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Abstract— In this paper, the disturbance attenuation proper-
ties in the sense of uniformly ultimate boundedness are inves-
tigated for a class of switched linear systems with parametric
uncertainties and exterior disturbances. We aim to character-
ize the conditions under which the switched system can achieve
a finite disturbance attenuation level. First, arbitrary switching
signals are considered, and a necessary and sufficient condition
is derived. Secondly, if the finite disturbance attenuation level
is not preserved under arbitrary switchings, we restrict the
switching signals so as to guarantee the finite disturbance at-
tenuation levels. Two cases are considered here that depend on
whether all the subsystems are uniformly ultimately bounded
or not. For both cases, the switching signals are characterized
by an average dwell time scheme. The techniques are based on
multiple polyhedral Lyapunov and Lyapunov-like functions.

I. INTRODUCTION

A switched system is a dynamical system that consists
of a finite number of subsystems described by differential
or difference equations and a logical rule that orchestrates
switching between these subsystems. Properties of this type
of model have been studied for the past fifty years to
consider engineering systems that contain relays and/or
hysteresis. The last decade has seen an increasing research
activities in the field of switched systems, and the main
efforts typically focus on the analysis of dynamic behaviors,
such as stability [13], [14], [9], [15], controllability and ob-
servability [4], [24] etc., and aim to design controllers with
guaranteed stability and performance [3], [13]. However,
the literature on robust performance of switched systems is
still relatively sparse.

In this paper, we will focus on the disturbance attenuation
analysis for classes of switched linear systems which are
perturbed by both parameter variations and exterior distur-
bances. In particular, we consider a collection of discrete-
time linear systems described by the perturbed difference
equations with parametric uncertainties

x[k + 1] = Aq(w)x[k] + Eqd[k], k ∈ Z
+, (1)

where q ∈ Q = {q1, q2, · · · , qN} and Z
+ stands for non-

negative integers. The state variable x[k] ∈ R
n, disturbance

input d[k] ∈ D ⊂ R
r. Assume that D is a C-set. The term

C-set stands for a convex and compact set containing the
origin in its interior. Let us assume polytopic uncertainty in
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(1), i.e., Aq(w) =
∑vq

j=1 wjA
j
q , wj ≥ 0 and

∑vq

j=1 wj =
1. Notice that Aj

q are known constant n × n matrices and
the coefficients wj are unknown and possibly time varying.
Without loss of generality, we assume that Eq ∈ R

n×r is a
constant matrix.

Combine the family of discrete-time uncertain linear
systems (1) with a class of piecewise constant functions,
σ : Z

+ → Q. Then we can define the following time-
varying system as a discrete-time switched linear system

x[k + 1] = Aσ(k)(w)x[k] + Eσ(k)d[k], k ∈ Z
+ (2)

The signal σ(k) is called a switching signal.
Because of parameter variations and exterior distur-

bances, it is only reasonable to expect that the trajectories
of the switched system (2) converge into a neighborhood
region of the equilibrium (the origin here), which is the so
called practical stability or uniformly ultimate boundedness
in the literature.

Definition 1: The uncertain switched system (2) under
switching signal σ(k) is Uniformly Ultimately Bounded
(UUB) if there exists a C-set S such that for every initial
condition x(0) = x0, there exists T (x0) finite, and we have
x[k] ∈ S for k ≥ T (x0).

The disturbance attenuation properties considered here
are in the sense of the uniformly ultimate boundedness.
Given a collection of switching signals, if the switched
system (2) is UUB for all these switching signals, then
the switched system (2) is said to have finite disturbance
attenuation level under this class of switching signals. If the
switched system is UUB for all possible switching signals,
the switched system (2) is said to have finite disturbance
attenuation level under arbitrary switchings. We are also
interested in characterizing a useful subclass of arbitrary
switching signals such that the switched system (2) achieves
finite disturbance attenuation level even when some of its
subsystems do not have finite disturbance attenuation levels.

There are some related works in the literature on analyz-
ing the disturbance attenuation properties of switched linear
systems. For example, in [27], the L2 gain of continuous-
time switched linear systems was studied using an average
dwell time approach and piecewise quadratic Lyapunov
functions, and the results were extended to discrete-time
case in [28]. In [11], the root-mean-square (RMS) gain
of a continuous-time switched linear system with slow
switching was computed in terms of the solutions to a
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collection of Riccati equations. These robust performance
problems considered are both in the signal’s energy sense,
and assume that the disturbances are constrained to have
finite energy, i.e., bounded L2 norm. In practice, there are
disturbances that do not satisfy this condition and act more
or less continuously over time. Such disturbances are called
persistent, and can not be treated in the above framework.
In this paper, the disturbance attenuation property is in the
signal’s magnitude sense, i.e., time domain specifications.
Moreover, we explicitly consider dynamic uncertainty in the
switched system model here. Dynamics uncertainty in the
plant model is one of the main challenges in control theory,
and it is of practical importance to deal with dynamical
uncertainties explicitly.

The persistent disturbance attenuation properties for un-
certain hybrid/switched systems have been considered in
our previous work [18], [19], [20]. In [18], the uniformly
ultimate boundedness control problem was studied for both
discrete-time and continuous-time uncertain switched linear
systems. It was shown in [18] that, by proper switching, the
closed-loop switched systems can reach a better disturbance
attenuation level than any single subsystem does. The
determination of optimal disturbance attenuation level, i.e.,
the l∞ induced gain, for uncertain switched systems and its
decidability issue were discussed in [19] based on invariant
set theory. The results for optimal disturbance attenuation
level analysis were extended to classes of general uncertain
hybrid systems in [20].

The problem studied in this paper is different from
our previous work in the following aspects. First, here
we consider asymptotic disturbance attenuation property
for arbitrary initial conditions; in [19], [20] the distur-
bance attenuation property was in the l∞ induced gain
sense and for proper initial conditions only. Secondly, the
main objective of this paper is to derive conditions, on
the subsystems’ dynamics or the switching signals, under
which the switched system (2) can achieve finite asymp-
totic disturbance attenuation level; in [18], the focus was
on designing switching laws to achieve better asymptotic
disturbance attenuation levels. Thirdly, our main methods
here are based on polyhedral Lyapunov and Lyapunov-like
functions, instead of set invariance theory as in [19], [20].

The rest of the paper is organized as follows. First,
in Section II, the disturbance attenuation properties under
arbitrary switching signals are considered. The aim is to
identify necessary and sufficient conditions under which the
switched system preserves uniformly ultimate boundedness
under arbitrary switchings. Secondly, when the finite dis-
turbance attenuation level is not preserved under arbitrary
switchings, we turn to characterize the classes of switching
signals to guarantee UUB. Two cases are considered for
this problem that depend on whether all the subsystems are
practically stable or not, which are developed in Section III
and Section IV respectively.

Notation: The letters E ,P ,S · · · denote sets, ∂P the
boundary of set P , and int{P} its interior. For any real λ ≥

0, the set λS is defined as {x = λy, y ∈ S}. A polytope
(bounded polyhedral set) P will be presented either by a set
of linear inequalities P = {x : Fix ≤ gi, i = 1, · · · , s},
or by the dual representation in terms of the convex hull
of its vertex set {xj}, denoted by Conv{xj}. For x ∈ R

n,
the l1 and l∞ norms are defined as ‖x‖1 =

∑n
i=1 |xi| and

‖x‖∞ = maxi |xi| respectively.

II. PERFORMANCE UNDER ARBITRARY SWITCHINGS

First, arbitrary switching signals are considered, when
there is no a priori knowledge of the switching signals
available. Clearly, it is necessary to assume that every
subsystems has finite disturbance attenuation level. The
interesting question is under what condition the switched
linear system (2) achieves a finite asymptotic disturbance
attenuation level, i.e., uniformly ultimate boundedness.

It was shown in [7] that a linear time-variant systems is
UUB if and only if the corresponding autonomous system
is asymptotically stable. Therefore, this problem is trans-
formed into a stability analysis problem for autonomous
switched system under arbitrary switchings, which has been
studied in the literature extensively, see for example the
survey papers [14], [9], the recent book [15] and the refer-
ences cited therein. This problem is typically being dealt
with by constructing a common Lyapunov function. For
example, various approaches have been presented [22], [23],
[16], [17] to find a common quadratic Lyapunov function
for the family of systems, ensuring the asymptotic stability
of switched systems for any switching signal. In [16] and
[2], Lie algebra conditions were given, which imply the
existence of a common quadratic Lyapunov function. It
is worth pointing out that a converse Lyapunov theorem
was derived in [8] for the globally asymptotic stability
of arbitrary switching systems. This converse Lyapunov
theorem justifies the common Lyapunov function method
which was pursued in the literature. However, most of
the work was restricted to the case of quadratic Lyapunov
function, which only gave sufficient stability test criteria.

A. Necessary and Sufficient Condition

In this section, we will give a necessary and sufficient
condition for asymptotic stability of switched linear systems
with arbitrary switchings. For such purpose, let us first
introduce a technical lemma [1] for the robust stability of
linear time-variant systems

x[k + 1] = A(k)x[k] (3)

where A(k) ∈ A=̂Conv{ A1
q1

, A2
q1

, · · · , A
vq1
q1 , A1

q2
, · · · ,

A
vq2
q2 , · · · , A1

qN
, · · · , A

vqN
qN }. In other words, the state

matrix A(k) of the above linear time-variant system (3)
is constructed by a convex combinations of all the sub-
systems’ vertex matrices of the switched linear system (2).
A necessary and sufficient condition [1] for the asymptotic
stability of the above linear time-variant system (3) is stated
as follows.
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Lemma 1: The polytopic uncertain linear time-variant
system (3) is globally asymptotically stable if and only if
there exists a finite integer n such that ‖Ai1Ai2 · · ·Ain‖ <
1 for all n-tuple Aij ∈ vert{A} = { A1

q1
, A2

q1
, · · · , A

vq1
q1 ,

A1
q2

, · · · , A
vq2
q2 , · · · , A1

qN
, · · · , A

vqN
qN }, with j = 1, · · · ,n.

Here the norm ‖ · ‖ stands for either 1 norm or ∞ norm
of a matrix. Asymptotic stability of the switched systems
can be expressed as the following proposition. The proofs
are omitted here due to space limit.

Proposition 1: The switched linear system x[k + 1] =
Aσ(k)(w)x[k], where Aσ(k)(w) ∈ {Aq1(w), Aq2(w), · · · ,
AqN (w)}, is globally asymptotically stable under arbitrary
switchings if and only if there exists a finite integer n such
that

‖Ai1Ai2 · · ·Ain‖ < 1, (4)

for all n-tuple Aij ∈ vert{A} = { A1
q1

, A2
q1

, · · · , A
vq1
q1 ,

A1
q2

, · · · , A
vq2
q2 , · · · , A1

qN
, · · · , A

vqN
qN }, with j = 1, · · · ,n.

From the above proposition, we obtain a necessary and
sufficient condition for the switched systems to achieve a fi-
nite disturbance attenuation level under arbitrary switchings
as stated in the following corollary.

Corollary 1: Under the assumption that each subsystem
has finite disturbance attenuation level, the switched linear
system (2) also achieves a finite disturbance attenuation
level under arbitrary switchings if and only if there exists a
finite integer n such that

‖Ai1Ai2 · · ·Ain‖ < 1, (5)

for all n-tuple Aij ∈ vert{A}, with j = 1, · · · ,n.

B. Equivalence

As a byproduct, we prove the equivalence between the
robust globally asymptotic stability for polytopic uncertain
linear time-variant systems and the globally asymptotic sta-
bility for switched linear systems under arbitrary switchings.
The equivalence can be expressed as the following corollary.

Corollary 2: The global asymptotic stability for poly-
topic uncertain linear time-variant systems x[k + 1] =
A(k)x[k], where A(k) ∈ A, is equivalent to the global
asymptotic stability for arbitrary switching systems x[k +
1] = Aσ(k)(w)x[k].

It is interesting that the robust stability of a polytopic
uncertain linear time-variant system, which has infinite
number of possible dynamics (modes), is equivalent to only
considering a finite number of its vertex dynamics as an
arbitrary switching system. Although we only prove the
equivalence in the discrete-time case, this result is also true
in the continuous-time case. This fact bridges two originally
distinct research fields. Therefore, existing results in the
robust stability area, which has been extensively studied
for over two decades, can be directly introduced to study
the arbitrarily switching systems and vice versa.

III. PERFORMANCE UNDER SLOW SWITCHINGS: UUB
SUBSYSTEMS

If the finite disturbance attenuation level is not preserved
under arbitrary switching signals, it is still possible to
restrict the switching signals so as to achieve a finite
disturbance attenuation level. It is shown in [10], [27], [12]
that the stability and performance could be preserved under
certain constrained switchings, for example slow switching
with bounded average dwell time. Therefore, it is important
to classify the classes of switching signals under which
the switched system remains stable. The stability analysis
with constrained switchings has been usually pursued in the
framework of multiple Lyapunov functions (MLF), see for
example [25], [26], [9], [14], [15] and references therein.

In this section, it is assumed that each subsystem is
UUB along with a Lyapunov function. We will employ
multiple polyhedral Lyapunov functions in this section to
characterize switching laws such that the switched system
(2) is uniformly ultimate bounded.

A. Set-Induced Lyapunov Function

Following the notation of [5], we call a function Ψ :
R

n → R a gauge function if Ψ(x) ≥ 0, Ψ(x) = 0 ⇔
x = 0; for µ > 0, Ψ(µx) = µΨ(x); and Ψ(x + y) ≤
Ψ(x) + Ψ(y), ∀x, y ∈ R

n. A gauge function is convex and
it defines a distance of x from the origin which is linear in
any direction. If Ψ is a gauge function, we define the closed
set (possibly empty) N̄ [Ψ, ξ] = {x ∈ R

n : Ψ(x) ≤ ξ}. It is
easy to show that the set N̄ [Ψ, ξ] is a C-set for all ξ > 0. On
the other hand, any C-set S induces a gauge function ΨS(x)
(Known as Minkowski function of S), which is defined as
Ψ(x)=̇ inf{µ > 0 : x ∈ µS}. Therefore a C-set S can be
thought of as the unit ball S = N̄ [Ψ, 1] of a gauge function
Ψ and x ∈ S ⇔ Ψ(x) ≤ 1.

Consider the discrete-time uncertain linear subsystem:

x[k + 1] = A(w)x[k] + Ed[k] (6)

Note that the subscript q is dropped in this subsection for
notational simplicity.

First, we give a definition of the Lyapunov function. In
this case, a Lyapunov function outside S for system (6) can
be defined as a continuous function Ψ : R

n → R
+ such

that N [Ψ, κ] ⊂ S, for some positive scalar κ, for which the
following conditions hold:

if x /∈ N [Ψ, κ] then there exists β > 0 such that

Ψ(A(w)x + Ed) − Ψ(x) ≤ −β;

if x ∈ N [Ψ, κ] then

Ψ(A(w)x + Ed) ≤ κ.

Lemma 2: [6] If there exists a a Lyapunov function
outside S for system (6), then it is uniformly ultimately
bounded (UUB) in S.

It was shown in [6] that if a Lyapunov function exists
that solves the uniform ultimate boundedness problem in
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a certain convex neighborhood of the origin for system
(6), then there exists a polyhedral Lyapunov function that
solves the problem in the same neighborhood. Therefore,
without loss of generality, we assume that system (6)
has a polyhedral Lyapunov function Ψ outside S. The
next question is how to compute the polyhedral Lyapunov
function Ψ(·).

It is easy to derive from the definition of the Lyapunov
function Ψ that

Ψ(x[k]) ≤ max{λtΨ(x[0]), 1}
for some λ with 0 < λ < 1. This property motivates the
following concept of contractive set.

Definition 2: Given λ, 0 < λ < 1, a set S is said λ-
contractive with respect to system (6), if for any x ∈ S,
post(x,W ,D) ⊆ λS. Here post(·) is defined as

post(x,W ,D) = {x′ : x′ = A(w)x+Ed; ∀w ∈ W, d ∈ D}
which represents all the possible next step states from the
current state x.

Let S be an assigned C-set in R
n. We say that a λ-

contractive set Pm ⊆ S is maximal in S if and only if
every λ-contractive set P contained in S is also contained
in Pm.

Consider the following sequence of sets:

{Xk} : X0 = S, Xk = pre(λXk−1)∩S; k = 1, 2, · · · (7)

where pre(S) is defined as

pre(S) = {x ∈ R
n : post(x,W ,D) ⊆ S} (8)

Then the maximal λ-contractive set Pm ⊆ S is given by
Pλ =

⋂∞
k=0 Xk.

Proposition 2: If Pλ =
⋂∞

k=0 Xk is nonempty, then
subsystem (6) is uniformly ultimately bounded (UUB) in
Pλ ⊆ S.

It is easy to show that nonempty Pλ is a C-set, whose in-
duced Minkowski functional ΨPλ

(x) serves as a Lyapunov
function outside the target set S. Such Lyapunov function is
uniquely generated from the target set S for any fixed λ, so
it is named Set-induced Lyapunov Function (SILF) in the
literature, see [5], [6] and its references. For systems with
linearly constrained uncertainties, it can be shown that such
function may be derived by numerically efficient algorithms
involving polyhedral sets.

B. UUB Analysis

It is assumed that each subsystem is UUB with decay
rate λq along with a polyhedral Lyapunov function, Ψq(·).
Now, define the multiple Lyapunov function candidate as

V (x[k]) = Ψσ(k)(x[k])

Let k1, k2, · · · stand for the time points at which
switching occurs, and write qj for the value of σ(k) on
[kj−1, kj). Then, for any k satisfying k0 = 0 < · · · <
ki ≤ k < ki+1, we obtain

V (x[k]) ≤ max{λk−ki
qi

Ψqi(x[ki]), 1}

Also, there exists a constant scalar µ such that Ψi(x) ≤
µΨj(x) and Ψj(x) ≤ µΨi(x), for all x ∈ R

n. A possible
choice for µ is the largest value among Ψj(vj), ∀vj ∈
vert{N [Ψi, 1]}, and Ψi(vj), ∀vj ∈ vert{N [Ψj, 1]}. This
can be straightforwardly verified by exploring the geometric
property of the level sets of Ψi(x) and Ψj(x).

Denote λ0 = maxq∈Q{λq}. Then

V (x[k]) ≤ max{λk−ki
0 Ψqi(x[ki]), 1}

≤ max{λk−ki−1
0 µΨqi−1(x[ki]), 1}

≤ · · ·
≤ max{λk

0µiΨq0(x[0]), 1}
= max{λk

0µNσ(k)V (x[0]), 1}
where Nσ(k) denotes the number of switchings of σ(k)
over the interval [0, k). Assume that there exists a scalar
0 < λ∗ < 1 such that

λk
0µNσ(k) ≤ (λ∗)k (9)

This inequality is equivalent to

Nσ(k) ≤ k

τ∗
a

, τ∗
a =

ln µ

ln λ∗ − ln λ0
(10)

which is exactly an average dwell time scheme. The con-
stant τ∗

a is called the average dwell time. The idea is that
there may exist consecutive switching separated by less
than τ∗

a , but the average time interval between consecutive
switchings is not less than τ∗

a . Note that the concept of
average dwell time between subsystems was originally
proposed for continuous-time switched systems in [10].

From the average dwell switching scheme, we obtain

V (x[k]) ≤ max{(λ∗)kV (x[0]), 1}.
This implies that the entire system is UUB. In summary,
we have

Theorem 1: If all the subsystems of switched system (2)
are UUB, then the switched system (2) achieves a finite
asymptotic disturbance attenuation level under switching
signals with average dwell time no less than ln µ

ln λ∗−lnλ0
in

the sense of (10).

IV. PERFORMANCE UNDER SLOW SWITCHINGS: WITH

NON-UUB SUBSYSTEMS

In the previous section, we specified a class of slow
switching signals that guarantee the uniformly ultimate
boundedness for uncertain switched linear systems (2) with
stable subsystems. However, there are some cases that it
is unavoidable to switch to unstable subsystems, such as
controller failure in fault tolerant systems, packet dropouts
in networked control systems etc.

In this section, we will study the case when not all
the subsystems are uniformly ultimately bounded. Without
lost of generality, it is assumed that the first r subsystem
are UUB along with a Lyapunov function, while the rest
subsystems are not UUB. To make the problem tractable,
the expansion rates of these unstable subsystems are limited.
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In particular, we assume that the expansion of the unsta-
ble subsystems are bounded in the sense of set-induced
Lyapunov-like functions, which is introduced below and
represents an extension of classical set-induced Lyapunov
functions.

A. Set-Induced Lyapunov-like Functions

For the subsystem that is not UUB, there does not
exist set-induced Lyapunov function as derived in the
previous section. Therefore, we generalize the concept of
λ-contractive set and derive a set-induced Lyapunov-like
function. For such purpose, we first introduce the following
definition for a Lyapunov-like function.

A Lyapunov-like function outside S for subsystem (6)
can be defined as a continuous function Ψ : R

n → R
+ such

that N [Ψ, κ] ⊂ S, for some positive scalar κ, for which the
following conditions hold:

if x /∈ N [Ψ, κ] then there exists λ ≥ 1 such that

Ψ(A(w)x + Ed) ≤ λΨ(x);

if x ∈ N [Ψ, κ] then

Ψ(A(w)x + Ed) ≤ λκ.

This Lyapunov-like function outside S definition is quite
similar to the definition of Lyapunov function outside S in
the previous section. The difference here is that the value of
a Lyapunov-like function increases at every step instead of
decreasing. To capture this trend of expansion in the state
space, we introduce the following expansive set definition,
which is a counter-part to contractive set in the previous
section.

Definition 3: Given λ, λ > 1, a set S is said λ-expansive
with respect to subsystem (6), if for any x ∈ S such that
post(x,W ,D) ⊆ λS.

Definition 4: Subsystem (6) is said to have expansive
index λ > 1 to the C-set S iff there exists a gauge function
Ψ(x) and a constant ξ > 0 such that the ball N̄ [Ψ, ξ] ⊆ S
and, if x /∈ int{N̄ [Ψ, ξ]}, then Ψ(post(x, w, d)) ≤ λΨ(x)
for all w ∈ W and d ∈ D (or. equivalently, N̄ [Ψ, µ] is
λ-expansive for all µ ≥ ξ).

Intuitively, the concepts of λ-expansive set and expansive
index λ reflect how explosive the unstable subsystems are.
For LTI subsystems, this is released to the magnitude of
their unstable eigenvalues.

The next question is how to determine such λ-expansive
set for an unstable subsystem. It turns out that the procedure
developed for contractive sets can be extended to expansive
set in parallel, which is described in the following.

Let S be assigned. We say that a λ-expansive set Pλ ⊆ S
is maximal in S iff every λ-expansive set P contained in
S is also contained in Pλ. Consider the following sequence
of sets:

{Xk} : X0 = S, Xk = pre(λXk−1) ∩ S; k = 1, 2, · · ·
Proposition 3: The maximal λ-expansive set Pλ ⊆ S is

given by Pλ =
⋂∞

k=0 Xk.

The above iterative procedure for determining the max-
imal λ-expansive set may fail to terminate in finite
steps. However, under certain conditions, the maximal λ-
expansive set Pλ could be determined by finite iterations
as shown below.

Proposition 4: Assume that Pλ is a C-set, and λ > 1.
Then for every λ∗ such that 1 < λ < λ∗, there exists k
such that Xk is λ∗-expansive for all k ≥ k.

It is straightforward to show that a λ-expansive set has
the following property, just like a λ-contractive set.

Proposition 5: If P is λ-expansive set for system (6),
then µP is so for all µ ≥ 1. (if D = {0}, for all µ ≥ 0.)

With the existence and determination of a non-empty
maximal λ-expansive set Pλ ⊆ S, we may induce a
Lyapunov-like function from Pλ.

Proposition 6: If Pλ =
⋂∞

k=0 Xk is nonempty, then Pλ

is a C-set and its Minkowski functional ψ(x) = ΨPλ
(x) is

a Lyapunov-like function for system (6) outside Pλ ⊆ S.

B. UUB Analysis

For any switching signal σ(k) and any k > 0, let Ki(k)
denote the total period that the qi-th subsystem is activated
during [0, k). Define K−(k) =

∑
i≤r, qi∈Q Ki(k), which

stands for the total activation period of the UUB subsys-
tems. On the other hand, K+(k) =

∑
i>r, qi∈Q Ki(k)

denotes the total activation period of the non-UUB sub-
systems. We have K−(k) + K+(k) = k.

Similarly, define the Lyapunov function candidate as

V (x[k]) = Ψσ(k)(x[k])

For any k satisfying k0 = 0 < · · · < ki ≤ k < ki+1, we
obtain

V (x[k]) ≤ max{λk−ki
qi

Ψqi(x[ki]), 1}
Let us define λs = max1≤i≤r{λqi} < 1, and λu =

maxr<i≤N{λqi} ≥ 1. Also, there exists a constant scalar
µ such that Ψi(x) ≤ µΨj(x) and Ψj(x) ≤ µΨi(x), for all
x ∈ R

n. The scalar µ can be selected as in the previous
section.

Therefore, by induction, we have

V (x[k]) ≤ max{λK−(k)
s λK+(k)

u µNσ(k)V (x[0]), 1}
If there exists a positive scalar 0 < λ < 1 such that

K+(k)
k

≤ ln λ − ln λs

ln λu − ln λs
(11)

which is a condition on the percentage of time interval that
the unstable subsystems are activated, then we obtain

(
λu

λs
)K+(k) ≤ (

λ

λs
)k ⇔ λK−(k)

s λK+(k)
u ≤ λk (12)

And thus

V (x[k]) ≤ max{λkµNσ(k)V (x[0]), 1}.
Assume that

λkµNσ(k) ≤ (λ∗)k (13)
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for some 0 < λ∗ < 1. This inequality is equivalent to

Nσ(k) ≤ k

τ∗
a

, τ∗
a =

ln µ

ln λ∗ − ln λ
(14)

which is an average dwell time scheme as well. Therefore

V (x[k]) ≤ max{(λ∗)kV (x[0]), 1}.
This implies that the entire system is UUB.

Theorem 2: The switched system (2) achieves a finite
asymptotic disturbance attenuation level under switching
signals

1) with percentage of time interval that the unstable
subsystems are activated less than ln λ−ln λs

lnλu−ln λs
in the

sense of (11), and
2) with average dwell time no less than ln µ

lnλ∗−ln λ in the
sense of (14).

Compared with the result for all subsystems are UUB, the
switching signals in this section have one condition on the
percentage of the activation periods of unstable subsystems
in addition to a similar average dwell time condition. In
other words, the switched system that stays too long in
the unstable mode may lead to an unbounded disturbance
attenuation performance.

V. CONCLUDING REMARKS

In this paper, we investigated the asymptotic disturbance
attenuation properties for a class of switched linear sys-
tems with parametric uncertainties and exterior disturbances
under various switching signals. First, arbitrary switching
signals were considered, and a necessary and sufficient
condition on the subsystems’ dynamics was derived for the
switched systems to achieve a finite disturbance attenua-
tion level under the assumption that each subsystem was
UUB. In addition, the equivalence between the asymptotic
stability of arbitrary switching linear systems and the robust
stability of a corresponding linear time-variant systems was
obtained, which bridges two originally distinct research
fields. Secondly, if the finite disturbance attenuation level
is not preserved under arbitrary switch signals, average
dwell switching schemes were proposed to attain a finite
disturbance attenuation level. Two cases were considered
for this problem that depend on whether all the subsystems
are UUB or not. The techniques were based on multiple
set-induced Lyapunov functions and polyhedral algebra.
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