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Abstract. The paper focuses on supervision approaches in which the
supervisor is a Petri net (PN). Special attention is given to the monitor-
based approaches. In monitor-based supervision, the set of transitions
(events) of a supervisor is a subset of the set of transitions (events) of
the plant. The significance of monitor-based approaches to the design
of the general PN supervisors is emphasized. The approaches surveyed
in the paper are classified based on the type specifications, controlla-
bility/observability assumptions, and centralized/decentralized type of
supervision. Included are also the literature results that do not lead to a
supervisor represented as a PN.

1 Introduction

This paper contains a survey of supervision methods used in the literature,
with a focus on the methods in which the supervisor is modeled by a Petri net
(PN). The PN variant considered in this paper are the P/T nets. The basic PN
model is extended, when needed, to account for uncontrollability/unobservability
and transition labels. The basic PN model has a structure N defined by N =
(P, T, D−, D+), where P is the set of places, T the set of transitions, D−, D+ ∈
N

|P |×|T | are the input and output matrices, and N is the set of nonnegative
integers. We denote by D = D+−D− the incidence matrix and by µ the marking.
A PN with initial marking µ0 will be denoted by (N , µ0).

In monitor-based supervision, a plant PN is enhanced with additional places,
called monitors, such that given specification constraints are satisfied. One of
the inherent qualities of this approach is that the operation of the plant under
supervision can also be modeled by a PN, which we call closed-loop PN. The
closed-loop PN is simply the plant plus the monitor places.

The most common type of specifications used with monitor-based supervision
has the form

Lµ ≤ b (1)

where µ is the marking, L ∈ Z
nc×m, b ∈ Z

nc , Z is the set of integers, m is the
number of places of the PN, and nc the number of constraints. The constraints
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(1) are also known as generalized mutual exclusion constraints [1], since a simpler
form of (1) corresponds to mutual exclusion specifications.

The enforcement of marking constraints is overviewed in section 2. Note
that the focus is on the linear marking constraints (1), though methods that
can deal with more (or less) general marking specifications are also surveyed.
The constraints (1) have been used in the context of a constrained optimal
control problem of chemical processes [2], for the coordination of AGVs [3], as
manufacturing constraints in [4], and for mutual exclusion in batch processing [5].
An extension of this type of constraints has also been used for the supervision
of railway networks [6].

The constraints used in [6] belong to the class of generalized linear con-
straints [7], which we describe in section 3. These can still be enforced by mon-
itors, as monitors can enforce constraints more general than (1). Generalized
linear constraints are important because they describe the class of constraints
that can be enforced by monitors.

More general specifications can be described by languages or as disjunctions
of constraints. The enforcement of P -type languages is considered in section 4.
Note that a P -type language is a language that describes the firing sequences of
a labeled PN with an initial marking [8]. Note also that in section 4 the plant is
modeled by labeled PNs. The enforcement of P -type languages in the context of
free-labeled PNs (i.e. PNs with distinct labels), corresponds to the enforcement
of generalized linear constraints described in section 3.

Disjunctions of constraints (1) have the form L1µ ≤ b1∨L2µ ≤ b2∨. . . Lpµ ≤
bp, requiring the marking µ to satisfy at least one of Liµ ≤ bi, for i = 1 . . . p.
The enforcement of disjunctions of constraints (1) is considered in section 5.
Unlike to the previous types of constraints, which typically result in monitor-
based supervisors, in this case we need the more powerful supervisors in which
the set of transitions (events) is not necessarily a subset of the set of transitions
(events) of the plant PN.

Decentralized supervision is covered in section 6. In decentralized supervision,
the supervisor consists of components that act on subsystems of the plant such
that a global specification is satisfied. Several decentralization settings could be
distinguished depending on the type of communication between the supervisor
components. The section surveys an extension from centralized to decentral-
ized supervision of the monitor-based design. Note that the extension applies
to supervision settings with no communication, restricted communication, and
unlimited communication.

This paper is an abbreviated version of the technical report [9]. The reader
is referred to [9] for additional information.

2 Marking Constraints

We first consider approaches for the linear marking constraints (1). This type of
constraints have been shown to have the following properties. They can describe
any forbidden marking specification on safe Petri nets [10, 1], where a Petri net



is safe if all reachable markings are binary vectors (i.e. consisting of 0 and 1
elements). This property is very interesting for supervision problems on certain
subclasses of Petri nets, and notably on marked graphs. Further, as shown in
the next sections of the paper, more general specifications can be reduced to
specifications (1) on transformed PNs. Thus, the methods developed for the
enforcement of (1) are relevant for a much wider class of constraints, including
language specifications and disjunctive constraints. Finally, the constraints (1)
are also important for the representation of deadlock prevention and liveness
specifications [11, 12].

In the fully controllable and observable case, the construction of a supervisor
enforcing (1) is as follows. Given a PN (N , µ0) of structure N = (P, T, D−, D+),
the supervisor is described by (Ns, µ0,s) with Ns = (Ps, T, D−

s , D+
s ), where

Ds = −LD (2)

µ0,s = b − Lµ0 (3)

Note that the places of the supervisor are called monitors. An example is shown
in Figure 1(b), in which the monitors p7 and p8, in this order, correspond to the
constraints

µ1 + µ2 + µ5 ≤ 1 (4)

µ3 + µ7 ≤ 1 (5)
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The method presented above is known as supervision based on place invari-

ants and has been detailed in a number of references, such as [1, 10, 4, 13]. While
in the early papers the elements of L have been assumed nonnegative, note that
the method applies for any integer matrices L and b.

The literature methods for the enforcement of the linear marking constraints
can be distinguished based on the approach they follow when the plant is not
fully controllable and/or observable. First, the methods relying on the concept
of admissibility will be discussed.

A supervisor is admissible, when it respects the uncontrollability and unob-
servability constraints of the plant. The constraints Lµ ≤ b are admissible if the
supervisor defined by (2–3) is admissible. In an admissibility-based approach, the
constraints Lµ ≤ b are transformed (whenever possible) to an admissible form
Laµ ≤ ba such that

Laµ ≤ ba ⇒ Lµ ≤ b (6)

Then, the supervisor enforcing Laµ ≤ ba is admissible, and enforces Lµ ≤ b as
well. Instead of transforming our constraints to the form Laµ ≤ ba, we could
use the (more general) disjunctive form

∨

i La,iµ ≤ ba,i. Then, the approach of
section 5 could be used to obtain a PN representation of the supervisor.

The computation of the sets Laµ ≤ ba can be simplified when we express the
admissibility requirement by linear inequalities. Such sufficient conditions for ad-
missibility can be found under various settings [9]. In the most common setting of
monitor-based supervision, transitions are classified as controllable (observable)
and uncontrollable (unobservable). Controllable (observable) transitions can be
individually controlled (observed). Let Tuc and Tuo be the sets of uncontrollable
and unobservable transitions of the plant. The following conditions are sufficient
to ensure the admissibility of (1)

LD(·, Tuc) ≤ 0 (7)

LD(·, Tuo) = 0 (8)

These conditions require that a monitor should not be an input to an uncon-
trollable transition and should not be connected to an unobservable transition,
except by input and output arcs of equal weight. As an example, consider Fig-
ure 1(a). Assuming t2 and t5 uncontrollable, µ2 + µ5 ≤ 1 is not admissible,
as enforcing it may attempt controlling either of t2 and t5. However, it can be
checked that µ1 +µ2 +µ5 ≤ 1 is admissible and µ1 +µ2 +µ5 ≤ 1 ⇒ µ2 +µ5 ≤ 1.

Another interesting setting is the one of labeled PNs. Given a labeling func-
tion ρ : T → Σ∪{λ}, where λ is the null event, we can write sufficient conditions
similar to (7–8):

∀t1, t2 ∈ T, ρ(t1) = ρ(t2) ⇒ LD(·, t1) = LD(·, t2) (9)

∀t ∈ T, ρ(t) ∈ Σuc ∪ {λ} ⇒ LD(·, t) ≤ 0 (10)

∀t ∈ T, ρ(t) ∈ Σuo ∪ {λ} ⇒ LD(·, t) = 0 (11)

Note that relation (9) constrains a monitor place to be identically connected to
any transitions t1 and t2 that have the same label. An important observation is



that since (9–11) have the same form as (7–8), any methods based on (7–8) can
be adapted to labeled PNs.

The design of admissible constraints has been approached in [4, 13] using the
following parameterization:

La = R1 + R2L (12)

ba = R2(b + 1) − 1 (13)

R1 is an integer matrix with nonnegative elements and R2 is a diagonal matrix
with positive integers on the diagonal. This parameterization is used as a suffi-
cient condition for (6). Now, the problem is to find La and ba subject to (12–13),
(7) and (8). This is a linear integer programming problem for which, sometimes,
solutions may be found using an efficient matrix row operation algorithm [4, 13].
Note that this integer programming formulation of the problem allows introduc-
ing additional requirements of interest. For instance, communication constraints
and a minimum-communication objective were used in a distributed version of
this problem [14]. Note that the approach of [4, 13] is suboptimal. That is, a
solution may not be found when solutions do exist, and if one is found, it may
not be the least restrictive solution. A source of suboptimality is that the com-
putation is not constrained to ensure that if L′

a and b′a are another solution to
(12–13), (7) and (8), then Laµ ≤ ba 6⇒ L′

aµ ≤ b′a.

The approach of [4, 13] can been improved in several ways. First, it should be
noticed that it is difficult to express by linear inequalities the requirement that
Laµ ≤ ba should be as permissive as possible. However, it is easy to constrain
the computation of La and ba to guarantee some weaker properties: (a) that a
set of markings of interest is included in {µ : Laµ ≤ ba} and (b) that a set of
firing count vectors x is included in {x : Dcx ≥ 0}, where Dc is the incidence
matrix of the closed-loop. These simple extensions can be found in [14]. As
noticed in [15], the admissible constraints Laµ ≤ ba satisfying (6) may not have
a unique supremal element. Thus, further work has been done by the authors
of [16] towards finding the supremal constraints Laµ ≤ ba subject to (12–13),
(7) and (8) by means of a parameterization.

Another way to control the selection of La and ba is by means of observation
and control costs. Thus, in [17], the optimal design of supervisors is considered,
where optimality here is with respect to control and observation costs. Here,
instead of having sets of uncontrollable and unobservable transitions Tuc and
Tuo, we have maps zc : T → R

+ and zo : T → R
+, associating control and

observation costs to each transition. The setting of [17] is general, as we can still
consider some transitions as uncontrollable/unobservable by associating with
them very large control or observation costs. The design problem of [17] is solved
by an integer programming approach, using (12–13) and admissibility conditions
equivalent to (7) and (8).

The optimal design of supervisors with respect to the admissibility con-
straints (7) and (8) is approached also in chapter 8 of [18]. The proposed method
applies to specifications (1) in which for all rows of L, all elements on a row have



the same sign. Note that the solution is given in the form of a disjunction of
constraints.

Still another approach appears in [19]. The setting of [19] assumes full ob-
servability. Essentially, given the constraint lµ ≤ c with l ∈ N

m and c ∈ N,
lµ ≤ c is replaced with the disjunction

∨

li∈SDmin(l)

[liµ ≤ c] (14)

where SDmin(l) is the set of minimal integer vectors x satisfying x ≥ l and
xD(·, Tuc) ≤ 0. In particular, lµ ≤ c is replaced with the single admissible
constraint l1µ ≤ c when SDmin(l) is the singleton {l1}. Under the conditions
of [20, 21], which are discussed later in this section, the resulting supervisor is
least restrictive. It is interesting to notice that some of the assumptions of [19]
can be dropped. Indeed, (14) is still a valid supervisor even if l ∈ Z

m and
c ∈ Z (as opposed to l ∈ N

m and c ∈ N). Further, partial observability can
be incorporated by defining SDmin(l) as the set of minimal integer vectors x

satisfying x ≥ l, xD(·, Tuc) ≤ 0 and xD(·, Tuo) = 0.
Another class of literature results deal with the calculation of the maximal

controlled-invariant set, assuming full observability. Let MF be the set of for-
bidden markings and Nu = (P, Tuc, D

−(·, Tuc), D
+(·, Tuc)) a subnet of the plant

N that does not contain the controllable transitions. The maximal controlled-

invariant set [22, 3] is defined as

AF = {µ : R(Nu, µ) ∩MF = ∅} (15)

It represents the set of markings (states) from which MF can be avoided. Once
we know AF , the control task is simply to disable any control actions that
lead to a marking in AF . Note that avoiding AF , as opposed to some superset
E ⊇ AF , corresponds to least restrictive supervision. In particular, as noticed
in [1], solutions replacing a specification Lµ ≤ b with an admissible Laµ ≤ ba

correspond to supervisors that avoid supersets E ⊇ AF , since AF may not be
representable as the complement of a set of constraints of the form (1) even when
MF is given as the complement of a set of constraints (1).

In [21] specifications (1) are considered, where L and b are restricted to have
only nonnegative elements. Given lµ ≤ c as one of the constraints of (1), (so
l ∈ N

m and c ∈ N), the influential subnet N l
u is defined, which is the subnet of Nu

containing the places p with l(p) 6= 0 and the directed paths of Nu to these places.
The main result of the paper shows how to express AF as the set of markings
satisfying a disjunction of linear marking inequalities. This result relies on two
conditions, as follows. First, N l

u should be a marked graph. (Note that N l
u, not

N , is restricted to a marked graph structure.) Second, for all reachable markings
of (N , µ0), every directed circuit of N l

u should have at least one token. In [21]
the supervisor is not represented as a PN. However, the subsequent work of [19]
proposes an extended PN representation of the supervisor, in which negative
markings are allowed. Note that a similar result was obtained in [20] for the
case in which N l

u is a state machine, instead of a marked graph. For this case,



it is shown that AF has the form AF = {µ : laµ ≤ c}, where la can be easily
computed. Thus, the monitor enforcing laµ ≤ c is the least restrictive supervisor.

The efficient computation of [20] for PNs and specifications for which the
subnets N l

u are state machines, may not be surprising in light of the complexity
findings of [23]. The model of [23] is as follows. The plant consists of p components
that do not interact with each other, where the components are represented by
deterministic Büchi automata Gi = (Qi, Σi, δi, q0i, Qmi) over disjoint alphabets
Σi. Given the subsets of states Qi ⊂ Qi, a mutual exclusion specification requires
less than k components to have their states qi in Qi at the same time. Note that
the plant of [23] can be represented by a safe labeled PN with a state machine
structure, and the mutual exclusion constraint by a constraint lµ ≤ c in which
c = k and all elements of l are 0 or 1. One of the problems considered in [23] is
to find nonblocking coordinators that enforce the mutual exclusion constraint.
Roughly, a nonblocking coordinator is a supervisor that guarantees certain strong
liveness properties. The paper shows that the existence of a solution can be
decided in polynomial time in p and n, where n = maxi |Qi|. Further, it is
shown that if a solution exists, the minimally restrictive solution can be found
in polynomial time in p and n. It is interesting to note that in the equivalent PN
representation of the plant, the supervisor found in [23] corresponds to a monitor
place enforcing a constraint laµ ≤ c, provided the PN is free-labeled. Note also
that in view of [24], the assumption that the sets Σi are disjoint seems to be
critical for polynomial complexity. In [24] it is shown that when the components
of the plant have a shared event, the solvability of the problem can no longer be
decided in polynomial time. A restriction of the problem for which polynomial
complexity is maintained is also proposed.

A method that finds the optimal design for specifications (1) appears in [25].
Several assumptions are made, as seen from the following outline of the method.
Let L(Nu, µ) denote the set of firing sequences σ of Nu that are enabled at the
marking µ. Let σ be the firing count vector with respect to N (not Nu). Finally,
let lµ ≤ c, l ∈ Z

|P | and c ∈ Z, denote a single constraint of (1). The set AF

corresponding to lµ ≤ c is given by AF = {µ : (∀σ ∈ L(Nu, µ)) lµ + lDσ ≤
c}. By assuming Nu (not N ) to be acyclic, AF = {µ : lµ + lDv∗(µ) ≤ c},
where v∗(µ) is the solution of the linear integer program max lDv subject to
D(·, Tuc)v ≥ −µ and v ≥ 0. As shown in [25], a closed-form expression of AF

can be computed under additional assumptions. First, [25] defines subnets for
each t ∈ Tuc, consisting of all paths of Nu ending in t. Denoting by T̂uc = {t ∈
Tuc : lD(·, t) > 0}, [25] requires all subnets of t ∈ T̂uc be independent (disjoint).
Further, when the subnets have the TS1 structure described in [25], AF can be

expressed by a disjunction of inequalities: AF = {µ :
∨k

i=1 liµ ≤ c} for some
k and li ∈ Z

|P |. Moreover, when the subnets have the TS2 structure described
in [25], then AF = {µ : laµ ≤ c} for some la ∈ Z

|P |. Thus, in the TS1 case

the optimal supervisor of lµ ≤ c enforces
∨k

i=1 liµ ≤ c, and in the TS2 case
laµ ≤ c. The approach of [25] is computationally efficient, as AF is calculated
independently of µ and without resorting to the traditional methods for solving
integer programs.



Results on the supervision of marked graphs appear in [26]. Compared to [22,
3], the marked graphs considered here may not be safe. However, unlike to [22,
3], the results are presented in the no concurrency setting and the uncontrol-
lability model is simpler: the set of transitions is partitioned into controllable
(Tc) and uncontrollable (Tuc) transitions. The specifications have the form (1).
A least restrictive supervision policy is computed first for several particular
cases. This policy is very efficient, as it involves little online computations.
Finally, a supervision policy is proposed for the general case, which involves
solving online linear programs, for every reachable marking. This last result is
based on the observation that given a constraint lµ ≤ c, l ∈ Z

1×m and b ∈ Z,
finding max{lµ∗ : µ∗ ∈ R(Nu, µ)} is equivalent to the integer linear program
max{lµ∗ : µ∗ = µ + D(·, Tuc)q, q ∈ N

|Tuc|}, which is equivalent to the linear

program max{lµ∗ : µ∗ = µ + D(·, Tuc)q, q ∈ R
|Tuc|
+ }. These two equivalences

result from the fact that the plant is a live marked graph.
In [27], the supervisory control problem is approached based on the reacha-

bility graph. Here, the supervisor is designed as a set of monitors acting upon
the PN plant. First, a subset of the reachability graph is obtained, such that
from any of the markings of the subgraph, forbidden states and blocking states
cannot be reached by firing uncontrollable transitions. This subgraph becomes
the desired reachability graph that is to be achieved by the closed-loop. Then,
the authors deal with the design of supervisors that ensure the closed-loop has
the specified reachability graph. Given a set Ω containing the pairs (µ, t) such
that t should be disabled at the marking µ, monitors are designed, such that
each monitor deals with at least one of the pairs (µ, t) of Ω. The connections of
a monitor to the plant are determined by finding an integer solution to a system
of inequalities. Due to the particular form of the inequalities, the solution can
be found using linear programming.

Several important results on the control of live marked graphs appear in [28].
The specification considered there is more powerful than (1), as it has the form
av ≤ c, where v is the Parikh vector, a ∈ Z

1×n and c ∈ Z. In [28], the set of
transitions T is partitioned into the disjoint subsets: T = Tc ∪ Tf ∪ Ti, where
Tc is the set of controllable transitions, and To = Tc ∪ Tf the set of observable
transitions. The approach of the paper is as follows. Suspect vectors are defined
as Parikh vectors3 v such that v|To

= v′|To
for some v′ with the property that

after firing v′, a forbidden state v′′ could be reached (i.e. av′′ > c), by firing
only uncontrollable transitions. The paper shows that any deterministic super-
visor has to avoid reaching the set of suspect vectors, and that the projections of
these vectors on To form a convex set (that is, the set of integral points of a poly-
hedron). The paper shows also how to compute this set. Since the complement
of this set may not be convex, it follows that the least restrictive supervisor may
not be implementable by control (monitor) places. Even when monitors can be
used, the paper shows that the number of monitors may be exponential. Another
observation of the authors is that the number of linear constraints defining the
set of suspect vectors may depend exponentially on the size of D(·, Tuc). The

3 A definition can be found in section 3 for the definition.



alternative to the computation of this set is as follows. Given a state v0, a linear
program can be solved in order to decide whether t ∈ Tc should be enabled. Since
linear (not integer linear) programming is used, the computation has polynomial
complexity.

A different plant model used in the literature is the controlled PN (CtlPN).
In CtlPNs, a supervisor is viewed as a (possibly nondeterministic) function that
determines the controls to be applied to the plant, based on the observation
of the plant. Thus, the supervisor and the closed-loop are not represented as
PNs. The main distinguishing feature of CtlPNs is that a supervisor is given the
ability to enable/disable groups of transitions, not individual transitions. This
is a more difficult case which, in the context of PN supervisors, could be dealt
with in the setting of double-labeled PNs [9]. On the other hand, supervision
problems in which the transitions of the plant are individually controllable or
uncontrollable can obviously be approached in the CtlPN setting.

Results on the supervision of CtlPNs were obtained first for CtlPNs with
a marked graph structure in [22, 3]. The setting of [22, 3] is as follows. The
plant is a CtlPN in which the underlying PN is a cyclic marked graph with an
initial marking that places exactly one token in every directed cycle. Thus, the
PN is safe (i.e., all reachable markings are binary vectors). Full observability is
implicitly assumed. The supervisory goal is to avoid a set of forbidden markings
MF . While in [22] MF is specified in terms of place, set and class conditions,
[3] specifies MF as the complement of the feasible set a set of constraints (1):

MF =
⋃

(F,k)∈F







µ :
∑

p∈F

µ(p) > k







(16)

Note that both class conditions and (16) can specify any set MF , due to the
fact that the PN model is a safe cyclic marked graph. (It is possible to obtain
inequalities (1), not (16) though, from any set MF of a safe PN [10].) There
are some mild assumptions on the set MF in [22, 3]. As mentioned in [29], these
assumptions guarantee the supervisor designed is least restrictive.

The design of supervisors in [22] is approached by analyzing the paths of
the marked graph that do not involve controllable transitions. This solution is
simplified in [3]. The solution of [3] involves the following: identify a number of
paths in the marked graph, offline; evaluate certain place and path predicates,
online.

In [30], the design of supervisors is studied for a setting similar to that of [22,
3], in which the CtlPN has a state machine structure. The forbidden set here is
described by disjunctions of constraints of the form (1). The use of disjunctions
is necessary in order to describe arbitrary sets of forbidden states, as the PN is
not assumed to be safe.

The results of [22, 3] are generalized in [31], by extending the plant model
from marked graphs to arbitrary ordinary PNs. The type of specifications is
similar to that of [22]. However, as the PNs may not be safe, it cannot capture
all possible sets of forbidden markings. Further, compared with (1), the specifi-
cations of [31] are neither a subset nor a superset of the specifications expressed



by (1). As in the previous work [22, 3], in [31] the least restrictive supervisor is
found by a path based approach.

The extension of the path-based approach of Holloway and Krogh [22, 3] to
partial observability appears in [32]. Ordinary PN structures are considered,
instead of marked graphs. The set of transitions is partitioned in controlled
and uncontrolled transitions, T = Tc ∪ Tuc, and in observed and unobserved
transitions, T = To ∪ Tuo, with To ⊇ Tc. Note that a transition is controlled
if connected to some control place. Further, each transition is labeled by one
event, and a transition is observed if its label is not the null event. The authors
propose a path algebra, described in more detail in [31]. This algebra is used to
define reachability predicates, which are then used to define the least restrictive
control policy. (The supervision is nondeterministic, so least restrictive control
policies exist.)

3 Generalized Linear Constraints

Generalized linear constraints have the form

Lµ + Hq + Cv ≤ b (17)

where q is the firing vector and v the Parikh vector. To simplify our presentation,
we will focus on the no concurrency assumption. The general case can be found
in [33]. Under the no concurrency assumption, q ∈ {0, 1}n, n = |T |, identifies
the transition that is to be fired next: qi = 1 if ti is to be fired next, and qi = 0
otherwise. The Parikh vector v ∈ N

n records how many times each transition
has fired. For instance, v1 = 4 indicates t1 has fired four times. q and v are
illustrated in Figure 2. Further, H ∈ Z

nc×n and C ∈ Z
nc×n are matrices, and

nc is the number of constraints.
The constraints (17) are interpreted as follows. A supervisor enforcing (17)

ensures that: (i) all states (µ, v) satisfy Lµ + Cv ≤ b; (ii) if q is the firing vector

of a transition ti, µ
ti−→ µ′, and v′ = v + q, then Lµ + Hq + Cv ≤ b and

Lµ′ + Cv′ ≤ b.
In [7] it is shown that:

- the class of constraints
Hq + Cv ≤ b (18)

is as general as the class Lµ+Hq+Cv ≤ b. That is, given Lµ+Hq+Cv ≤ b,
there is C′ such that Lµ + Hq + Cv ≤ b and Hq + C′v ≤ b are equivalent.

- any monitor arbitrarily connected to the places of a Petri net can be de-
scribed as enforcing a constraint of the form (18), where b corresponds to
the initial marking of the monitor.

- in fact, any PN (N , µ0), N = (P, T, D−, D+), can be described by constraints
(18), for H = D−, C = D− − D+ and b = µ0.

- Consequently, the specifications (17) correspond to the P -type languages of
the free-labeled PNs! (Following [8], a labeled PN is freely-labeled when each
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Fig. 2. Illustration of the q and v variables.

transition of the net has a unique and distinct label, different from λ, the
null symbol; further, a language L is a P -type PN language if there is a PN
with an initial marking such that L consists of the words associated with
the firing sequences enabled by the initial marking.)

Let L be the language corresponding to all behaviors accepted by a specifica-
tion (17). It is important to note that the specification (17) does not require
the closed-loop to generate L. Rather, it requires the closed-loop language to
be a sublanguage of L. Further, note that the least restrictive supervisor en-
forcing (17) can be easily designed under full controllability and observability
assumptions [7, 33].

Another important result that appears in [7, 33] shows that the design of
supervisors enforcing (17) can be reduced to the design of supervisors enforcing
(1) [7, 33]. Thus, if (17) is to be enforced on a PN N , the problem is transformed
into the design of a supervisor enforcing constraints of the form (1) on a PN NH .
The solution to this problem is then used to obtain the solution to the original
problem of designing a supervisor enforcing (17) on N . The uncontrollability and
unobservability setting used in [7, 33] is that transitions are either individually
controllable (observable) or uncontrollable (unobservable).

4 Language Constraints

As mentioned in section 3, it is possible to reduce the problem of enforcing the
P-type languages of free-labeled PNs to the problem of enforcing constraints (1).
This section shows that we can approach in a similar way more general problems,
that do not assume free-labeling for the plant and the specification. As in the



previous considerations, the requirement here is that the closed-loop generates
a sublanguage of the specification.

As an example, consider the PN and the specification shown in Figure 3.
In this example, the specification is described by a PN labeled by the events
a and b. To simplify the notation, it is assumed that all events of the plant
that do not appear in the specification are always enabled in the specification.
The closed-loop in our example can be computed immediately by a parallel
composition of the plant and specification, and is shown in Figure 4(a). Note
that in the closed-loop, the transition t1 of the plant appears in the form of t11
and t21, corresponding to the synchronization of t1 with the transitions t1 and
t2 of the supervisor. Similarly, t32 and t42 correspond to the synchronization of t2
with t3 and t4. A formal description of the algorithm composing PN plants with
PN specifications can be found in [6].
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The supervision is interpreted as follows. The plant and the supervisor have
each a distinct set of transitions, Tp and Ts, respectively. The supervisor cannot
observe/control the plant transitions directly, but it can observe/control events
generated by the plant. When the plant generates the event a, the supervisor
picks one of its own enabled transitions t ∈ Ts that is labeled by a, and fires
it. Note that the supervisor is free to choose which of its enabled transitions
labeled by a fires. For instance, in Figure 3, when the plant generates a, the
supervisor can select either of t1 or t2, since both are enabled and labeled by
a. So we can relabel the closed-loop, to indicate the supervisor can distinguish
between its own transitions that have the same label. Thus, in Figure 4 we have
the following new labels: a1 for t11, a2 for t21, b3 for t32 and t34, and b4 for t42 and
t44.

According to our previous section 3, in the closed-loop, every place of the su-
pervisor corresponds to a specification in terms of constraints (17). For instance,
p9 enforces v2

1 − v1
1 ≤ 1 and p8 enforces v1

1 − v4
2 − v4

4 ≤ 1. This gives us a readily



(b  )4(b  )3(a  )2
(a  )1 3

4b3b4b3b2a1a
(b  )4(b  )
bbb

cd

cc

c

a a

d

(a) (b)

b

2

t 2
3 t 2

4

p6

p7

t 3t 3

2p p3p4 p5t

9

p p3p4 p5t 5 t 6

p1t 1
2 t 4

3

p8

p

5

t 4
3 t 4

4 t 1
1 t 4

4

7

t 6

p1t 1
1

t 1
2

p8

p9

t 2
3 t 2

4

p6

p

Fig. 4.

available approach for supervisor design in the case of partial controllability and
partial observability:

- Compose the PN plant and the PN specification (supervisor).
- Relabel the closed-loop, to take in account the supervisor can distinguish

between its own transitions.
- Find the constraints (17) corresponding to the constraints enforced by the

monitors of the closed-loop.
- Transform the constraints (17) to an admissible form, which is at least as

restrictive.

For instance, assume in our example that t1 (the event a) is uncontrollable but
the other transitions are controllable. Assume all other events are observable.
Notice that in Figure 4(a) p8 and p9 may attempt disabling t1. So, the specifi-
cation is inadmissible. However, the constraints enforced by p8 and p9, namely
v1
1 − v4

2 − v4
4 ≤ 1 and v2

1 − v1
1 ≤ 1, can be transformed to the admissible form

v1
1 − v4

2 − v4
4 + µ4 ≤ 1 and v2

1 − v1
1 + µ4 ≤ 1. The resulting closed-loop and

supervisor are shown in Figure 4(b) and Figure 5, respectively. The supervision
is admissible, while ensuring the plant generates only words that satisfy the
original specification of Figure 3.

It is known that the supremal controllable sublanguage of a P -type PN lan-
guage may not be a P -type PN language [34]. This is an indication that the
approach presented here is suboptimal, in the sense that it may not lead to the
least restrictive supervisor. Note that in the literature it has been shown that
the computation of the least restrictive supervisor can be reduced to a forbidden
marking problem, provided both the plant and specification generate determin-
istic languages [35]. (Given a labeled PN (N , ρ, µ0), the P -language it generates
is deterministic if for any of its strings w, there is a unique transition sequence
σ enabled by µ0 that generates w: ρ(σ) = w.) In the setting of [35], partial
controllability and full observability are assumed.
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5 Disjunctive Constraints

Here we show that under certain boundedness assumptions, disjunctions of con-
straints can be expressed by conjunctions of constraints by adding not only
places, but also transitions to the PN. A disjunction of constraints has the form:

∨

i

Liµ ≤ bi (19)

where Li ∈ Z
mi×n and bi ∈ Z

m
i . This can be written as

∧

j

∨

i∈Aj

liµ ≤ ci (20)

where li ∈ Z
1×n, ci ∈ Z and Aj is a set of integers. The main idea of our approach

is to include additional binary variables δi for each constraint liµ ≤ ci such that:

[liµ ≤ ci] ↔ [δi = 1] (21)

Then, the disjunction (19) can be replaced by

∑

i∈Aj

δi ≥ 1 (22)

for all indices j. If we know that liµ is between the bounds mi and Mi, (21) is
equivalent to the following system of inequalities:

liµ + (Mi − ci)δi ≤ Mi (23)

liµ + (ci + 1 − mi)δi ≥ ci + 1 (24)

Note that this technique of adding auxiliary variables has been used to solve
propositional logic via integer programming in [36, 37]. This technique has also
been applied to Hybrid Systems in [38]. In our Petri net context, the variables
δi will be interpreted as markings of additional “observer” places.

Note also the assumptions that were made:



1. liµ is bounded for all i and all plant markings µ that are reachable (in the
closed-loop).

2. some lower bound mi and upper bound Mi are known for all liµ.

The first assumption is reasonable for the specifications that can be implemented
in practice. Further, the second assumption appears to be satisfied often in prac-
tice.

The algorithm constructing a supervisor is as follows. For each constraint
liµ ≤ ci that appears in the disjunction (20), the following operations are done:

1. Let T +
i = {t : liD(·, t) < 0} and T−

i = {t : liD(·, t) > 0}.
2. Add an additional place di and |T +

i | + |T−
i | new transitions, as follows. For

each transition t ∈ T +
i , a copy t+ is added to the PN. (The fact that t+

is a copy of t means that t+ satisfies D−(·, t+) = D−(·, t) and D+(·, t+) =
D−(·, t).) Further, for each transition t ∈ T−

i , a copy t− is added to the PN.
3. For all transitions t− and t+, add the arcs (di, t

−) and (t+, di) with weight
1.

4. Add the monitor places enforcing (23–24), where δi denotes the marking of
di. Let ai be the monitor of (23) and ei the monitor of (24).

Thus, the algorithm enhances the PN with the places di, ai, ei, and the tran-
sitions t− and t+. The role of the additional transitions t− and t+ is to reset
(set) δi whenever there is a transition from (to) a marking satisfying liµ ≤ ci

to (from) µ′ with liµ
′ 6≤ ci. Note that enforcing the disjunction (20) on the

original PN corresponds to enforcing the inequalities (22) on the enhanced PN.
Moreover, the enhanced PN can be seen as the composition of a supervisor with
the original PN, where the supervisor is a labeled PN. Finally, note that the
construction of this algorithm is valid if each liµ ≤ ci is consistent with the ob-
servability constraints of the PN. Recall, a sufficient condition that guarantees
the observability constraints are satisfied is (8) for free-labeled PNs and (11) for
labeled PNs.

The algorithm is illustrated on the following example. Assume we desire to
enforce

[µ2 ≤ 0] ∨ [µ4 ≤ 0] (25)

on the Petri net of Figure 6(a). Assume also the following bounds are known:
µ2 ≤ 2 and µ4 ≤ 3. Note that (25) cannot be represented by conjunctions of
inequalities that use only the variables µ2 and µ4. For µ2 ≤ 2, the relations
(23–24) become (for ci = 0, mi = 0 and Mi = 2):

µ2 + 2δ1 ≤ 2 (26)

µ2 + δ1 ≥ 1 (27)

Similarly, for µ4 ≤ 3 we have

µ4 + 3δ2 ≤ 3 (28)

µ4 + δ2 ≥ 1 (29)



The places d1 and d2 are shown in Figure 6(b). Figure 6(c) shows also the
monitors a1, e1, a2 and e2, which correspond to (26–29), in this order. Finally,
our disjunction (25) can be implemented by enforcing δ1 + δ2 ≥ 1 (Figure 6(d)),
if δ1 + δ2 ≥ 1 is admissible.

In general, (22) may not be admissible. However, one may attempt trans-
forming it to an admissible form by means of one of the techniques of section 2,
such as the approach of [4]. Note also that in our example, the supervisor can be
represented as in Figure 7, where the PN of Figure 6(d) can be seen as the com-
position of the plant in Figure 6(a) and the supervisor. In Figure 7, αi denotes
the label of ti, for i = 2, 3, 4, 5.

6 Decentralized and Distributed Supervision

The decentralized control of PNs is approached in [39, 14]. The setting is as
follows. A PN N = (P, T, D−, D+) is given, representing the plant. The plant
has m subsystems, each having a set of controllable transitions Tc,i ⊆ T and
a set of observable transitions To,i ⊆ T , for i = 1 . . .m. In this setting, we
are to design m supervisors Si, each allowed to disable transitions t ∈ Tc,i and
observe transitions t ∈ To,i, such that the joint operation of the supervisors
Si ensures the specification (1) is satisfied. In [39] a decentralized admissibility
concept is introduced, called d-admissibility. An efficient structural test for
d-admissibility based on (7–8) is given in [39]. Several cases have been studied:

1. The specification (1) is d-admissible.
2. The specification (1) is not d-admissible and communication of transition

firings is allowed.
3. The specification (1) is not d-admissible and communication is not allowed

or is restricted.

Case 1 is solved by a construction similar to that of (2) and (3). Case 2 is
reduced to case 1 by allowing event communication add more elements to the sets
Tc,i and To.i. However, case 3 is more involved. Assuming no communication is
allowed, the problem is to decompose the specification (1) into sets of constraints
L1µ ≤ b1 . . . Lrµ ≤ br such that each Liµ ≤ bi is d-admissible and

(L1µ ≤ b1 ∧ L2µ ≤ b2 ∧ . . . Lrµ ≤ br) ⇒ Lµ ≤ b (30)

The d-admissibility requirement can be tested by inequalities similar to (7) and
(8). In [14] this problem is approached using the parameterization (12–13), by
replacing (30) with the conservative requirement that

L1 + L2 + . . . Lm = R1 + R2L (31)

b1 + b2 + . . . bm = R2(b + 1) − 1 (32)

where R1 has nonnegative integer elements and R2 is diagonal with positive
integer elements on the diagonal. Integer programming is then used to find Li,
bi, R1 and R2. The problem is solved in a similar way when communication is
allowed.
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7 Conclusion

Based on this survey we may conclude that results are available for a wide va-
riety of supervision problems. Moreover, structural approaches could be used to
approach complex supervision problems. By avoiding reachability-graph analy-
sis, structural methods promise computational benefits. On the other hand, for
bounded PN plants, reachability analysis could solve any of the specifications
considered in this paper. For many of the approaches surveyed here, one of the
main limitations is that the liveness problem is ignored. This means that the
closed-loop system might reach deadlock/livelock states. While numerous live-
ness enforcement results exist, the problem is difficult in the general case. Some
of the methods presented here have been implemented in software [40]. For the
future, we could envision a software tool that analyzes the supervision problem
first, and then selects the “best” method that applies.
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