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Abstract— The main contribution of this paper is a converse
Lyapunov theorem derived for a class of switched linear systems
with time-variant parametric uncertainties. Both discrete-time
and continuous-time switched linear systems are investigated.
It is shown that the existence of asymptotically stabilizing
switching laws implies the existence of a polyhedral Lyapunov
function along with conic partition based stabilizing switching
laws.

I. INTRODUCTION

Design stabilizing switching laws for switched systems is
one of main research topics in the field of switched systems,
and attracts increasing attentions recently, see for example
the survey papers [7], [3], the recent books [6], [15] and the
references cited therein.

Early efforts for switching stabilization were mainly fo-
cused on quadratic stabilization for certain classes of sys-
tems. For example, a quadratic stabilization switching law
between two LTI systems was considered in [17], in which it
was shown that the existence of a stable convex combination
of the two subsystem matrices implies the existence of a
state-dependent switching rule that stabilizes the switched
system along with a quadratic Lyapunov function. A gener-
alization to more than two LTI subsystems was suggested
in [13] by using a “min-projection strategy”. In [5], it
was shown that the stable convex combination condition
is also necessary for the quadratic stabilizability of two
mode switched LTI system. However, it is only sufficient
for switched LTI systems with more than two modes. A
necessary and sufficient condition for quadratic stabilizabil-
ity of switched controller systems was derived in [14].
For robust stabilization, a quadratic stabilizing switching
law was designed for polytopic uncertain switched linear
systems based on LMI techniques in [19]. All of these
methods guarantee stability by using a common quadratic
Lyapunov function, which is conservative in the sense that
there are switched systems that can be asymptotically (or
exponentially) stabilized without using a common quadratic
Lyapunov function. There have been some results in the
literature that propose constructive synthesis methods to
switched systems using multiple Lyapunov functions [3].
For instance, the stabilizing switching law design based on
multiple Lyapunov functions was proposed in [16], where
piecewise quadratic Lyapunov functions was employed for
two mode switched LTI systems. An LMI based method was
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proposed in [11] for the stabilizing state-feedback control
design of discrete-time piecewise affine systems. Exponential
stabilization for switched LTI systems was considered in [12]
also based on piecewise quadratic Lyapunov functions, and
the synthesis problem was formulated as a bilinear matrix in-
equality (BMI) problem. Switched nonlinear control systems
with actuator constraints and uncertainties were considered
in [4]. Notice that these stabilizability conditions, which may
be expressed as the feasibility of certain LMIs or BMIs,
in the existing literature are basically sufficient only, except
for certain cases of quadratic stabilization. A necessary and
sufficient condition for asymptotic stabilizability of second-
order switched LTI systems was derived in [18] by detailed
vector field analysis.

This paper aims at addressing the complementary problem
of switching stabilization, and derive a necessary condition
for asymptotic stabilizability of switched linear systems
with time-variant parametric uncertainties. In particular, we
assume that there exist switching laws to asymptotically
stabilize such uncertain switched linear systems, i.e., switch-
ing asymptotically stabilizable. The main question studied
here is whether there exist (switching control) Lyapunov
functions for such switching stabilizable switched linear
systems, which is usually referred to as a converse Lyapunov
problem.

There are some related work on converse Lyapunov the-
orem for switched systems. In [2], a converse Lyapunov
theorem was derived for the globally uniformly asymp-
totically stable and locally uniformly exponentially stable
switched systems with arbitrary switching signals. It was
shown that such arbitrary switching system admits a com-
mon Lyapunov function. This converse Lyapunov theorem
justifies the common Lyapunov method which was pursued
in the literature for arbitrary switching systems. The con-
verse Lyapunov theorem was extended in [10] to switched
nonlinear systems that are globally uniformly asymptotically
stable with respect to a compact forward invariant set. Notice
that both papers are on the existence of a common Lyapunov
function for continuous-time switched systems with arbitrary
switching signals. Our work differs from theirs in that we are
addressing the existence of a (switching control) Lyapunov
function for a switching stabilizable switched system, instead
of considering a common Lyapunov function for arbitrary
switching systems. In addition, we consider robust asymp-
totic stabilizability for both discrete-time and continuous-
time switched linear systems with time-variant parametric
uncertainties.

The rest of the paper is organized as follows. In Section II,
mathematical models for the discrete-time and continuous-
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time uncertain switched linear system are described, and the
converse Lyapunov problem is formulated. In Section III,
the converse Lyapunov theorems for discrete-time and
continuous-time switching stabilizable uncertain switched
linear systems are presented and proved respectively. Finally,
concluding remarks are presented.

Notation: The letters E ,P ,S · · · denote sets, ∂P the
boundary of set P , and int{P} its interior. For any real
λ ≥ 0, the set λS is defined as {x = λy, y ∈ S}. The
term C-set stands for a convex and compact set containing
the origin in its interior.

II. PROBLEM FORMULATION

We consider a collection of discrete-time linear systems
described by the difference equations with uncertainties

x[k + 1] = Aq(w)x[k], k ∈ Z
+, q ∈ Q = {1, · · · , N} (1)

where Z
+ stands for non-negative integers.

We also consider a collection of continuous-time linear
systems described by the differential equations

ẋ(t) = Aq(w)x(t), t ∈ R
+, q ∈ Q = {1, · · · , N} (2)

where R
+ denotes non-negative real numbers.

In the above uncertain discrete-time and continuous-time
state equations, the state variable x[k], x(t) ∈ R

n. Note that
the origin xe = 0 is an equilibrium for the systems described
in (1) and (2). The finite set Q stands for the collection
of discrete modes. In particular, for all q ∈ Q, Aq(w) :
W → R

n×n, and the entries of Aq(w) are assumed to be
continuous functions of w ∈ W , where W ⊂ R

v is a given
compact set.

Combine the family of discrete-time uncertain linear sys-
tems (1) with a class of piecewise constant functions, σ :
Z

+ → Q, which serves as the switching signal between
the collection of discrete-time systems (1). The discrete-time
switched linear system can be described as

x[k + 1] = Aσ(k)(w)x[k], k ∈ Z
+ (3)

The signal σ(k) is called a switching signal. The particular
value of the switching signal σ(k) at any given time step k
may be generated by a decision-making process. One desir-
able form of the decision-making process is state feedback
based transition law, which can be represented as follows

σ(k) = δ(σ(k − 1), x[k]) (4)

where δ : Q × R
n → Q. The discrete mode is determined

by the current continuous state x[k] and the previous mode
σ(k − 1).

Similarly, we introduce a class of piecewise constant
functions, σ : R

+ → Q, which serves as the switching
signal between the class of continuous-time systems (2). The
continuous-time switched linear system can be described as

ẋ(t) = Aσ(t)(w)x(t), t ∈ R
+ (5)

and the switching signal is generated by

σ(t) = δ(σ(t−), x(t)) (6)

where δ : Q × R
n → Q and t− = limτ→0,τ>0(t − τ). The

discrete mode is determined by the current continuous state
x(t) and the previous mode σ(t−). It is assumed that there
are finite switchings within any finite time interval.

For this discrete-time switched system (3)-(4) and
continuous-time switched system (5)-(6), we assume that
they are asymptotically switching stabilizable, i.e., for any
initial condition x0 ∈ R

n there exist switching laws to
asymptotically stabilize the switched system. It is known
that if there exists a Lyapunov function, usually picked as
quadratic or piecewise quadratic, then the switched system
can be stabilized. However, the reverse of the statement is
not clear yet, that is whether there always exists a (switching
control) Lyapunov function for a given switching stabiliz-
able switched system. This is usually called the converse
Lyapunov problem.

We focus our attention on this converse Lyapunov problem
for both discrete-time switched linear systems (3)-(4) and
continuous-time switched linear systems (5)-(6) in this paper,
which are formulated as follows.
Problem 1: If there exist switching control laws that make
the closed-loop discrete-time switched system (3) globally
asymptotically stable, then whether or not we may find a
Lyapunov function for the switched system.
Problem 2: If there exist switching control laws that glob-
ally asymptotically stabilize the uncertain continuous-time
switched linear system (5), then whether or not there exists
a Lyapunov function for the switched system.

In the next section, we will derive positive answers for
these questions and prove the converse Lyapunov theo-
rems for the asymptotically stabilizable discrete-time and
continuous-time switched linear systems respectively.

III. MAIN RESULTS

A. Discrete-Time Case

A converse Lyapunov theorem for the asymptotically
stabilizable discrete-time switched linear systems (3)-(4) can
be stated as the following theorem.

Theorem 1: If there exist switching control laws that make
the closed-loop discrete-time switched system (3) globally
asymptotically stable, then there exists a Lyapunov function
for the discrete-time switched system (3)-(4).
Proof : First, it is assumed that the switched system can
be globally asymptotically stabilized by properly designed
switching laws for all initial conditions x0 ∈ R

n. In partic-
ular, consider the unit sphere, S = {x ∈ R

n : ‖x‖ = 1},
where ‖ · ‖ stands for the Euclidian norm of R

n.
For any initial condition x0 ∈ S, there exists a switching

signal σ(k), by assumption, such that the trajectories starting
from x0 via following the dynamics

x[k + 1] = Aσ(k)(w)x[k]

asymptotically converge to the origin. Based on the results
in [9] and [1] for uncertain linear time-variant systems, there
exists a polyhedral C-set Pσ such that x0 ∈ ∂Pσ and

Aσ(0)(w)x[0] ∈ λPσ, ∀w ∈ W
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where λ is a positive scalar and λ < 1.
Consider the Minkowski function of Pσ, which is defined

as
ΨPσ(x)=̇ inf{µ > 0 : x ∈ µPσ},

we obtain that ΨPσ(x[1]) ≤ λΨPσ (x[0]), where x[1] =
Aσ(0)(w)x[0] for some w ∈ W . Note that ΨPσ (x[0]) = 1,
since x0 is on the boundary of Pσ. If we represent the
polyhedral C-set Pσ canonically as

Pσ(x) = {x ∈ R
n : fix ≤ 1, i = 1, · · · , m}, (7)

then the Minkowski function ΨPσ(x) has the following
expression

ΨPσ (x) = max
1≤i≤m

{fix}, (8)

where fi ∈ R
1×n is the gradient vector of facet Fi of Pσ,

for i = 1, · · · , m.
Assume that for the initial condition x0, ΨPσ(x[0]) =

fi0x[0], then fi0x[1] ≤ ΨPσ(x[1]) ≤ λΨPσ (x[0]). There-
fore, fi0x[1] ≤ λfi0x[0]. Let us denote the hyperplane to
which the facet Fi0 is affiliated as Hx0 . The plane Hx0 can
be represented as

Hx0 = {x ∈ R
n : fi0(x − x0) = 0},

or
Hx0 = {x ∈ R

n : fi0x = 1}.
Induced from the plane Hx0 , we define a scalar function

ψHx0
(x) as

ψHx0
(x) = inf{µ : x ∈ µHx0},

for all the points x in R
n. Note that the function ψHx0

(x)
is continuous for all x ∈ R

n and can be represented as an
inner product ψHx0

(x) = fi0x.
Notice that ψHx0

(Aq0 (w)x[0]) ≤ λψHx0
(x[0]), where 0 <

λ < 1, w ∈ W , and q0 = σ(0). Following the mode q0, the
difference of the function value ψHx0

(·) between these two
steps is negative, i.e.,

∆q0(x0) = ψHx0
(Aq0(w)x0) − ψHx0

(x0) < 0,

for all w ∈ W .
Therefore, there exists a positive scalar 0 < ε < 1 − λ,

such that

∆q0(x0) = ψHx0
(Aq0 (w)x0)−ψHx0

(x0) < −εψHx0
(x0) < 0

Note that ψHx0
(x0) = 1.

In addition, for any positive scalar µ > 0,

∆q0(µx0) = ψHx0
(Aq0 (w)µx0) − ψHx0

(µx0)
= fi0Aq0(w)µx0 − fi0µx0

= µ(fi0Aq0(w)x0 − fi0x0)
= µ∆q0(x0)
< −µεψHx0

(x0) (9)

= −εψHx0
(µx0) < 0

for all w ∈ W . This implies that all the states on the ray
passing through x0 will decrease their values of ψHx0

(x) at
the next step along the mode q0.

Next, because of continuity of the functions ψHx0
(x) and

∆q0(x), there exists an open neighbor region around x0 such
that ∆q0(x) is negative as well. Let us denote such open
set as Bx0 . It is always possible to make Bx0 convex, for
example a small ball with x0 as center.

In fact, these procedures and negativeness properties can
be applied for all the points on S. If we consider all the
points on the unit sphere S, then we can derive a collection
of similar open sets, which is denoted as Bx. All these open
sets Bx, for x ∈ S, represent an open cover of the unit
sphere, i.e., ⋃

x∈S
Bx ⊇ S.

Notice that the unit sphere S is compact, so there exist
finite open sets, Bxi for i = 1, · · · , M , to cover it. Therefore,

M⋃

i=1

Bxi ⊇ S.

In the following, we will induce a conic partition of the
state space R

n from this finite cover.
Let us consider the region Bx1 first. For any state x

contained inside Bx1 , we have ∆q1(x) < 0. This implies
that the value of ψHx1

(x) will decrease at the next step, if it
follows the mode q1 at state x. In addition, because of (9),
this decreasing property also holds for the smallest conic
cone that contains Bx1 , which is denoted as C1. Therefore,
we may assign the mode q1 to the the conic cone C1.

This procedure can be repeated for all the open sets, Bxi ,
for i = 1, · · · , M , and induce a finite number of conic cones
Ci as well.

Define a scalar

εi = inf
x∈S∩Bxi

−∆qi(x)
ψHxi

(x)
> 0 (10)

Therefore, for all state x contained in S ∩ Bxi , we have

εiψHxi
(x) ≤ −∆qi(x)

⇒ εiψHxi
(x) ≤ ψHxi

(x) − ψHxi
(Aqi (w)x)

⇒ ψHxi
(Aqi (w)x) ≤ (1 − εi)ψHxi

(x)

for all w ∈ W .
It is easy to derive that for all x ∈ Ci,

ψHxi
(Aqi(w)x) ≤ (1 − εi)ψHxi

(x),

which is simplify because of the relationship (9).
It is straightforward to verify that

M⋃

i=1

Ci = R
n.

For each cone Ci, draw the hyperplane of xi ∈ S as

Hxi = {x ∈ R
n : ψHxi

(x) = 1}
Consider the induced half-space

HSxi = {x ∈ R
n : ψHxi

(x) ≤ 1}
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The intersection of the finite number of these half-space
will define a polyhedral set with the origin in its interior

P =
M⋂

i=1

HSxi

It is easy to prove P =
⋂M

i=1 HSxi is bounded, since
otherwise it will lead to a contraction to the fact that the
union of the cones Ci is the whole R

n. Therefore, the
intersection of these half-spaces, i.e., P , is a polyhedron with
the origin in its interior, called a polyhedral C-set.

Denote the Minkowski function of the polyhedral C-set
P , as ΨP(·), which can be expressed as

ΨP(x) = max
1≤i≤M

{ψHxi
(x)} (11)

The function ΨP(x) is piecewise linear continuous func-
tion, and has the following properties.

1) Non-negativeness: Ψ(x) ≥ 0, Ψ(x) = 0 ⇔ x = 0;
2) Radius-unboundedness: for any µ > 0, Ψ(µx) =

µΨ(x);
3) Convexity: Ψ(x + y) ≤ Ψ(x) + Ψ(y), ∀x, y ∈ R

n.
Basically, ΨP(x) defines a distance of x from the origin

which is linear in any direction.
In the sequel, we will show that the Minkovski function

of the polyhedral C-set P is a Lyapunov function, which is
piecewise linear, for the switched linear systems along with
a conic partition based switching law.

We first briefly describe some necessary notations. For the
polyhedral C-set P , let vert(P) = {v1, v2, · · · , vN} stands
for the vertices of a polytope P , while face(P) = {F1, F2,
· · · , FM} denotes its facets. The set of vertices of Fi can be
found as vert(Fi) = vert(P) ∩ Fi. Finally, we denote the
cone generated by the vertices of Fi by cone(Fi) = {x ∈
R

n :
∑

k αkvik
, αk ≥ 0, vik

∈ vert(Fi)}. The cone(Fi) has
the property that ∀x ∈ cone(Fi),

ΨP(x) = ψHxi
(x).

Induced from each facet Fi of the polyhedral C-set P , we
can get a polyhedral convex cone cone(Fi), which is denoted
as Fi. Note that Fi ⊆ Ci and

M⋃

i=1

Fi = R
n.

Therefore, we participate the whole state space into a finite
number of polyhedral conic cones Fi, with mode qi assigned
to each cone Fi for i = 1, · · · , M . Note that for all the states
x contained inside cone Fi we have ∆qi(x) < 0.

Next, we introduce a switching law induced from these
conic cones and prove that the closed-loop switched system
is asymptotically stable.

For such purpose, we define a successor operator, postq(·),
as

postq(R) = {x′ : x′ = Aq(w)x; x ∈ R, w ∈ W}
which represents all the possible next step states from the
current region R by the transformation Aq(w)x for w ∈ W .

Let us first show some properties of the successor set
postq(·).

Lemma 1: The successor set of a cone is a cone as well.
Proof : Denote the cone as C. For any x ∈ postq(C), there
exist state x0 ∈ C and w ∈ W such that x = Aq(w)x0. Since
C is a cone, then for any non-negative scalar µ, µx0 ∈ C and
µx = Aq(w)µx0 ∈ postq(C). This implies, µx ∈ postq(C)
for any non-negative scalar µ. Hence, postq(C) is a cone as
well. �

Note that the successor set of a cone C may be non-convex.
However, a non-convex cone can be written as a finite union
of convex cones.

With these preliminary results, we are ready to design a
conic partition based switching law under which ΨP(x) is
monotonically decreasing.

To obtain such conic partition based switching law, we
first need to select xi dense enough on S such that

M⋃

i=1

preqi (Ci) ∩ Ci = R
n (12)

where preqi(Ci) = {x ∈ R
n : postqi(x) ⊆ Ci}. It is easy to

show that preqi(Ci) is a convex cone, and so is preqi(Ci)∩Ci.
Notice that the cones Ci are overlapping each other. The
procedure on how to pick xi and expand Ci to satisfy (12)
is omitted here due to space limit.

Secondly, For any pair of modes qi and qj , if their
corresponding cones are adjacent in the sense of

Ci

⋂
Fj = ∅ (13)

then we assume that

ψHxj
(x) ≤ 1

1 − εi
ψHxi

(x) (14)

where εi is defined before 1.
Based on the conic cones Fi and the above assumptions,

a switching law is proposed as follows.
Assume that the current state x[k] ∈ Fi and the current

discrete mode is qi. Consider the following two cases:
If x[k] ∈ Fi

⋂
(preqi(Ci)∩Ci), then keep on following the

mode qi, i.e.,

σ(k + 1) = δ(q[k], x[k]) = qi, (15)

for x[k] ∈ Fi

⋂
(preqi(Ci) ∩ Ci).

Otherwise, there must exists at least one j = i, such that
x[k] ∈ Fi

⋂
(preqj (Cj) ∩ Cj). This is simply because of the

assumption (12). For this case, switch mode to qj , i.e.,

σ(k + 1) = δ(q[k], x[k]) = qj , (16)

for x[k] ∈ Fi

⋂
(preqj (Cj) ∩ Cj).

In the following, we will show the decreasing of the
Lyapunov function ΨP(x[k]).

1If we select the pair xi and −xi at the same time, then it is always
possible to make the function ψHxi

(x) non-negative.
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For the first case, there is no switching occur. Notice that
x[k + 1] ∈ Ci, since x[k] ∈ preqi(Ci). Two cases may arise
here. First, if x[k + 1] is still in Fi, then

ΨP(x[k + 1]) = ψHxi
(x[k + 1]) < ψHxi

(x[k]) = ΨP(x[k]).

Otherwise, x[k + 1] falls into another cone Fj adjacent to
Ci. By the assumption (14), we may obtain that

ΨP(x[k + 1]) = ψHxj
(x[k + 1]) ≤ 1

1 − εi
ψHxi

(x[k + 1])

<
1

1 − εi
(1 − εi)ψHxi

(x[k]) = ψHxi
(x[k])

= ΨP(x[k])

Secondly, if the mode switches from qi to qj at the time
instant k, then the next step state x[k + 1] = Aqj (w)x[k]
falls into the cone Cj . This is also because of the fact that
x[k] ∈ preqj (Cj). In particular, x[k + 1] is contained inside
one of the adjacent cone Fj′ , where j′ may be different from
j. Anyway, we have

ΨP(x[k + 1]) = ψHx
j′

(x[k + 1]) ≤ 1
1 − εj

ψHxj
(x[k + 1])

<
1

1 − εj
(1 − εj)ψHxj

(x[k]) = ψHxj
(x[k])

≤ ψHxi
(x[k]) = ΨP(x[k])

The last inequality comes from the definition of ΨP(x) =
max1≤i≤M{ψHxi

(x)}.
In summary, we have

ΨP(x[k + 1]) < ΨP(x[k])

for both cases.
Therefore, we showed that the Minkovski function of the

polyhedral C-set P , ΨP(x[k]), is monotonically decreasing
along the solutions of the switched linear system (3)-(4).
Together with other properties of ΨP(x[k]), ΨP(x[k]) serves
as a Lyapunov function for the switched system. �

As an interesting observation, the existence of an asymp-
totically stabilizing switching law for the switched system
(3)-(4) implies the existence of a conic partition based
switching law which globally asymptotically stabilizes the
closed-loop switched system. Since a conic partition switch-
ing law is a specific class of switching law, we have the
following corollary.

Corollary 1: A switched system can be globally asymp-
totically stabilized by a switching law if and only if it can
be stabilized by a conic partition switching law.

B. Continuous-Time Case

A converse Lyapunov theorem for the robust asymptotic
stabilizability of the continuous-time uncertain switched lin-
ear systems (5)-(6) can be stated as the following theorem.

Theorem 2: If there exist switching control laws that
globally asymptotically stabilize the uncertain continuous-
time switched linear system (5), then there exists a Lyapunov
function for the switched system (5)-(6).
Proof : The basic idea for the proof of the continuous-time
case is quite similar to the discrete-time counterpart. We

also construct a conic partition based switching law and
a piecewise linear Lyapunov function candidate. The key
part is to prove the decreasing of the Lyapunov function
candidate along the solutions of the switched system. The
decreasing of the Lyapunov function candidate is measured
by the negativeness of its Dini derivative along solutions.
Mathematically, the Dini derivation, D+Ψ(x(t)), for a con-
tinuous function Ψ, is defined as

D+Ψ(x(t)) = lim sup
τ→0,τ≥0

Ψ(x(t + τ)) − Ψ(x(t))
τ

.

Based on the arguments in [1] for linear time variant
systems, it can be shown that the Dini derivative of Ψ at
the time instant t, for x(t) = x, σ(t) = q, and w(t) = w,
can be calculated as

D+Ψ(x(t)) = lim sup
τ→0,τ≥0

Ψ(x + τAq(w)x) − Ψ(x)
τ

.

By assumption, for any initial condition x0 ∈ S, there
exists a switching signal σ(t) such that the trajectories
starting from x0 and following the dynamics

ẋ(t) = Aσ(t)(w)x(t)

asymptotically converges to the origin, with x(0) = x0.
Based on the results in [9] and [1] for uncertain linear time-
variant systems, there exists a polyhedral C-set Pσ and a
positive scalar τ̄ such that x0 ∈ ∂Pσ and

[I + τAσ(0)](w)x(0) ∈ λPσ, ∀w ∈ W
for all 0 < τ ≤ τ̄ , where λ is a positive scalar and less than
one.

Consider the Euler approximating system (EAS), which
can be represented as

x[k + 1] = [I + τAq(w)]x[k], (17)

for some τ > 0. The connection of the EAS (17) with its
original continuous-time systems is explored by the follow-
ing lemma.

Lemma 2: [1] If there exists positive scalars τ̄ > 0 and
positive scalar λ < 1 such that [I + τAσ(0)](w)x(0) ∈ λPσ

holds for all 0 < τ ≤ τ̄ and w ∈ W , then the Dini derivative
of ΨPσ at point x(0) satisfies

D+ΨPσ(x(0)) < −β (18)

where β = 1−λ
τ .

Note that
ΨPσ(x(0)) = ψHx0

(x0),

while following notations in the previous section. It is easy
to derive that for 0 < τ < τ̄ ,

∆q0 (x0) = ψHx0
([I + τAq0 (w)]x0) − ψHx0

(x0) < 0,

for all w ∈ W . Similar to (9), for any positive scalar µ > 0,
we have

∆q0(µx0) < 0 (19)
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Based on Lemma 2, one obtains that the Dini derivative
of ψHx0

for all the states on the ray passing through x0 is
negative along the mode q0.

Also based on continuity and compactness arguments we
may derive a finite cover, Bxi for i = 1, · · · , M ,

M⋃

i=1

Bxi ⊇ S,

for which the Dini derivative of ψHxi
is negative.

The following steps are to deduce a polyhedral C-set P
and partition the state space R

n into conic cones, Fi, which
are exactly the same as the discrete-time case.

The switching law induced from the conic partition is

σ(t) = δ(·, x(t)) = qi, for x(t) ∈ Fi (20)

To show that the Minkowski function of P , ΨP , is a
Lyapunov function, we need to show the negativeness of
its Dini derivative under this switching law. Assume that
x(t) ∈ Fi and current mode σ(t) = qi. There are two cases
to consider.

First, if no switching occurs at t, then there exists τ̄ > 0
such that ∀0 < τ ≤ τ̄ , x(t + τ) ∈ Fi. Then ΨP(x(t)) =
ψHxi

(x(t)) and ΨP(x(t + τ)) = ψHxi
(x(t + τ)). Therefore

D+ΨP(x(t)) = lim sup
τ→0+

ψHxi
(x(t + τ)) − ψHxi

(x(t))
τ

< 0

Else, if switching occurs at time t, then there exists τ̄ > 0
such that ∀0 < τ ≤ τ̄ , x(t + τ) ∈ Fj for j = i. Then
ΨP(x(t)) = ψHxi

(x(t)) = ψHxj
(x(t)) and ΨP(x(t+ τ)) =

ψHxj
(x(t+τ)). The equality of ψHxi

(x(t)) and ψHxj
(x(t))

is because switching only occurs at the boundary of Fi and
x(t) is at the common boundary between cones Fi and Fj .
Therefore,

D+ΨP(x(t)) = lim sup
τ→0+

ψHxj
(x(t + τ)) − ψHxj

(x(t))

τ
< 0.

Therefore, the uncertain switched system (5)-(20) is asymp-
totic stable and ΨP(x(t)) serves as a Lyapunov function for
the switched system. �

Similarly, the existence of an asymptotically stabilizing
switching law for the continuous-time switched linear system
(5)-(6) implies the existence of a conic partition based
stabilizing switching law.

Corollary 2: A continuous-time switched linear system
(5)-(6) can be globally asymptotically stabilized by a switch-
ing law if and only if it can be stabilized by a conic partition
switching law.

IV. CONCLUDING REMARKS

In this paper, the converse Lyapunov problem for both
discrete-time and continuous-time switched linear systems
affected by parameter variations were investigated. It was
shown here that if the uncertain switched linear systems can
be asymptotically stabilized by some switching laws, then
there exists a polyhedral Lyapunov function along with conic

partition based stabilizing switching laws. An interesting
observation from this paper’s results is that if a switched
linear systems is asymptotically switching stabilizable, then
one can always find a stabilizing switching law which is
characterized by a conic partition of the state space. The
proofs for converse Lyapunov theorems here also proposed
constructive methods for constructing such conic partition
based stabilizing switching laws. The results presented here
could be an important step that leads to a necessary and suffi-
cient condition for stabilizability of switched linear systems.
Recently, the switching stabilizability for continuous-time
switched linear systems was investigated in [8]. However,
the extension to the discrete-time case is challenging.
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