going in opposite directions can enter a common loading area; firing t1 (t2)
corresponds to AGVs entering (exiting) in one direction, while firing t3 (t4) corre-
sponds to AGVs entering (exiting) from the other direction. Assume only one AGV
can be in the loading area at any time. Assume also that we can only detect the
presence of an AGV in the loading area, but not its direction. Then, we cannot
distinguish between the markings μ = [1, 0]T and μ = [0, 1]T . So we can associate
an observation class o1 for the markings [1, 0]T and [0, 1]T , and a class o2 for the
marking [0, 0]T .

4.4 Labeled Petri nets

The controllability and observability concepts of Section 4.1 can be extended to
labeled PNs. A labeled PN is a PN enhanced with a labeling function ρ : T →
2� ∪ {λ}, where � is the set of events, ρ the labeling function, and λ the null event.
Following the Ramadge–Wonham setting, � can be partitioned into controllable
and uncontrollable events, � = �c ∪ �uc and observable and unobservable events
� = �o ∪ �uo. In this setting, when a transition t fires, an event e ∈ ρ(t) is generated.
If e ∈ �c (e ∈ �o), the supervisor is able to disable (observe) this event. Note that t
is disabled by the supervisor only when all events e ∈ ρ(t) are disabled. Compared
to Section 4.1, one difference is that two transitions t1 and t2 may produce the
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same event when fired. Here, a supervisor controls/observes transitions indirectly,
by disabling/observing events.

The Ramadge–Wonham setting is usually associated with the no concurrency
assumption. However, in the context of labeled PNs we can use also the other
concurrency settings, allowing control-enabled transitions to fire at the same time,
including multiple firings of individual transitions.

As an illustration, recall the train-gate controller example of Section 4.2, modeled
in Fig. 2(b). We can model the same example with the structure of Fig. 2(c) and a
labeling function ρ such that ρ(t1) = ρ(t3). However, note that this model assumes
not only that t1 and t3 cannot be individually controlled, but also that they cannot
be individually observed (firing t1 or t3 produces the same event). This motivates
introducing double-labeled PNs next.

4.5 Double-labeled PNs

Double-labeled PNs combine the concepts of transition controllability and ob-
servability of CtlPNs and labeled PNs, respectively. A double-labeled PN is a PN
enhanced with two labeling functions: ρ : T → 2� ∪ {λ} and o : T → � ∪ {λ}, where
ρ labels transitions with subsets of control events e ∈ �, and o labels transitions with
observation events o ∈ �. Thus, � (�) is the set of control (observation) events.
The meaning of the two labellings is as follows: A transition t ∈ T is control-enabled
when there is an event e ∈ ρ(t) that is enabled. Further, when t fires, the event o(t)
is generated. Note that when the underlying PN is safe and has a state machine
structure, a double-labeled PN corresponds to a Mealy type automaton. In fact, the
reachability graph of any double-labeled PN is a Mealy automaton.

By using the two labeling functions in the train-gate example (Fig. 2(c)), we can
model the situation in which vehicles entering from different directions produce
different observation symbols (o(t1) = o(t3)), while the flow from one direction
cannot be interrupted apart from the flow of the other direction (ρ(t1) = ρ(t3)).

4.6 Comparison

Clearly, the controllability concept of CtlPNs is more general than that of Section 4.1,
as in Section 4.1 we assume each controllable transition can be individually disabled.
Moreover, the setting of labeled PNs does not capture the ability to control only
certain groups of transitions either. Indeed, a possibility would be to use a common
label for all transitions in a group. However, this would imply not only that the
transitions can be enabled/disabled as a group, but also that they generate the same
event when fired. Further, we would not be able to have a transition in two groups
unless both groups would generate the same events. Thus, it is known (Holloway
et al., 1997) that enabling groups of transitions as opposed to individual transitions,
corresponds to a more unusual setting in the Ramadge–Wonham framework, in
which not all combinations of controllable events can be disabled (Golaszewski and
Ramadge, 1988a). We show next that double-labeled PNs can model the type of
uncontrollability of CtlPNs. This is an important observation, for as we show in
Section 5.3, structural methods can deal with double-labeled PNs.

As an example, Fig. 3(b) shows a double-labeled PN. The observation events are
shown in Greek letters. For instance, o(t1) = α and o(t4) = γ . The control events are
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the events ei, i = 1 . . . 4. For instance, ρ(t2) = {e1, e2} and ρ(t1) = {e1}. Note that the
PN of Fig. 3(b) can simulate the behavior of the CtlPN of Fig. 3(a) by enabling e1

for controls u satisfying u(c1) = u(c2) = 1, e2 for u(c1) = 1, e3 for u(c2) = 1, and e4

for u(c3) = 1. The two PNs of Fig. 3 are not perfectly equivalent, since in the double-
labeled version it is possible to enable t2 and t3 while disabling t1 (e2 and e3 enabled
and e1 disabled). If this is a concern, we can use the simple remedy of Fig. 4, where
p5 is a monitor requiring that e2 and e3 should not be enabled at the same time.

The conversion of CtlPNs to double-labeled PNs, as illustrated in Fig. 3, can be
performed as follows. Given a CtlPN N c = (N , C,B), letU be the set of controls. The
observation labeling o of N is assumed to be given, as we know from the beginning
the observation events generated by transitions. It remains to construct the control
labeling ρ. For each transition t, let ut ∈ U denote the minimal control enabling
t: ut(c) = 1 when (c, t) ∈ B and ut(c) = 0 otherwise. Let Umin be the set of minimal
controls: Umin = {u ∈ U : u minimal for some t ∈ T}. The set of control events � is
constructed as follows: for each uk ∈ Umin \ {0} associate a distinct event ek ∈ �. Let’s
denote by u[ek] the control associated to an event ek. Note that given a control u j, a
transition t of N c is control-enabled when its minimal control ut satisfies ut ≤ u j. So
we define ρ(t) = {e j ∈ � : ut ≤ u[e j]}.

The construction ensures that applying a control u to the CtlPN corresponds to
enabling all events e j with u[e j] ≤ u, resulting in the same transitions being control-
enabled in the CtlPN and the double-labeled PN. However, the converse may not be
true: enabling the events e1 . . . ek may not result in the same set of transitions being
enabled in the CtlPN. The control applied to the CtlPN when e1 . . . ek are enabled
must satisfy u(i) = 1 iff ∃ j ∈ {1 . . . k}: u[e j](i) = 1, that is, u = u[e1] ∨ u[e2] ∨ · · · ∨
u[ek], where ∨ stands for the binary operator OR taken element by element (e.g.
[1, 1, 0] = [1, 0, 0] ∨ [0, 1, 0]). While the construction presented so far is expected to
be satisfactory for most supervisory control problems, let’s notice that it is possible
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Fig. 4 A double-labeled PN equivalent to the CtlPN of Fig. 3(a)
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to refine it to obtain a perfectly equivalent double-labeled PN, as shown next. If
enabling e1 . . . ek does not result in the same set of enabled transitions as applying
u = u[e1] ∨ u[e2] ∨ · · · ∨ u[ek] to the CtlPN, the only possibility is that there is some
other event ek+1 (not enabled) such that u ≥ u[ek+1]. Thus, our construction is to
avoid this possibility. Let e1, . . . ek+1 be such that k ≥ 2, u[e1] ∨ u[e2] ∨ . . . u[ek] ≥
u[ek+1], u[e2] ∨ u[e3] ∨ . . . u[ek] ≥ u[ek+1], u[e1] ∨ u[e3] ∨ . . . u[ek] ≥ u[ek+1],. . . and
u[e1] ∨ u[e2] ∨ . . . u[ek−1] ≥ u[ek+1]. Then, if there is no event ek+2 such that u[ek+2] =
u[e1] ∨ u[e2] ∨ . . . u[ek], the event ek+2 is created and the labeling function is updated
such that ρ(t) = {e j ∈ � : ut ≤ u[e j]}. Then, a monitor of marking k − 1 similar to p5

in Fig. 4 (k = 2 in the figure) is added for each group of transitions t1, t2, . . . tk such
that ei ∈ ρ(ti) for all i = 1 . . . k. The monitor ensures that t1

1, . . . tk
k cannot fire at the

same time, where t j
i denotes the transition ti under the event e j (as in Fig. 4). These

operations are repeated for all groups of events e1. . . ek+1 satisfying the properties
above.

The converse operation is also possible: A double-labeled PN can be converted
to a CtlPN enhanced with an observation labeling o. That is, it is possible to replace
the control labeling with control places.

From a supervision viewpoint, the definition of CtlPNs limits CtlPNs to the
concurrency assumption. Indeed, under more general concurrency settings (which
allow also multiple firings of the same transition at one time), the controls become
very liberal, as they allow an unlimited number of firings for all enabled transitions.
However, there is no such limitation for double-labeled PNs. For instance, in
Fig. 1(b), the number of simultaneous firings of t1 can be limited by the marking
of the monitor p8.

Comparing the two observability settings, state observation and event observa-
tion, note that no setting is more general than the other, in the sense that a problem
formulated in one setting may not be approachable in the other.

An example of problem that can be dealt with in the event observation setting,
but not in the state observation setting, is as follows. Fig. 5(a) shows a PN in
which only t1 is observable and only t6 is controllable. Assume the initial marking
is known and corresponds to the marking shown in Fig. 5(a). The specification
requires t6 be disabled until t1 fires, and then enabled. This problem is trivial in
the event observation setting: the supervisor disables t6 until it observes a firing of

(b)(a)

2

t 3

t 4

t 1

t 3 t 4
t 2 t 5

p3

p1 p2

t 6

p1 p2

t 1

t

Fig. 5 Examples illustrating two distinct observability concepts
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t1. In the state observation setting, note the following. There are three reachable
markings: μ1, μ2, and μ3, each corresponding to one token being in p1, p2, and
p3, respectively. Since t2 and t3 are unobservable, we must define the observation
map O such that O(μ1) = O(μ3). Similarly, we need O(μ2) = O(μ3). It follows that
all reachable markings must belong to the same observation class! Therefore, we
have no information regarding whether t6 should be enabled or not. In this particular
example, it is still possible to solve the problem by changing the structure of the PN:
let p4 be a sink place added to t1 (i.e. •p4 = t1 and p4• = ∅). Since t1 is observable, we
can define two classes of markings: o1 for markings with μ4 = 0, and o2 for markings
with μ4 ≥ 1. Then, we disable (enable) t6 whenever the marking is in o1 (o2).

On the other hand, a problem that cannot be treated in the event observation
framework is as follows. In the PN of Fig. 5(b), assume we have three observation
classes: o1 for markings with μ2 = 0, o2 for 1 ≤ μ2 ≤ 2 and o3 for μ2 ≥ 3. The
specification is that t4 may fire only if μ2 ≥ 3, where t4 is controllable. Regardless
of the observation labels we choose for t2, t3, and t4, there is no solution, unless the
initial marking is assumed to be known.

Finally, note that from events we can estimate the state by means of observers.
Work on PN observers appears in Giua and Seatzu (2002). There, the initial marking
is unknown, and the marking of the plant is estimated by observing the transitions.
The paper considers also the enforcement of specifications (1) based on the estimated
marking. However, as shown in Giua et al. (2004), deadlock may arise in the
enforcement of (1) due to estimation errors. Thus, a deadlock recovery solution is
proposed, based on integer programming and timing information on the firing delays
of enabled transitions.

5 A structural approach to supervision

When dealing with fully observable and controllable systems, we have seen that the
SBPI provides a very simple and optimal solution for the design of supervisors. The
result is summarized in Theorem 1. However, when uncontrollability and unobserv-
ability is present, the supervisor designed as in Theorem 1 may not be admissible.
For instance, the supervisor may include monitors that are supposed to prevent
plant-enabled uncontrollable transitions from firing, and may contain monitors with
marking varied by firings of closed-loop enabled unobservable transitions. Such a
supervisor is clearly not implementable. A supervisor is admissible, when it respects
the uncontrollability and unobservability constraints of the plant. The constraints
Lμ ≤ b are admissible if the supervisor defined by (2) and (3) is admissible. When
inadmissible, the constraints Lμ ≤ b are transformed (if possible) to an admissible
form Laμ ≤ b a such that

Laμ ≤ b a ⇒ Lμ ≤ b (11)

Then, the supervisor enforcing Laμ ≤ b a is admissible, and enforces Lμ ≤ b as well.

Example 2 Assume t2 and t5 uncontrollable in Fig. 1(a). Then μ2 + μ5 ≤ 1 is not
admissible, as enforcing it may attempt controlling either of t2 and t5. However, it
can be checked that μ1 + μ2 + μ5 ≤ 1 is admissible and μ1 + μ2 + μ5 ≤ 1 ⇒ μ2 +
μ5 ≤ 1.
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Various conditions on the constraints Lμ ≤ b could be used to guarantee Lμ ≤ b
are admissible, such as the conditions presented later in this section. Given some
admissibility conditions, the design approach is as follows:

Algorithm 1

1. Check whether the admissibility conditions are satisfied by the supervisor defined
by (2) and (3). If so, the supervisor is optimal and admissible.

2. If not, transform the specification Lμ ≤ b to Laμa ≤ b a such that the admissibil-
ity conditions and (11) are satisfied.

3. Design the supervisor enforcing Laμ ≤ b a as in (2) and (3).

Various design methods result, depending on the admissibility conditions used
in the algorithm and the approach used at the second step. Being known that a
minimally restrictive solution may not correspond to constraints Laμ ≤ b a (Giua
et al., 1992), one can give up the requirement that the transformed specification is
a conjunction Laμ ≤ b a, and allow disjunctions

∨
i[La,iμ ≤ b a,i]. In either case, the

method is suboptimal whenever the admissibility conditions used in the algorithm are
not necessary. In this section we describe “structural” admissibility constraints, which
are sufficient for admissibility, but not necessary. While they may result in suboptimal
designs, the structural admissibility conditions have the advantage that they have
allowed the development of computationally efficient methods for supervisor design.
The rest of this section presents structural admissibility conditions for three cases:

1. Individually controllable and observable transitions
2. Labeled PNs
3. Double-labeled PNs

We will see that in the first two cases the conditions have the form LA ≤ 0
(expressing that all elements of LA are negative or zero), where A is an integer
matrix. However, in the third case, the conditions require each constraint liμ ≤ ci of
Lμ ≤ b to satisfy a disjunction

∨m
j=1[li B j ≤ 0], where B1 . . . Bm are integer matrices.

By bringing
∧

i

∨m
j=1[li B j ≤ 0] to the disjunctive normal form, the conditions of the

third case take the form
∨n

i=1[LAi ≤ 0], where A1 . . . Am are integer matrices. Note
that any method that is applied at the second step of the Algorithm 1 and that relies
on conditions LA ≤ 0, can also be used for our conditions

∨n
i=1[LAi ≤ 0]. This is

how. First, given lμ ≤ c, find for every j = 1, 2, . . . m a solution laμ ≤ ca satisfying
la B j ≤ 0 and (11). Then, select the “best” solution laμ ≤ ca out of the m cases
i = 1, 2, . . . m. Finally, take Laμ ≤ b a as the conjunction of the constraints laμ ≤ ca

that were selected for each constraint lμ ≤ c of Lμ ≤ b .

5.1 Individually controllable and observable transitions

If Tuc denotes the set of uncontrollable transitions, the supervisor of (2) and (3)
controls only the controllable transitions if all elements of LD(·, Tuc) are nonpos-
itive (Chen and Hu, 1994; Moody and Antsaklis, 1998, 2000), which is written as:

LD(·, Tuc) ≤ 0 (12)
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Further, to ensure that the supervisor of (2) and (3) detects only the observable
transitions it is sufficient to require (Moody and Antsaklis, 1998, 2000):

LD(·, Tuo) = 0 (13)

where Tuo is the set of unobservable transitions. Given (1) and an initial marking μ0,
(12) and (13) are only sufficient for admissibility. However, if L is fixed and μ0 and
b are variables, we have the following optimality property.

Theorem 2 (Iordache, 2003) The supervisor of (2) and (3) is admissible for all μ0 and
b ≥ Lμ0 iff L satisfies (12) and (13).

This result can be exploited for fault-tolerant supervisory control (Iordache and
Antsaklis, 2004).

5.2 Labeled PNs

Without loss of generality, we may assume the labeling to be defined as ρ : T →
� ∪ {λ} instead of ρ : T → 2� ∪ {λ}. Indeed, if ρ(t) = {e1, . . . en}, we can replace t
by n copies of t named t1, . . . tn, such that ρ(ti) = {ei}. Further, if ρ(t) = ∅, we can
label t by the null event λ. Thus, we can write the following sufficient conditions for
admissibility:

∀t1, t2 ∈ T, ρ(t1) = ρ(t2) ⇒ LD(·, t1) = LD(·, t2) (14)

∀t ∈ T, ρ(t) ∈ �uc ∪ {λ} ⇒ LD(·, t) ≤ 0 (15)

∀t ∈ T, ρ(t) ∈ �uo ∪ {λ} ⇒ LD(·, t) = 0 (16)

Note that (14) to (16) can be written compactly as LA ≤ 0, for some matrix A. This
means that the same methods used for finding La and b a subject to (11) and (12) or
(11) to (13) can be applied also here, by replacing (12) with LA ≤ 0.

5.3 Double-labeled PNs

Again, without loss of generality, we may assume the control labeling to be defined as
ρ : T → � ∪ {λ} instead of ρ : T → 2� ∪ {λ}. Here, it is more convenient to write the
conditions in terms of single constraints lμ ≤ c instead of sets of constraints Lμ ≤ b .
We have the following sufficient conditions for the admissibility of lμ ≤ c (note that
Lμ ≤ b is admissible if all its constraints lμ ≤ c are admissible):

∀t1, t2 ∈ T, o(t1) = o(t2) ⇒ lD(·, t1) = lD(·, t2) (17)

∀t ∈ T, o(t) ∈ �uo ∪ {λ} ⇒ lD(·, t) = 0 (18)

∀t ∈ T, ρ(t) ∈ �uc ∪ {λ} ⇒ lD(·, t) ≤ 0 (19)

∀t1, t2 ∈ T, ∀α ∈ �, ρ(t1) = ρ(t2) = α ⇒
lD(·, t1) = lD(·, t2) ∨ [

lD(·, t1) ≤ 0 ∧ lD(·, t2) ≤ 0
]

(20)

The constraint (20) is sufficient to guarantee that any two transitions with the
same label are either both disabled or both enabled in the closed-loop. Due to the
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constraint (20), the conditions for the admissibility of Lμ ≤ b are no longer linear.
Instead, they have the form

∨n
i=1 LAi ≤ 0.

6 Supervision methods

6.1 Admissibility based methods

Here, we refer to the Algorithm 1, and describe methods that can implement the
second step of the algorithm. The methods presented here are based on the admis-
sibility conditions (12) and (13). They assume free-labeled PNs with individually
controllable and observable transitions. However, as noticed in Section 5, such
methods can be easily adapted to the more general settings of labeled or double-
labeled PNs.

The design of admissible constraints has been approached by Moody and
Antsaklis (1998, 2000) using the following parameterization:

La = R1 + R2 L (21)

b a = R2(b + 1) − 1 (22)

where R1 is an integer matrix with nonnegative elements and R2 is a diagonal
matrix with positive integers on the diagonal. This parameterization is used as a
sufficient condition for (11). Thus, at the step 2 of Algorithm 1, the constraints (21)
and (22) replace (11). Now, the problem is to find La and b a subject to (21), (22),
(12) and (13). This is a linear integer programming problem for which, sometimes,
solutions may be found using an efficient matrix row operation algorithm of Moody
and Antsaklis (1998, 2000). Note that this integer programming formulation of
the problem allows introducing additional requirements of interest. For instance,
communication constraints and a minimum-communication objective were used in
a distributed version of this problem (Iordache and Antsaklis, 2003d). While the
approach of Moody and Antsaklis (1998, 2000) is computationally efficient, it is also
suboptimal. That is, a solution may not be found when solutions exist, and if one is
found, it may not be the least restrictive solution. A source of suboptimality is that
the computation is not constrained to ensure that if L′

a and b ′
a are another solution

to (21), (22), (12) and (13), then Laμ ≤ b a ⇒ L′
aμ ≤ b ′

a.
The approach of Moody and Antsaklis (1998, 2000) can be improved in several

ways. First, it should be noticed that it is difficult to express by linear inequalities the
requirement that Laμ ≤ b a should be as permissive as possible. However, it is easy
to constrain the computation of La and b a to guarantee some weaker properties: (a)
that a set of markings of interest is included in {μ : Laμ ≤ b a} and (b) that a set of
firing count vectors x is included in {x : Dcx ≥ 0}, where Dc is the incidence matrix
of the closed-loop. These simple extensions can be found in Iordache and Antsaklis
(2003d). As noticed in Basile et al. (1998b), the admissible constraints Laμ ≤ b a

satisfying (11) may not have a unique supremal element. Thus, further work has been
done by the authors of Basile et al. (1998a) towards finding the supremal constraints
Laμ ≤ b a subject to (21), (22), (12) and (13) by means of a parameterization.

Another way to control the selection of La and b a is by means of observation
and control costs. Thus, in Basile et al. (2000), the optimal design of supervisors
is considered, where optimality here is with respect to control and observation
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costs. Here, instead of having sets of uncontrollable and unobservable transitions
Tuc and Tuo, we have maps zc : T → R

+ and zo : T → R
+, associating control and

observation costs to each transition. The setting is general, as we can still consider
some transitions uncontrollable/unobservable by associating with them very large
control or observation costs. The design problem of Basile et al. (2000) is solved by
an integer programming approach, using (21) and (22) and admissibility conditions
equivalent to (12) and (13).

The optimal design of supervisors with respect to the admissibility constraints (12)
and (13) is approached also in chapter 8 of Stremersch (2001). The proposed method
applies to specifications (1) in which for all rows of L, all elements on a row have the
same sign. Note that the solution is given in the form of a disjunction of constraints.

Still another approach appears in Chen (2000). The setting of Chen (2000) assumes
full observability. Essentially, given the constraint lμ ≤ c with l ∈ N

m and c ∈ N, lμ ≤
c is replaced with the disjunction

∨

li∈SDmin(l)

[
liμ ≤ c

]
(23)

where SDmin(l) is the set of minimal integer vectors x satisfying x ≥ l and
xD(·, Tuc) ≤ 0. In particular, lμ ≤ c is replaced with the single admissible constraint
l1μ ≤ c when SDmin(l) is the singleton {l1}. Under the conditions of Chen and
Hu (1994); Chen (1998), which are discussed later in Section 6.2, the resulting
supervisor is least restrictive. It is interesting to notice that some of the assumptions
of Chen (2000) can be dropped. Indeed, (23) is still a valid supervisor even if l ∈ Z

m

and c ∈ Z (as opposed to l ∈ N
m and c ∈ N). Further, partial observability can be

incorporated by defining SDmin(l) as the set of minimal integer vectors x satisfying
x ≥ l, xD(·, Tuc) ≤ 0 and xD(·, Tuo) = 0.

6.2 Path-based approaches

Here we outline other structural approaches from the literature. In the literature,
there are several results dealing with the supervision of marked graphs. We begin
by outlining how these results can be used for enforcing specifications (1), when the
plant is a marked graph and various other modeling assumptions are satisfied. Then,
we will present some other results that deal with more general PN models.

Powerful results for the supervision of marked graphs were first obtained in
Holloway and Krogh (1990); Krogh and Holloway (1991). The setting is as follows.
The plant is a CtlPN in which the underlying PN is a cyclic marked graph with
an initial marking that places exactly one token in every directed cycle. Thus, the
PN is safe (i.e., all reachable markings are binary vectors). Full observability is
implicitly assumed. The supervisory goal is to avoid a set of forbidden markings
MF . In Holloway and Krogh (1990), MF is specified in terms of place, set and
class conditions. A place condition requires μ(p) > 0 for a place p. A set condition
requires μ(p) > 0 for all places p of a set F. A class condition requires one of the set
conditions from a set F to be satisfied. In Krogh and Holloway (1991), MF has the
form:

MF =
⋃

(F,k)∈F

⎧
⎨

⎩
μ :

∑

p∈F

μ(p) > k

⎫
⎬

⎭
(24)
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Since the plant is a safe PN, the class conditions of Holloway and Krogh (1990)
correspond to (24) with k = |F| − 1. Further, taking in account that the plant is also
a cyclic marked graph, both class conditions and (24) can specify arbitrary sets MF .
(In Section 7.3, we will show how to obtain inequalities (1), not (24) though, from
arbitrary sets MF of safe PNs.) Since the set of forbidden markings has the form
(24), its complement corresponds to a particular form of specifications (1) in which
all elements of L are binary. Some mild assumptions are made on the set MF . As
mentioned in Holloway and Krogh (1992), the assumptions on MF guarantee that
the design approach results in least restrictive supervisors.

The design of supervisors in Holloway and Krogh (1990) is approached by
analyzing the paths of the marked graph that do not involve controllable transitions.
This solution is simplified in Krogh and Holloway (1991). The solution of Krogh and
Holloway (1991) involves identifying a number of paths in the marked graph offline,
and evaluating certain place and path predicates online. Note that the supervisor is
not represented as a Petri net.

In Boel et al. (1995), the design of supervisors is studied in a similar setting in
which the CtlPN has a state machine structure. The forbidden sets are represented
in a form more general than (24). The specification corresponds to the requirement
that the marking satisfy a disjunction

∨
i[Liμ ≤ bi] with matrices Li of nonnegative

elements. The use of disjunctions is necessary in order to describe more general sets
of forbidden states, as the PN is not assumed to be safe. The supervisors obtained
in Boel et al. (1995) are not represented as Petri nets.

The results of Holloway and Krogh (1990); Krogh and Holloway (1991) are gen-
eralized in Holloway et al. (1996), by extending the plant model from marked graphs
to arbitrary ordinary PNs. The specification is given in terms of a set F of subsets
of places, by defining MF = {μ : ∃F ∈ F ∀p ∈ F, μ(p) ≥ 1}. Compared to Holloway
and Krogh (1990), this specification corresponds to class conditions. However, since
the PNs are no longer assumed to be safe cyclic marked graphs, the specification is
no longer able to capture all possible sets of forbidden markings. Further, this type of
specifications is neither a subset nor a superset of the specifications expressed by (1).
As in the previous work (Holloway and Krogh, 1990; Krogh and Holloway, 1991),
the least restrictive supervisor is found by a path based approach.

6.3 Controlled-invariant approaches

The setting of the papers surveyed in Section 6.2 can be described as follows. A
supervisor can avoid the states in MF if it keeps the marking in a set AF , where any
marking μ /∈ AF is either a marking of MF or a marking that leads to μ′ ∈ MF by
firing only uncontrollable transitions. Let Tuc be the set of uncontrollable transitions
and Nu = (P, Tuc, D−(·, Tuc), D+(·, Tuc)) a subnet of the plant N that does not
contain the controllable transitions. Then AF can be expressed as:

AF = {μ : R(Nu, μ) ∩ MF = ∅} (25)

This set is known as the maximal controlled-invariant set (Krogh and Holloway, 1991;
Ramadge and Wonham, 1987). The approaches discussed above design supervisors
that keep the state in AF , without explicitly computing AF . However, a possible
approach to supervision is to compute AF . Once we know AF , the control task is
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simply to disable any control actions that lead to a marking outside of AF . Note that
keeping the state in AF , as opposed to a subset E ⊆ AF , corresponds to least restric-
tive supervision. In particular, as noticed in Giua et al. (1992), solutions replacing
a specification Lμ ≤ b with an admissible Laμ ≤ b a correspond to supervisors that
keep the state in subsets E ⊆ AF , since AF may not be representable as a set of
constraints of the form (1), even when MF is given as the complement of a set of
constraints (1). We discuss briefly below literature methods that compute AF .

In Chen (1998) specifications (1) are considered, where L and b are restricted to
have only nonnegative elements. Given a single constraint lμ ≤ c (so l ∈ N

m and
c ∈ N), the influential subnet N l

u is defined, which is the subnet of Nu containing the
places p with l(p) = 0 and the directed paths of Nu to these places. The main result
of the paper shows how to express AF as the set of markings satisfying a disjunction
of linear marking inequalities. This result relies on two conditions, as follows. First,
N l

u should be a marked graph. (Note that N l
u, not N , is restricted to a marked graph

structure.) Second, for all reachable markings of (N , μ0), every directed circuit of
N l

u should have at least one token. In Chen (1998) the supervisor is not represented
as a PN. However, the subsequent work of Chen (2000) proposes an extended PN
representation of the supervisor, in which negative markings are allowed. Note that
a similar result was obtained in Chen and Hu (1994) for the case in which N l

u is a state
machine, instead of a marked graph. For this case, it is shown that AF has the form
AF = {μ : laμ ≤ c}, where la can be easily computed. Thus, the monitor enforcing
laμ ≤ c is the least restrictive supervisor.

The efficient computation of Chen and Hu (1994) for PNs and specifications
for which the subnets N l

u are state machines, may not be surprising in light of
the complexity findings of Ramadge (1989). The model of Ramadge (1989) is
as follows. The plant consists of p components that do not interact with each
other, where the components are represented by deterministic Büchi automata
Gi = (Qi, �i, δi, q0i, Qmi) over disjoint alphabets �i. Given the subsets of states
Qi ⊂ Qi, a mutual exclusion specification requires less than k components to have
their states qi in Qi at the same time. Note that the plant can be represented by a
safe labeled PN with a state machine structure, and the mutual exclusion constraint
by a constraint lμ ≤ c in which c = k and all elements of l are 0 or 1. One of the
problems considered in the paper is to find nonblocking coordinators that enforce the
mutual exclusion constraint. Roughly, a nonblocking coordinator is a supervisor that
guarantees certain strong liveness properties. The paper shows that the existence of a
solution can be decided in polynomial time in p and n, where n = maxi |Qi|. Further,
it is shown that if a solution exists, the minimally restrictive solution can be found
in polynomial time in p and n. It is interesting to note that in the equivalent PN
representation of the plant, the supervisor found in Ramadge (1989) corresponds to
a monitor place enforcing a constraint laμ ≤ c, provided the PN is free-labeled. Note
also that in view of Golaszewski and Ramadge (1988b), the assumption that the sets
�i are disjoint, seems to be critical for polynomial complexity. In Golaszewski and
Ramadge (1988b) it is shown that when the components of the plant have a shared
event, the solvability of the problem can no longer be decided in polynomial time.
A restriction of the problem for which polynomial complexity is maintained is also
proposed.

A method that finds the optimal design for specifications (1) appears in Li and
Wonham (1994). Several assumptions are made, as seen from the following outline
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of the method. Let L(Nu, μ) denote the set of firing sequences σ of Nu that are
enabled at the marking μ. Let σ be the firing count vector with respect to N (not
Nu). Finally, let lμ ≤ c, l ∈ Z

|P| and c ∈ Z, denote a single constraint of (1). The set
AF corresponding to lμ ≤ c is given by AF = {μ : (∀σ ∈ L(Nu, μ)) lμ + lDσ ≤ c}.
By assuming Nu (not N ) to be acyclic, AF = {μ : lμ + lDv∗(μ) ≤ c}, where v∗(μ) is
the solution of the linear integer program max lDv subject to D(·, Tuc)v ≥ −μ and
v ≥ 0. As shown in the paper, a closed-form expression of AF can be computed
under additional assumptions. First, subnets are defined for each t ∈ Tuc, consisting
of all paths of Nu ending in t. Denoting by T̂uc = {t ∈ Tuc : lD(·, t) > 0}, all subnets
of t ∈ T̂uc are required to be independent (disjoint). Further, when the subnets have
the T S1 structure described in the paper, AF can be expressed by a disjunction

of inequalities: AF =
{
μ : ∨k

i=1

[
liμ ≤ c

]}
for some k and li ∈ Z

|P|. Moreover, when

the subnets have the T S2 structure described in the paper, then AF = {μ : laμ ≤ c}
for some la ∈ Z

|P|. Thus, in the T S1 case the optimal supervisor of lμ ≤ c enforces∨k
i=1

[
liμ ≤ c

]
, and in the T S2 case laμ ≤ c. The approach is computationally effi-

cient, as AF is calculated independently of μ and without resorting to the traditional
methods for solving integer programs.

Stremersch and Boel (1999) consider the enforcement of k-safeness on state ma-
chines, where k-safeness is expressed by the constraints μ(p) ≤ k ∀p ∈ P. The au-
thors show that the set AF can be expressed by a particular form of (1), and develop
an algorithm that minimizes the number of monitors that implement the specifica-
tion. The results are obtained under the transition-bag concurrency setting. For the
supervision problem of general PNs with arbitrary forbidden set specifications and
the same concurrency setting, Stremersch and Boel (2000) show that the calculation
of AF can be done on a subnet NA of the uncontrolled subnet Nu. This result is
applied by Stremersch and Boel (2002) to the calculation of AF for specifications
(1). The set AF is obtained in the form (1) under three hypotheses: NA is acyclic,
the transitions t of NA satisfy | • t| ≤ 1 as well as a condition which, in particular, is
satisfied when the input arcs of t have the weight 1. The computation of AF has low
polynomial complexity. The observation that the computation of AF is easier when
the uncontrolled subnet Nu is acyclic, was made also by Chen and Hu (1991).

Results on the supervision of marked graphs appear in Ghaffari et al. (2003b).
Compared to Holloway and Krogh (1990); Krogh and Holloway (1991), the marked
graphs considered here may not be safe. However, the results are presented in the
no concurrency setting and the uncontrollability model is simpler: the set of transi-
tions is partitioned into controllable (Tc) and uncontrollable (Tuc) transitions. The
specifications have the form (1). A least restrictive supervision policy is computed
first for several particular cases. The policy is very efficient, as it involves little
online computations. Finally, a supervision policy is proposed for the general case,
which involves solving online linear programs, for every reachable marking. This
last result is based on the observation that given a constraint lμ ≤ c, l ∈ Z

1×m and
b ∈ Z, finding max

{
lμ∗ : μ∗ ∈ R

(
Nu, μ

)}
is equivalent to the integer linear program

max
{
lμ∗ : μ∗ = μ + D(·, Tuc)q, q ∈ N

|Tuc|}, which is equivalent to the linear program

max
{

lμ∗ : μ∗ = μ + D(·, Tuc)q, q ∈ R
|Tuc|+

}
. These two equivalences result from the

fact that the plant is a live marked graph.
In Ghaffari et al. (2003a), the supervisory control problem is approached based

on the reachability graph. Here, the supervisor is designed as a set of monitors
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acting upon the PN plant. First, a subset of the reachability graph is obtained, such
that from any of the markings of the subgraph, forbidden states and blocking states
cannot be reached by firing uncontrollable transitions. This subgraph becomes the
desired reachability graph that is to be achieved by the closed-loop. Then, the authors
deal with the design of supervisors that ensure the closed-loop has the specified
reachability graph. Given a set � containing the pairs (μ, t) such that t should be
disabled at the marking μ, monitors are designed, such that each monitor deals
with at least one of the pairs (μ, t) of �. The connections of a monitor to the
plant are determined by finding an integer solution to a system of inequalities. Due
to the particular form of the inequalities, the solution can be found using linear
programming.

6.4 Methods for partial observability

Partial observability, as long as described by some events being observable and
others not, can be easily dealt with in the setting of the admissibility-based methods.
The admissibility-based methods were presented in Section 6.1. However, more
substantial extensions are needed in order to incorporate partial observability in the
methods of Sections 6.2 and 6.3. This section presents several methods, which are not
admissibility-based, and which can deal with partial observability.

The extension to partial observability of the path-based approach of Holloway
and Krogh (1990); Krogh and Holloway (1991) appears in Zhang and Holloway
(1995). Ordinary PN structures are considered, instead of marked graphs. The set
of transitions is partitioned in controlled and uncontrolled transitions, T = Tc ∪ Tuc,
and in observed and unobserved transitions, T = To ∪ Tuo, with To ⊇ Tc. Note that a
transition is controlled if connected to some control place. Further, each transition is
labeled by one event, and a transition is observed if its label is not the null event.
The authors propose a path algebra, described in more detail in Holloway et al.
(1996). This algebra is used to define reachability predicates, which are then used
to define the least restrictive control policy. (The supervision is nondeterministic,
so least restrictive control policies exist.) The paper considers the same type of
specifications as Holloway et al. (1996).

Several important results on the control of live marked graphs appear in
Darondeau and Xie (2003). The specification considered in the paper is more
powerful than (1), as it has the form av ≤ c, where v is the Parikh vector, a ∈
Z

1×n and c ∈ Z. The set of transitions T is partitioned in three disjoint subsets,
T = Tc ∪ T f ∪ Ti, where Tc is the set of controllable transitions, and To = Tc ∪ T f

the set of observable transitions. The approach of the paper is as follows. Suspect
vectors are defined as Parikh vectors v such that v|To = v′|To for some v′ with the
property that there is v′′ ≥ v′ such that v′′ is forbidden (i.e. av′′ > c) and all nonzero
entries of v′′ − v′ correspond to uncontrollable transitions. The paper shows that any
deterministic supervisor has to avoid reaching the set of suspect vectors, and that the
projections of these vectors on To are the integral points of a convex set. The paper
shows also how to compute this set. Since the complement of the set of suspect
vectors may not correspond to the integral points of a convex set, it follows that the
least restrictive supervisor may not be implementable by control (monitor) places.
Even when monitors can be used, the paper shows that the number of monitors
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may be exponential. Another observation of the authors is that the number of linear
constraints defining the set of suspect vectors may depend exponentially on the size
of D(·, Tuc). The alternative to the computation of this set is to solve online at every
state and for all t ∈ Tc a linear program, in order to decide whether t should be
enabled. Since linear (not integer linear) programming is used, the computation has
polynomial complexity.

The control of live marked graphs under partial observability is considered also
by Achour et al. (2004), for specifications (1) and the same partition T = Tc ∪
T f ∪ Ti, where To = Tc ∪ T f are the observable transitions. The paper extends the
previous work of Ghaffari et al. (2003b) to account for unobservable transitions.
Thus, the authors propose a solution in which the supervisor decides whether a
controllable transition should be enabled or not by solving online a linear program.
In addition, the authors identify particular cases in which the supervision involves
little offline and online computational effort.

6.5 Decentralized control

The decentralized control of PNs has been approached by Iordache and Antsaklis
(2003c, 2003d) in the following setting. A PN N = (P, T, D−, D+) is given, repre-
senting the plant. The plant has m components, each having a set of controllable
transitions Tc,i ⊆ T and a set of observable transitions To,i ⊆ T, for i = 1 . . . m. In this
setting, we are to design m supervisors Si, each allowed to disable transitions t ∈ Tc,i

and observe transitions t ∈ To,i, such that the joint operation of the supervisors Si

ensures the specification (1) is satisfied.
A specification (1) is d-admissible if all its constraints lμ ≤ c are d-admissible

(
l ∈

Z
1×|P| and c ∈ Z

)
. Further, a constraint lμ ≤ c is d-admissible if there is a set C ⊆

{1, 2, . . . n} such that lμ ≤ c is admissible (in the centralized sense) with respect to
the plant and the sets of controllable and observable transitions Tc = ⋃

i∈C Tc,i and
To = ⋂

i∈C To,i. Consequently, when the sets To,i are disjoint and event observation
is required for the enforcement of a constraint lμ ≤ c, d-admissibility requires that
there is an index i such that lμ ≤ c is admissible (in the centralized sense) with respect
to the plant and the sets of controllable and observable transitions Tc = Tc,i and
To = To,i. An efficient structural test for d-admissibility based on (12) and (13) is
given in Iordache and Antsaklis (2003c).

Decentralized supervision has been studied under several settings:

1. The specification (1) is d-admissible.
2. The specification (1) is not d-admissible and communication of transition firings

is allowed.
3. The specification (1) is not d-admissible and communication is not allowed or is

restricted.

Case 1 is solved by a construction similar to that of (2) and (3). Case 2 is reduced to
case 1 by allowing event communication to add more elements to the sets Tc,i and
To,i. However, case 3 is more involved. Assuming no communication is allowed, the
problem is to decompose the specification (1) into sets of constraints L1μ ≤ b 1 . . .

Lrμ ≤ br such that each Liμ ≤ bi is d-admissible and
(
L1μ ≤ b 1 ∧ L2μ ≤ b 2 ∧ . . . Lrμ ≤ br

) ⇒ Lμ ≤ b (26)
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The d-admissibility requirement can be tested by inequalities similar to (12) and
(13). In Iordache and Antsaklis (2003d) this problem is approached using the
parameterization (21) and (22), by replacing (26) with the conservative requirement
that

L1 + L2 + . . . Lm = R1 + R2 L (27)

b 1 + b 2 + . . . b m = R2(b + 1) − 1 (28)

where R1 has nonnegative integer elements and R2 is diagonal with positive integer
elements on the diagonal. Integer programming is then used to find Li, bi, R1 and
R2. The problem is solved in a similar way when communication is allowed.

A distributed setting appears in Chen and Hu (1991), in which PNs that may share
common places, form the subsystems of a large scale PN. The specification has the
form (24). In this approach, the set AF is to be computed as in the centralized case,
using one of the methods from the literature. Then, assuming AF has the form (1),
each constraint is assigned for implementation to a local supervisor (if possible) or to
a central coordinator. Compared to a centralized controller, the coordinator can be
less complex.

7 Expressiveness of the constraints

This section reports several situations in which problems involving constraints of a
different form than (1) can be reduced to problems involving constraints (1). First,
we consider a class of general linear constraints that correspond to the languages of
the free-labeled PNs. Next, we consider constraints expressing general PN languages.
Then, we consider logical constraints for safe PNs. We continue with disjunctions
of constraints (1) under some boundedness assumptions. Finally, results showing (1)
can express constraints for liveness enforcement are presented. The section ends with
a discussion concerning the implications of the presented results.

7.1 Generalized constraints

An interesting class of linear constraints that can be represented in the form (1) by
PN transformations is given by

Lμ + Hq + Cv ≤ b (29)

where q is the firing vector and v the Parikh vector. To simplify our presentation,
we will focus on the no concurrency assumption. The general case can be found
in Iordache (2003). Let n = |T|. Under the no concurrency assumption, q ∈ {0, 1}n

identifies the transition that is to be fired next: qi = 1 if ti is to be fired next, and qi = 0
otherwise. Recall, the Parikh vector v ∈ N

n records how many times each transition
has fired. For instance, v1 = 4 indicates t1 has fired four times. q and v are illustrated
in Fig. 6. Further, H ∈ Z

nc×n and C ∈ Z
nc×n are matrices, and nc is the number of

constraints.
The constraints (29) are to be satisfied when no transition is firing (q = 0) as well

as when a transition is fired (q = 0). Thus, a supervisor enforcing (29) ensures that: (i)
all states (μ, v) satisfy Lμ + Cv ≤ b ; (ii) a transition t is fired only if its firing vector
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Fig. 6 Illustration of the q and v parameters

q satisfies Lμ + Hq + Cv ≤ b and the next reached state satisfies Lμ′ + Cv′ ≤ b ,
where μ

ti−→ μ′ and v′ = v + q.
In Iordache and Antsaklis (2003b) it is shown that:

– The class of constraints

Hq + Cv ≤ b (30)

is as general as the class Lμ + Hq + Cv ≤ b . That is, given any set of constraints
Lμ + Hq + Cv ≤ b , there is C′ such that Lμ + Hq + Cv ≤ b and Hq + C′v ≤ b
are equivalent.

– Assuming full controllability and observability, any set of constraints (29) can be
implemented by monitors, without loss of permissiveness. Thus, each constraint
of (29) corresponds to a monitor.

– Conversely, any monitor of a PN can be seen as enforcing a constraint of the
form (30), where b corresponds to the initial marking of the monitor.

– However, the places of a PN can be seen as monitors enforcing constraints on
the transition firings. Therefore, any PN (N , μ0), N = (P, T, D−, D+), can be
described by constraints (30), for H = D−, C = D− − D+ and b = μ0.

It follows that the specifications (29) correspond to the P-type languages of the free-
labeled PNs. (Following Peterson (1981), a labeled PN is freely-labeled when each
transition has a unique and distinct label, different from λ, the null symbol; further,
a language L is a P-type PN language if there is a PN with an initial marking such
that L consists of the words associated with the firing sequences enabled by the initial
marking.)

Another important result that appears in Iordache and Antsaklis (2003b);
Iordache (2003) shows that under the partial controllability and observability
setting of Section 4.1, the design of supervisors enforcing (29) can be reduced to
the design of supervisors enforcing (1). Thus, if (29) is to be enforced on a PN N ,
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the problem is transformed into the design of a supervisor enforcing constraints
of the form (1) on a PN NH . The solution to this problem is then used to obtain
the solution to the original problem of designing a supervisor enforcing (29) on N .
The uncontrollability and unobservability setting used in Iordache and Antsaklis
(2003b); Iordache (2003) is that of Section 4.1.

7.2 Language constraints

As shown above, we can reduce the problem of enforcing certain PN languages to
the enforcement of constraints (1). The plants considered above are free-labeled and
the specifications are P-type PN languages of free-labeled PNs. This section shows
that we can approach in a similar way more general problems, that do not assume
free-labeling for the plant and the specification. As in the previous considerations,
the closed-loop is required to generate a sublanguage of the specification.

As an example, consider the PN and the specification shown in Fig. 7. In this
example, the specification is described by a PN labeled by the events a and b . To
simplify the notation, it is assumed that all events of the plant that do not appear
in the specification are always enabled in the specification. The closed-loop in our
example can be computed immediately by a parallel composition of the plant and
specification, and is shown in Fig. 8. Note that in the closed-loop, the transition t1 of
the plant appears in the form of t1

1 and t2
1, corresponding to the synchronization of t1

with the transitions t1 and t2 of the supervisor. Similarly, t3
2 and t4

2 correspond to the
synchronization of t2 with t3 and t4. A formal description of the algorithm composing
PN plants with PN specifications can be found in Giua and DiCesare (1991).

The supervision is interpreted as follows. The plant and the supervisor have
each a distinct set of transitions, Tp and Ts, respectively. The supervisor cannot
observe/control the plant transitions directly, but it can observe/control events
generated by the plant. When the plant generates the event a, the supervisor picks
one of its own enabled transitions that is labeled by a, and fires it. Note that the
supervisor is free to choose which of its enabled transitions labeled by a fires. For
instance, in Fig. 7, when the plant generates a, the supervisor can select either of t1

or t2, since both are enabled and labeled by a. So we can relabel the closed-loop,
to indicate the supervisor can distinguish between its own transitions that have the
same label. Thus, in Fig. 8 we have the following new labels: a1 for t1

1, a2 for t2
1, b 3 for

t3
2 and t3

4, and b 4 for t4
2 and t4

4.

d
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b b
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Fig. 7 A problem involving language constraints
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Fig. 8 Composition of the
specification and the plant
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According to our previous Section 7.1, in the closed-loop, every place of the
supervisor corresponds to a specification in terms of constraints (29). For instance,
p9 enforces v2

1 − v1
1 ≤ 1 and p8 enforces v1

1 − v4
2 − v4

4 ≤ 1. This gives us a readily
available approach for supervisor design in the case of partial controllability and
partial observability:

– Compose the PN plant and the PN specification (supervisor).
– Relabel the closed-loop, to take in account the supervisor can distinguish be-

tween its own transitions.
– Find the constraints (29) corresponding to the constraints enforced by the

monitors of the closed-loop.
– Transform the constraints (29) to an admissible form, which is at least as

restrictive.

For instance, assume in our example that t1 (the event a) is uncontrollable but the
other transitions are controllable. Assume all events are observable. Notice that in

Fig. 9 Composition of the
designed supervisor and the
plant
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Fig. 10 Supervisor enforcing
the language constraints
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p8

Fig. 8 p8 and p9 may attempt disabling t1. So, the specification is inadmissible. The
transformation to admissible constraints could be done by adapting the approach
of Iordache and Antsaklis (2003b) to labeled PNs. A possible solution is to replace
the inadmissible constraints of p8 and p9, namely v1

1 − v4
2 − v4

4 ≤ 1 and v2
1 − v1

1 ≤ 1, by
the admissible constraints v1

1 − v4
2 − v4

4 + μ4 ≤ 1 and v2
1 − v1

1 + μ4 ≤ 1. The resulting
closed-loop and supervisor are shown in Figs. 9 and 10, respectively. The supervision
is admissible, while ensuring the plant generates only words that satisfy the original
specification of Fig. 7.

It is known that the supremal controllable sublanguage of a P-type PN language
may not be a P-type PN language (Giua and DiCesare, 1994). This is an indication
that the approach presented here may not lead to the least restrictive supervisor.
Note that in the literature it has been shown that the computation of the least
restrictive supervisor can be reduced to a forbidden marking problem, provided both
the plant and specification generate deterministic languages (Kumar and Holloway,
1996). (Given a labeled PN (N , ρ, μ0), the P-language it generates is deterministic
if for any of its strings w, there is a unique transition sequence σ enabled by μ0

that generates w: ρ(σ) = w.) In the setting of Kumar and Holloway (1996), partial
controllability and full observability are assumed (i.e., all events are observable).

7.3 Logical constraints

This section shows that for safe PNs, the enforcement of logical constraints can
be reduced to the enforcement of constraints (1). Recall, a PN (N , μ0) is safe if
all reachable markings are binary vectors. In the literature, the observation that
logic constraints on the marking can be reduced to (1) was made in Giua et al.
(1992); Yamalidou and Kantor (1991); Yamalidou et al. (1996). The derivation of
inequalities from logic expressions is rather easy, as shown in Yamalidou and Kantor
(1991); Yamalidou et al. (1996).

Indeed, let the conjunctive normal form of the specification be �1 ∧ �2 ∧ · · · ∧ �g

with �i ≡ i1 ∨ i2 ∨ · · · ∨ ihi
, for i = 1 . . . g. This can be expressed by

hi∑

k=1

ik ≥ 1 for all i = 1 . . . g (31)

Further, negation is algebraically represented as ¬ik = 1 − ik .
This approach can be applied to specifications described by logic constraints

in the marking of a safe PN. The specifications can also include q, provided the
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concurrency setting ensures q is a binary variable. As an example, assume the
markings [0, 0, 0]T , [1, 0, 0]T , [1, 1, 0]T and [1, 1, 1]T are forbidden. Then, the speci-
fication can be expressed in the conjunctive normal form as (μ1 ∨ μ2 ∨ μ3) ∧ (¬μ1 ∨
μ2 ∨ μ3) ∧ (¬μ1 ∨ ¬μ2 ∨ μ3) ∧ (¬μ1 ∨ ¬μ2 ∨ ¬μ3), which can be simplified to (μ2 ∨
μ3) ∧ (¬μ1 ∨ ¬μ2). So, we obtain the constraints μ2 + μ3 ≥ 1 and −μ1 − μ2 ≥ −1.

7.4 Disjunctions of constraints

Here we show that under certain boundedness assumptions, the basic SBPI design
described in Section 3 can be applied to the design of supervisors enforcing disjunc-
tive constraints

∨

i

[
Liμ ≤ bi

]
(32)

where Li ∈ Z
mi×n and bi ∈ Z

m
i . Since Liμ ≤ bi is a conjunction of mi constraints

l jμ ≤ c j, where l j ∈ Z
1×n and c j ∈ Z, we can write (32) in the conjunctive normal

form
∧

j

∨

i∈A j

[
liμ ≤ ci

]
(33)

where A j is a set of integers. The idea is to include additional binary variables δi for
each constraint liμ ≤ ci such that:

[
liμ ≤ ci

] ↔ [δi = 1] (34)

Then, the disjunctions in (33) can be replaced by
∑

i∈A j

δi ≥ 1 (35)

for all indices j. If we know that liμ is between the bounds mi and Mi, (34) becomes:

liμ + (Mi − ci)δi ≤ Mi (36)

liμ + (ci + 1 − mi)δi ≥ ci + 1 (37)

Note that this technique of adding auxiliary variables has been used to solve
propositional logic via integer programming (Williams, 1987, 1993). This technique
has also been applied to Hybrid Systems in Bemporad and Morari (1999).

So far we have shown that enforcing (32) is equivalent to enforcing constraints
(35) to (37), which can be done using the SBPI. However, we cannot apply the SBPI
approach directly, since the constraints contain variables δi that do not correspond
to the markings of any of the plant places. Thus, supervisor places di are created
first, to represent the places of marking δi. Then the SBPI is applied. Each place di

corresponds to a constraint liμ ≤ ci and is added to the PN according to the following
algorithm:

1. Let T+
i = {t ∈ T : li D(·, t) < 0} and T−

i = {t ∈ T : li D(·, t) > 0}.
2. Add a place di, a copy t+j of each transition t j ∈ T+

i , and a copy t−j of each
transition t j ∈ T−

i . (We say that t′ is a copy of t if D−(·, t′) = D−(·, t) and
D+(·, t′) = D+(·, t).)
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3. Connect di to the transitions t+j by input arcs (t+j , di) of weight 1, and to the
transitions t−j by output arcs (di, t−j ) of weight 1.

Once the places di have been added to the PN, the constraints (35) to (37) are
enforced, with δi denoting the marking of di. The result of this construction can be
seen as the closed-loop of the plant with a PN supervisor enforcing (32).

To illustrate this construction, assume we desire to enforce

[μ2 ≤ 0] ∨ [μ4 ≤ 0] (38)

on the Petri net of Fig. 11(a). Assume also the following bounds are known: μ2 ≤ 2
and μ4 ≤ 3. Note that (38) cannot be represented by conjunctions of inequalities that
use only the variables μ2 and μ4. For μ2 ≤ 2, the relations (36) and (37) become (for
ci = 0, mi = 0 and Mi = 2):

μ2 + 2δ1 ≤ 2 (39)

μ2 + δ1 ≥ 1 (40)

Similarly, for μ4 ≤ 3 we have

μ4 + 3δ2 ≤ 3 (41)

μ4 + δ2 ≥ 1 (42)

The places d1 and d2 are shown in Fig. 11(b). Figure 11(c) shows also the monitors
a1, e1, a2, e2, and h, which correspond to (39) to (42) and (35), in this order, where
(35) is δ1 + δ2 ≥ 1 in our example. Thus, Fig. 11(c) represents the closed-loop PN,
which can be seen as the composition of a PN supervisor (Fig. 11d) with the plant PN
(Fig. 11a). Unlike to the SBPI, here the closed-loop is obtained by adding not only
places but also transitions to the plant. It can be seen that the additional transitions
are used to represent the disjunctions in the supervisory rule.

The method introduced here for the enforcement of disjunctions of constraints,
has the drawback that it may not always produce a least restrictive supervisor.
However, the three step procedure generating the places di could be enhanced to
fix this problem, at the cost of the complexity of the supervisor. Further, the method
has been presented under the assumption of full controllability and observability.
The issues arising in the presence of partial controllability and observability are a
matter of further investigation. A related topic is the study of Stremersch and Boel
(2001) on the enforcement of specifications that require the marking to stay within a
union of legal sets M1 ∪ M2. Structural conditions are given under which the least
restrictive supervisor enforcing a union of legal sets M1 ∪ M2 can be implemented
by combining the least restrictive supervisor enforcing M1 with the one enforcing
M2. Further, in Stremersch and Boel (2002) a method is given to calculate the
maximal controlled-invariant set for specifications

∨
i[liμ ≤ ci]. The result is obtained

in the form of another disjunction of linear inequalities. Several assumptions are
made in terms of a certain uncontrolled subnet NA. Two of the assumptions are
that NA is acyclic and that the transitions t of NA satisfy D−(p, t) = 1 ∀p ∈ •t. The
result is obtained under the no concurrency assumption.
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Fig. 11 a The plant; b adding
the places di; c the closed-loop;
d the supervisor
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7.5 Liveness enforcement

Here we consider a procedure that designs liveness enforcing supervisors as super-
visors enforcing constraints (1). This approach has appeared in Iordache (2003);
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Iordache and Antsaklis (2003a). While the approach is very general, in that it makes
no assumptions on the PN structure, it does not have guaranteed termination and
the nonterminating behavior can be encountered often in practice.

Given a PN N of initial marking μ0, a transition t is live if for all reachable
markings μ, there is an enabled firing sequence that includes t. Given T ⊆ T, (N , μ0)

is T -live if all t ∈ T are live. Further, (N , μ0) is live if T-live (i.e., all transitions t are
live).

Example 3 Note that the PN of Fig. 1(b) is not live, and not even deadlock-free:
the sequence t1, t2, t7 leads to deadlock. Here, the supervisor causes deadlock, as
the plant in Fig. 1(a) is live. So we consider enhancing a specification Lμ ≤ b with
additional constraints L′μ ≤ b ′ such that the resulting supervised system is live.

The procedure for T -liveness enforcement has the following input:

1. A PN N and the set T ⊆ T;
2. The sets of uncontrollable and unobservable transitions Tuc and Tuo;
3. Optionally, a set of reachable-marking constraints (RMC) Gμ ≤ h.

Note that the RMC describe constraints that the reachable markings are known to
satisfy. Formally, given a set of initial markings of interest MI , the RMC satisfy that
∀μ0 ∈ MI ∀μ ∈ R(N , μ0): Gμ ≤ h, where R(N , μ0) is the set of reachable markings
of (N , μ0). The RMC is an optional argument, and its implicit value corresponds to
N

m (all possible markings). The output of the procedure is the following:

1. Two sets of constraints Cμ ≤ d and C0μ ≤ d0, describing the supervisor.
2. A boolean variable LR, where LR = TRUE indicates least-restrictive supervi-

sion.2 (LR is set by checking sufficient conditions for least-restrictive supervision;
in principle, the supervision could be least-restrictive also when LR = FALSE).

3. A boolean variable TERM, where TERM = TRUE indicates successful termi-
nation.

The role of the constraints Cμ ≤ d and C0μ ≤ d0 is described in the following result
of Iordache (2003); Iordache and Antsaklis (2003a).

Theorem 3 If the procedure terminates and TERM = TRUE, then Cμ ≤ d is admis-
sible and (N , μ0) supervised according to Cμ ≤ d is T -live for all initial markings
μ0 ∈ MI satisfying C0μ0 ≤ d0 and Cμ0 ≤ d.

Note that MI = N
m when no RMC is given. On the other hand, when an RMC

is given, the supervisor design may rely on it, and so T -liveness enforcement is not
guaranteed for μ0 /∈ MI .

As Theorem 3 shows, the initial marking is a variable, not a given input, just
as in the SBPI. In this context, this is what “least restrictive supervision” means.

(2003); Iordache and Antsaklis (2003a); however, it is implemented in the software package
(Iordache and Antsaklis, 2002).

2 For the simplicity of the presentation, LR has not been included in the procedures of Iordache



482 Discrete Event Dyn Syst (2006) 16: 451–492

The supervisor defined by Cμ ≤ d and C0μ ≤ d0 is least restrictive if for all initial
markings μ0 ∈ MI

– if Cμ0 ≤ d or C0μ0 ≤ d0, no T -liveness enforcing supervisor of (N0, μ0) exists.
– if Cμ0 ≤ d and C0μ0 ≤ d0, the supervisor enforcing Cμ ≤ d is the least restrictive

T -liveness enforcing supervisor of (N0, μ0).

Note that if the procedure terminates and certain sufficient conditions are satisfied,
the supervisor given by Cμ ≤ d and C0μ ≤ d0 is guaranteed to be least restrictive.
In particular, when T = T (full liveness enforcement), N is fully controllable and
observable (Tuc = ∅ and Tuo = ∅) and the procedure terminates, the procedure
generates the least restrictive liveness enforcement supervisor, if a liveness enforcing
supervisor exists.

Example 4 As shown before, enforcing the specification (6) and (7) on the PN of
Fig. 1(a) leads to deadlock. To add new constraints that ensure liveness, we start with
the closed-loop of Fig. 1(b). Consider applying the T -liveness enforcing procedure
with T = T (full liveness desired), Tuo = ∅ and Tuc = {t2, t5}. Due to (8) and (9), the
RMC are μ1 + μ2 + μ5 + μ8 = 1 and μ3 + μ7 + μ9 = 1. The procedure terminates
with the following constraints Cμ ≤ d:

μ1 + 2μ2 + μ5 + μ7 + μ8 + μ9 ≥ 2 (43)

μ1 + μ2 + μ3 + 2μ5 + μ8 + μ9 ≥ 2 (44)

and the following constraints C0μ ≤ d0

μ3 + μ4 ≥ 1 (45)

μ6 + μ7 ≥ 1 (46)

In view of the RMC, μ8 and μ9 can be substituted, and then (43) and (44) become

μ2 − μ3 ≥ 0 (47)

μ5 − μ7 ≥ 0 (48)

The supervised PN is shown in Fig. 12(a), while Fig. 12(b) shows the original plant
supervised with (6) and (7) and the additional constraints (47) and (48) for liveness
enforcement.

When the procedure generates a least restrictive supervisor and MI = N
m, Cμ ≤

d and C0μ ≤ d0 identify the set of markings for which T -liveness can be enforced.
Note that for fully controllable and observable PNs, the problem of characterizing
the set of markings for which a PN can be made T -live is decidable (Valk and
Jantzen, 1985). The algorithm proposed in Valk and Jantzen (1985) searches the
marking space to find a set of minimal markings; based on this set the least restrictive
T -liveness enforcing supervisor can be immediately derived. The algorithm of Valk
and Jantzen has the drawbacks that: (a) the coverability graph is to be evaluated for
every marking considered during the search; (b) the number of minimal markings
may be large (e.g. exponential in the size of the net).

In the literature, there is another liveness enforcing method that represents the
supervisor by means of a set of constraints (1). In Park and Reveliotis (2002), dealing
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Fig. 12 Enforcing liveness in the PN of Fig. 1(b)

with a class of resource allocation systems Reveliotis (2005), the liveness enforc-
ing supervisor is represented by constraints (1) on the marking of the sequential
processes, where L has nonnegative elements. The method allows constraints (1)
of the same form to be used as forbidden state specifications, due to the fact that the
monitors enforcing them can be seen as virtual resources of the resource allocation
system. Thus, both forbidden state specifications and liveness can be enforced.

Literature results expressing supervisory policies in terms of monitors of a PN
plant are of special interest in our survey, as any monitor-based solution can be
expressed by constraints (1) or their extension (30). In the literature, there are
numerous papers that use monitor-based solutions for deadlock prevention or live-
ness enforcement, such as the following. In a computer science context, a monitor-
based solution for least restrictive liveness enforcement in processes with resource
allocation appears in Lautenbach and Thiagarajan (1979); Suraj (1980). The class
of PN models used in these papers is very much related to the PN models used
for liveness enforcement in flexible manufacturing systems. One of the first papers
dealing with liveness enforcement for PN models of flexible manufacturing systems
is Banaszak and Krogh (1990). While the supervisory policy of Banaszak and Krogh
(1990) was not given a monitor-based interpretation, some of the subsequent work
on related PN models resulted in monitor-based solutions. Thus, a less restrictive
supervisory policy appears in Xing et al. (1996), together with conditions guarantee-
ing least restrictive supervision and a monitor-based implementation of the policy.
Monitor-based solutions for extended classes of PN models appear in Ezpeleta et al.
(1995); Park and Reveliotis (2001); Tricas et al. (2000). The approaches of Barkaoui
et al. (1997); Tricas et al. (2000) are more closely related to the procedure of
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this subsection, due to the fact that they detect and correct deadlock situations
iteratively.

7.6 Discussion

This section has shown that various types of specifications can be approached by
structural methods and SBPI. Among language specifications, we have only consid-
ered specifications requiring the language of the closed-loop to be a sublanguage of
the specification. We have not considered the languages of labeled PNs with final
states. For such PNs, a word is accepted only if it leads to a marking contained in
the set of the final states. For such problems the supervision is to be nonblocking,
that is, words leading to states from which the final states are unreachable should not
be allowed. Thus, if L is the language describing the specification, the approach of
Section 7.2 can be used to ensure all sequences of plant events are in L. However,
the approach of Section 7.2 may allow the plant to deadlock after generating a word
w ∈ L \ L. Thus, a final state may never be reached. A topic of further research is to
enhance the approach of Section 7.2 to guarantee this situation cannot occur. This
topic is related to Ichikawa et al. (1985); Ichikawa and Hiraishi (1988), dealing with
specifications requiring target states to be reached and prespecified sequences to be
fired.

Another type of languages considered in the literature deal with the infinite
behavior of a plant. They express the requirement that there are no deadlocks and
that for all infinite words some final state is infinitely often visited. Automata with this
acceptance rule are called Büchi automata. It is known that specifications expressed
in LTL (linear-time temporal logic) can be translated into Büchi automata (Clarke
et al., 1999). This result is interesting, as it suggests temporal logic can be approached
in our PN setting. Thus, given a Büchi automaton A, we can first apply the approach
of Section 7.2, to generate a supervisor enforcing the part of the specification de-
scribed by the structure of A. Then, deadlock prevention or T -liveness enforcement
methods could be applied to guarantee some final states are infinitely often visited.
The application of PN structural methods to temporal logic is an interesting topic of
further research.

The application to temporal logic highlights the importance of a reliable tool for
T -liveness enforcement. The need for T -liveness enforcement and deadlock pre-
vention arises also from the methods enforcing (1) and its extensions to generalized
linear constraints, disjunctive constraints, and language constraints. Indeed, many of
these methods do not guarantee that the closed-loop will be live.

The procedure of Section 7.5 could be applied for liveness enforcement, having
the benefits that it is a structural approach, it can enforce not only liveness but also
T -liveness, it makes no assumptions on the structure of the PN, and supports partial
controllability and partial observability. However, as mentioned in Section 7.5, the
procedure of Iordache (2003); Iordache and Antsaklis (2003a) does not have guar-
anteed termination and the nonterminating behavior can be encountered often in
practice. While improvements that mitigate the termination issue are possible, such
as in Iordache (2003), the total elimination of this issue is a matter of further research.
As discussed in Section 7.5, there are other liveness enforcement methods that have
guaranteed termination. However, most results can only be applied to special classes
of PNs. An exception is Valk and Jantzen (1985), which can deal also with arbitrary
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PN structures. Moreover, most work has been done under the assumption of full
controllability and observability. Papers that consider partial controllability include
Barkaoui et al. (1997); Park and Reveliotis (2002); Sreenivas (2000). These facts
indicate that more research work is needed in the area of liveness enforcement for
arbitrary PN structures with partial controllability and partial observability.

8 Applications

The constraints (1) have been proposed for various applications, such as in che-
mical processes (Yamalidou and Kantor, 1991), AGV coordination (Krogh and
Holloway, 1991), manufacturing constraints (Moody and Antsaklis, 1998), and
mutual exclusion in batch processing (Tittus and Egardt, 1999). Moreover, the
class of constraints Lμ + Hq ≤ b has also been applied for the supervisory control
of railway networks (Giua and Seatzu, 2001). The constraints Cv ≤ b have also
been used for fairness enforcement, such as bounding the difference between
the number of occurrences of two events, in protocols (Genrich et al., 1980) and
manufacturing (Li and Wonham, 1993).

In this section we mention some other areas of application for the constraints (1).
We consider here an application to semaphores in Operating Systems, an application
to fault tolerance, and the relation of (1) to synchronic distances.

8.1 Semaphores

The application of supervisory control techniques in software engineering has been
proposed in Lemmon et al. (2000); Lemmon and He (2000). There, the supervisor can
be seen as a plug-in to other software modules, ensuring certain specifications are
satisfied. The approach there is to use the unfolding3 of PN models for supervisor
design. Other approaches could be applied as well for the supervisor design of
software modules. In this section we consider monitor-based supervisors, we show
such supervisors can be implemented in software by means of semaphores, and
we discuss some of the potential benefits of the supervisory control approach for
automatic code generation.

Semaphores, monitors and rendezvous mechanisms have been used in the con-
text of Operating Systems for synchronization and control of access to shared re-
sources. The PN modeling of these mechanisms has been considered in the literature
(Zuberek, 1999). In particular, the relation between PNs and semaphores has been
known for a long time (Kosaraju, 1973). The observation that monitors correspond
to semaphores is also known (Holloway et al., 1997; He and Lemmon, 2000).

Semaphores are nonnegative integer variables that can be accessed by means of
two indivisible operations provided by the operating system: wait and signal. Given a
semaphore x, when a process calls wait(x), the operating system acts as follows: (a)
if x ≥ 1, x → x − 1; (b) if x = 0, the process calling wait(x) is suspended. The calls
signal(x) result in the following: (a) if there are processes suspended on wait(x), one
of them is selected to resume its execution; (b) otherwise, x → x + 1.

3 Unfolding is a partial order method that constructs a reduced reachability graph.
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Fig. 13 PN model of three
processes with a semaphore
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Semaphores can easily be modeled by monitors, as illustrated in Fig. 13. The figure
shows three processes PR1, PR2, and PR3, that share a memory location. The process
PR1 may access the memory when p2 is marked, PR2 when p5 is marked, and PR3
when p8 is marked. To ensure the memory is not read and written at the same time
by different processes, a semaphore is added, which is represented by the marking of
the place C. Thus, the transitions t ∈ C• correspond to wait calls and the transitions
t ∈ •C to signal calls. For the marking shown in the figure, PR3 is running, while
PR1 and PR2 are suspended, as they cannot execute t2 and t6. However, after PR3
executes t11 (signal), one of PR1 or PR2 may resume its execution. Note also that the
constraint enforced by the semaphore is μ2 + μ5 + μ8 ≤ 1.

This example illustrates also that given a specification, such as that a memory
location should only be accessed by one process at a time, the semaphores imple-
menting it may be automatically generated using the supervisory techniques of this
paper. The specifications (1) may result in more complex control structures, with
more than one monitor connected to a single transition. This situation requires
some simple extensions of the semaphore operations wait and signal. Other minor
extensions are needed to implement specifications (29), as the monitors enforcing
(29) may have self-loops. However, the extensions are somewhat more involved in
the case of specifications represented by disjunctions (Section 7.4). Note that the
usage of semaphores may lead to deadlocks. However, a liveness enforcing approach
(Section 7.5) could be used to automatically enhance the code with calls to additional
semaphores such that no deadlock can occur. While semaphores have been typically
used in a centralized setting, by means of the approach of Section 6.5, it is possible
to decompose a centralized specification for enforcement in a decentralized or
distributed setting.

8.2 Fault tolerance

Recent research on the robustness of the SBPI based designs to faults in a plant
appears in Iordache and Antsaklis (2004). There it is shown that the designs based
on the SBPI and the related liveness enforcing approach of Iordache and Antsaklis
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(2003a) have remarkable built-in qualities that simplify the fault accommodation
process. In fact, only minor updates may be required for certain faults and recon-
figurations. The kind of faults/reconfigurations considered in Iordache and Antsaklis
(2004) are: faults modeled by token loss/gain, a class of changes in the constraints,
and changes in the controllability/observability of the system.

In what follows, we focus on a different approach to fault tolerance (Hadjicostis
and Verghese, 1999; Sifakis, 1979; Suarez, 1985), in which additional places are added
to a PN that allow detecting and correcting errors. Namely, we show that these places
can be described by constraints Lμ ≤ b and Lμ + Hq ≤ b .

NE = (PE, T, D−
E, D+

E) is an embedding of a PN N = (P, T, D−, D+) if P ⊆ PE

and the input/output matrices are related by:

D−
E =

[
D−
X−

E

]
D+

E =
[

D+
X+

E

]

NE is a separate redundant embedding (Hadjicostis and Verghese, 1999) if for every
initial marking μ0 of N and initial marking μ0,E = Gμ0 of NE, all firing sequences
enabled by μ0 in N are also possible from μ0,E in NE. The matrix G is required to
have the form:

G =
[

In

C

]

for n = |P|. Note that for a separate redundant embedding, the places of the
embedding are implicit, as their marking always enable a transition t if the marking of
P enables t. Given a matrix X, let’s write X ≥ 0 if all elements of X are nonnegative;
given the matrices X and Y, let’s write X ≤ Y if Y − X ≥ 0, and let min(X, Y)

denote the minimum taken element by element, that is, the matrix Z such that
Zi, j = min(Xi, j, Yi, j). Let’s define also max(X, Y) in a similar way.

Theorem 4 (Hadjicostis and Verghese, 1999) NE is a separate redundant embedding
iff C ≥ 0, X−

E = CD− − A and X+
E = CD+ − A, where 0 ≤ A ≤ min(CD−, CD+).

We show that constructing a redundant embedding is equivalent to designing the
supervisor enforcing Lμ + Hq ≤ 0 for L ≤ 0 and H ≤ −LD−. From Iordache and
Antsaklis (2003b), it is known that in the fully controllable and observable setting,
the least restrictive supervisor enforcing Lμ + Hq ≤ 0 corresponds to a PN of input
and output matrices X− = max(0, LD, H) and X+ = max(0,−LD) + max(0, H −
max(0, LD)). Thus, the closed-loop is given by the input and output matrices:

D−
C =

[
D−
X−

]
D+

C =
[

D+
X+

]

It turns out that we have the following result:

Theorem 5 NE is a separate redundant embedding iff there are Lμ + Hq ≤ 0 with
L ≤ 0 and H ≤ −LD− such that X− = X−

E and X+ = X+
E .

The result can be proved based on Theorem 4: If NE is a separate redundant
embedding, we can define L = −C and H = CD− − A, and then prove X− = X−

E
and X+ = X+

E . On the other hand, if Lμ + Hq ≤ 0 with L ≤ 0 and H ≤ −LD−, we
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can define C = −L and A = min(−LD−,−LD+) − max(0, H − max(0, LD)), and
then prove 0 ≤ A ≤ min(CD−, CD+).

In (Hadjicostis and Verghese, 1999), two types of faults are considered. The
first one, place failures, results in a change in the number of tokens. The second
one, transitions failures, result in marking errors when the postcondition or the
precondition of a transition t is not executed, that is, when we have either μ′

E =
μE − D−

E(·, t) or μ′
E = μE + D+

E(·, t) instead of μ′
E = μE + D+

E(·, t) − D−
E(·, t). The

detection and identification of failures relies on C for place failures, and on A for
transition failures. Note that if we limit ourselves to place failures, we are free
to chose any A such that 0 ≤ A ≤ min(CD−, CD+). In particular, the choice A =
min(CD−, CD+) corresponds to an embedding that does not add self-loops to the
Petri net. This corresponds to constraints with L = −C and H = CD− − A, that is,
H = max(0, LD). However, the constraints Lμ + Hq ≤ b with H = max(0, LD) can
be simply expressed (under the no concurrency assumption) as Lμ ≤ b (Iordache,
2003). This shows that the constraints (1) can also be used in the context of fault
detection and identification.

8.3 Synchronic distances

An area of interest in the study of PNs is the Theory of Synchrony. Introductions
to the field may be found in Genrich et al. (1980); Suarez (1987). The main issue
here is the dependence between transition firings, such as, for instance, how many
times can one transition t1 be fired without firing another transition t2. An important
concept in this theory is the synchronic distance, defined below. We show here that
specifications requiring bounds on synchronic distances are related to the specifica-
tions of the form Cv ≤ b . This observation is important because, as mentioned also
in Section 7.1, enforcing constraints Cv ≤ b can be reduced to enforcing constraints
(1).

Given a finite firing sequence σ of firing count vector σ , let σ i = σ(ti). Thus, σ i
denotes the number of occurrences of ti in σ . Let’s recall also that the Parikh vector
v equals σ when σ is the sequence of firings since the initialization of the system.
Given a PN with an initial marking and given two transitions t1 and t2, the synchronic
distance can be defined by δ(t1, t2) = supσ |σ 1 − σ 2|, where the supremum is taken
over all finite sequences σ enabled from some reachable marking. However, this
definition may not be appropriate for systems in which a transition t1 may fire n
times as often as t2, in which case it would be more natural to evaluate supσ |σ 1 −
nσ 2|. For this reason and in order to compare sets of transitions instead of just single
transitions, the synchronic distance is defined with respect to weight vectors W1 and
W2 as δ(W1, W2) = supσ |W1σ − W2σ |.

As shown on an example in (Genrich et al., 1980), it may be useful to have specifi-
cations of the form δ(W1, W2) ≤ d. Note that |W1v − W2v| ≤ d/2 ⇒ δ(W1, W2) ≤ d.
Indeed, for any sequence σ 1 fired from the initial state, if σ 1 = σ 0σ , we can write
that |W1σ − W2σ | ≤ |W1σ

0 − W2σ
0| + |W1σ

1 − W2σ
1|. However, |W1σ

1 − W2σ
1| ≤

d/2 and |W1σ
0 − W2σ

0| ≤ d/2. Therefore, δ(W1, W2) = supσ |W1σ − W2σ | ≤ d. The
facts that |W1v − W2v| ≤ d/2 ⇒ δ(W1, W2) ≤ d and that |W1v − W2v| ≤ d/2 is of
the form Cv ≤ b , indicate that the constraints Cv ≤ b are relevant for problems
involving synchronic distance constraints.
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9 Conclusions

The problem of enforcing specifications Lμ ≤ b can be approached by numerous
methods, as shown in this survey. We have emphasized a subset of structural
methods, showing that they can be extended to very general plant models, includ-
ing labeled Petri nets. Enforcing specifications Lμ ≤ b is of interest to numerous
problems, as more general specifications can be reduced to the form Lμ ≤ b by
transforming the plant model. The general specifications treated in this paper include
languages and disjunctions of linear inequalities.

Finally, it should be noted that some of the methods mentioned in this paper have
been implemented in software. In particular, the SPNBOX (Iordache and Antsaklis,
2002) is a Matlab toolbox available on the web. This toolbox implements supervisor
design approaches of (Moody and Antsaklis, 2000; Iordache and Antsaklis, 2003b,
2003a) for SBPI design and liveness enforcement.
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