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In this paper the effects of quantization in an important class of networked control systems

called model-based networked control systems (MB-NCS) are considered. The MB-NCS

architecture uses an explicit model of the plant in the controller in order to reduce the network

traffic, while attempting to prevent excessive performance degradation. Sufficient stability

conditions for two types of static and a dynamic quantization schemes for MB-NCS are

derived. An important feature is that the stability conditions are explicitly expressed in terms

of the plant and controller dynamics, the error between the model and the plant parameters,

the transmission or update times, the quantization parameters, and a robustness measure of

the system to parameter uncertainty. This is important because it allows the design of the

controller and network parameters to achieve the desired goals. Examples are used throughout

to illustrate the main results.

1. Introduction

A networked control system (NCS) is a control system
in which a data network is used as feedback media. NCS
is an important area see for example Walsh et al. (1999),
Nair and Evans (2000), Yook et al. (2002) and
Networked Control Systems Sessions (2003). Industrial
control systems are increasingly using networks as media
to interconnect the different components. However, the
use of networked control systems poses some challenges.
One of the main problems to be addressed when
considering a networked control system is the size of
bandwidth required by each subsystem. Since each
control subsystem must share the same medium the
reduction of the individual bandwidth is a major
concern. Two ways of addressing this problem are:
minimizing the frequency of transfer of information
between the sensor and the controller/actuator; or
compressing or reducing the size of the data transferred
at each transaction. Shared characteristics among
popular digital industrial networks are the small
transport time and big overhead per packet, thus using

fewer bits per packet has small impact over the overall

bit rate. So reducing the rate at which packets are

transmitted brings better benefits than data compression

in terms of bit rate used. The MB-NCS architecture

makes explicit use of knowledge about the plant

dynamics to enhance the performance of the system.

MB-NCS were introduced in Montestruque and

Antsaklis (2002a) (also see Montestruque and

Antsaklis (2004).
Previously we have assumed that the network is

capable of transporting data with infinite precision.

For example, for the state feedback MB-NCS it is

assumed that the sensor sends the exact value of the

state over the network to the controller/actuator. This is

of course not possible with digital networks since the

length of each data packet is finite. It was claimed that,

since a large portion of standard industrial networks

implement a large number of bits available to represent

data, the error between the quantized value and the

actual value was negligible. Even when this is so, we

want to study the effect of these quantization errors on

the system stability.
Several results have been published regarding quanti-

zation issues in NCS and sampled data problems*Corresponding author. Email: lmontest@heliosware.com
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(Bamieh 1996, Liberzon and Brockett 2000, Nair and

Evans 2000a, b, Elia and Mitter 2001, Fagnani and

Zampieri 2002, Hespanha et al. 2002, Fu 2003, Liberzon

2003a, b, Nair et al. 2003 and Ling and Lemmon 2004).

Most results attempt to characterize the stability

properties of NCS when the number of bits used by

each network packet is finite and small. The main thrust

for this research is the need to reduce the amount

of bandwidth necessitated by a NCS so that a larger

amount of NCS can share the network. The goal with

MB-NCS is also the reduction of bandwidth, but the

design of the MB-NCS first attempts to reduce the

bandwidth by reducing the rate at which packets are sent

(Montestruque and Antsaklis 2002a). A second step is

to further reduce the bandwidth by reducing the number

of bits used to transmit each packet. This allows the

designer to consider several design parameters in a

sequential fashion. Specifically, a stable non-quantized

MB-NCS must be designed first using previous results

(Montestruque and Antsaklis 2002a). Then, the effect of

quantization can be assessed using the results in this

paper. In this way the designer has at her disposal a

number of parameters that can be modified, namely the

packet transmission times and the number of bits used

for each packet. Sufficient conditions on the control

system stability can be given depending on bounds over

the model uncertainty.
In this paper stability conditions for MB-NCS under

popular quantization schemes are derived. Both static

quantizers and dynamic quantizers are considered.

Static quantizers have quantization schemes that do

not vary with time, that is the error between the

quantized value and the real value does not depend on

time. Two quantizers of this type are considered: the

uniform quantizer with a constant maximum quantiza-

tion error; and the logarithmic quantizer with a

maximum quantization error that is proportional to

the norm of the quantized value. Dynamic quantizers

dynamically adjust their quantization regions to com-

pensate for uncertainties while giving a quantization

error that shrinks with time.
The main contributions of this paper are the results

on stability of quantized MB-NCS that show the explicit

dependence on the update time, the control law,

the model dynamics, the quantization parameters, and

the difference between the model and plant dynamics. In

x 2 the basic MB-NCS setup is reviewed for complete-

ness. Stability of MB-NCS with no quantization and

periodic transmissions are considered. In x 3 the stability

of MB-NCS with two types of static quantizers

are studied, namely the uniform quantizer and the

logarithmic quantizer. The stability of MB-NCS with

a dynamic quantizer is studied in x 4. Conclusions are

given in x 5.

2. Stability of a state feedback linear MB-NCS

We consider the control of a continuous linear plant

where the state sensor is connected to a linear controller/

actuator via a network. In this case, the controller uses

an explicit model of the plant that approximates the

plant dynamics and makes possible the stabilization

of the plant even under slow network conditions.
In this section we determine conditions under which

the transfer time between the sensor and the controller/

actuator results in a stable control system. An approx-

imate model of the plant is used in the controller/

actuator side to estimate the actual value of the plant

state vector, in this way the sensor can delay the

transmission of update information about the plant

state. The main idea is to perform the feedback by

updating the model’s state using the actual state of the

plant that is provided by the sensor. The rest of the time

the control action is based on a plant model that is

incorporated in the controller/actuator and is running

open loop for a period of h seconds. The control

architecture is shown in figure 1.
Our approach incorporates a model of the plant,

the state of which is updated at discrete intervals by

the plant’s state. We present a necessary and sufficient

condition for stability that results in a maximum

transfer time.
If all the states are available, then the sensors can

send this information through the network to update the

model’s vector state. Throughout this paper we will

assume that the compensated model is stable and that

the transportation delay is negligible. We will assume

that the frequency at which the network updates the

state in the controller is constant. The goal is to find the

smallest frequency at which the network must update

the state in the controller, that is, an upper bound for h,

the update time.

Figure 1. Proposed configuration of networked control
system.
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Consider the control system of figure 1 where the
plant is given by _x ¼ Axþ Bu, the plant model by
_̂x ¼ Âx̂þ B̂u, and the controller by u ¼ Kx̂. The state
error is defined as e ¼ x� x̂, and represents the
differences between the plant state and the model
state. The modelling error matrices Ã¼A� Â and
~B ¼ B� B̂ represent the difference between the plant
and the model. Also define the state error
eðtÞ ¼ xðtÞ � x̂ðtÞ and

� ¼
Aþ BK �BK
~Aþ ~BK Â� ~BK

� �
:

A necessary and sufficient condition for stability of the
state feedback MB-NCS is now presented.

Theorem 1 (Montestruque and Antsaklis 2003): The
State Feedback MB-NCS is globally exponentially stable
around the solution z¼ [xT� eT]T¼ 0 if and only if the
eigenvalues of

I 0
0 0

� �
e�h I 0

0 0

� �

are strictly inside the unit circle.

It can be shown (Montestruque 2004) that the
eigenvalues of

M ¼
I 0
0 0

� �
e�h I 0

0 0

� �

are inside the unit circle if and only if the eigenvalues of
N ¼ eðÂþB̂KÞh þ�ðhÞ with �ðhÞ ¼ eAh

R h
0 e�A�ð ~Aþ ~BKÞ �

eðÂþB̂KÞ�d� are inside the unit circle. Observe that the

eigenvalues of the compensated model appear in the first
term of N and that the second term �(h) can be made
small by having small update times h or small modelling
error. A detailed proof for Theorem 1 can be found in
Montestruque and Antsaklis (2002a or 2002b).

Example 1: In real applications uncertainty can fre-
quently be expressed as tolerances over the different
measured parameter values of the plant. This can be
mapped into structured or parametric uncertainties
on the state space matrices. Next an example is given
on how Theorem 1 can be applied if two entries on
the A matrix of the model can vary within a certain
interval

model: Â ¼
0 0

0 1

" #
, B̂ ¼

0

1

" #
;

plant: A ¼
0 1þ ~a12

0þ ~a21 0

" #
, B ¼

0

1

" #
;

with ~a12 ¼ ½�0:5, 0:5�, ~a21 ¼ ½�0:5, 0:5�

controller: K ¼ ½�1, � 2�:

The system will now be tested for an update time of
h¼ 2.5 seconds. The following contour plot in figure 2
represents the maximum eigenvalue magnitude for the
test matrix M as a function of the (1, 2) and (2, 1)
entries possible values. Here the contours at height equal
to one are relevant to stability. It is easy to isolate
the stable and unstable regions in the uncertainty
parameter plane. The stable region is between the lines
labelled as 1.

Figure 2. Contour plot maximum eigenvalue magnitude vs model error.
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3. Stability of MB-NCS with static quantization

In this section we address the stability analysis of a state
feedback MB-NCS using a static quantizer. Static
quantizers have defined quantization regions that do
not change with time. They are an important class of
quantizers since they are simple to implement in either
hardware or software and are not as computationally
expensive as their dynamic counterparts. Two types of
quantizers are analysed here, namely uniform quantizers
and logarithmic quantizers. Each quantizer is associated
with two popular data representations. The uniform
quantizer is associated with the fixed-point data
representation. Indeed, fixed-point numbers have a
constant maximum error regardless of how close is the
actual number to the origin. Logarithmic quantizers on
the other hand are associated with floating-point
numbers, this allows the maximum error to decrease as
the actual number is close to origin.

3.1 State feedback MB-NCS with uniform quantization

Let a uniform quantizer be described by a function
q : Rn ! Rn with the following property:

z� q zð Þ
�� �� � �, z 2 Rn, � > 0: ð1Þ

Theorem 2: Assume that the networked system without
quantization is stable and satisfies

eðÂþB̂KÞTh þ�ðhÞT
� �

P eðÂþB̂KÞh þ�ðhÞ
� �

� P ¼ �QD

ð2Þ

with P and QD symmetric and positive definite. Then when
using the uniform quantizer defined by (1), the state
feedback MB-NCS plant state will enter and remain in the
region kxk�R defined by

R ¼ e ��ðÂþB̂KÞh þ�maxðhÞ
� �

rþ e ��ðAÞh þ�maxðhÞ
� �

�

where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxððeAh ��ðhÞÞTPðeAh ��ðhÞÞTÞ�2

lminðQDÞ

s

and �maxðhÞ ¼

Z h

0

e ��ðAÞðh��Þ ��ð ~Aþ ~BKÞe ��ðÂþB̂KÞ�d�:

Proof: The response for the error is given now by

eðtÞ ¼ eAðt�tkÞeðtkÞ þ�ðt� tkÞx̂ tþk
� �

¼ eAðt�tkÞeðtkÞ þ�ðt� tkÞðxk � eðtkÞÞ

¼ eAðt�tkÞ ��ðt� tkÞ
� �

eðtkÞ þ�ðt� tkÞxk ð3Þ

where

�ðt� tkÞ ¼

Z t�tk

0

eAðt�tk��Þð ~Aþ ~BKÞeðÂþB̂KÞ�d�:

Note that since there is non zero quantization error, the
initial value for the error e(tk) is no longer zero as it was
in the case for non-quantized MB-NCS. Moreover the
contribution due to this initial value for the error will
grow exponentially with time and with a rate that
corresponds to the uncompensated plant dynamics.
So at time t 2 ½tk, tkþ1� the plant state is

xðtÞ ¼ x̂ðtÞ þ eðtÞ

¼ eðÂþB̂KÞðt�tkÞxk þ eAðt�tkÞ ��ðt� tkÞ
� �

eðtkÞ

þ�ðt� tkÞxk: ð4Þ

We can therefore evaluate a Lyapunov function
V¼xTPx at any instant in time t 2 ½tk, tkþ1�. It is
known that for uniformly exponential stability we
require (Ye et al. 1998) that

1

h
Vðxðtkþ1ÞÞ � VðxðtkÞÞð Þ � �c jjxðtkÞjj

2
� �

, c 2 Rþ: ð5Þ

We are interested in the value of the Lyapunov function
V at tkþ1

Vðxðtkþ1ÞÞ ¼ xðtkþ1Þ
TPxðtkþ1Þ

¼ xTk eðÂþB̂KÞh þ�ðhÞ
� �T

P eðÂþB̂KÞh þ�ðhÞ
� �

xk

þ eTk ðe
Ah ��ðhÞÞTPðeAh ��ðhÞÞek ð6Þ

where

h ¼ hk ¼ tkþ1 � tk > 0, ek ¼ eðtkÞ:

So we obtain

Vðxðtkþ1ÞÞV xðtkÞð Þ

¼ xTk eðÂþB̂KÞh þ�ðhÞ
� �T

P eðÂþB̂KÞh þ�ðhÞ
� �

xk

þ eTk eAh ��ðhÞ
� �T

P eAh ��ðhÞ
� �

ek � xTkPxk

¼ eTk eAh ��ðhÞ
� �T

P eAh ��ðhÞ
� �

ek � xTkQDxk: ð7Þ

Note that we can compute eAh��(h) as follows:

eAh ��ðhÞ ¼ I 0
	 


e

A ~Aþ ~BK

0 ÂþB̂K

� �
ðt�tk Þ

0
BB@

1
CCA I

�I

� �
: ð8Þ
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We can bound (7) by

eTk ðe
Ah ��ðhÞÞTPðeAh ��ðhÞÞek � xTkQDxk

� lmax ðeAh ��ðhÞÞTPðeAh ��ðhÞÞ
� �

�2 � lminðQDÞjjxkjj
2:

ð9Þ

The sampled value of the state of the plant at the update
times will enter the region kxk� r where

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxððeAh ��ðhÞÞTPðeAh ��ðhÞÞÞ�2

lminðQDÞ

s
: ð10Þ

The plant state vector might exit this region between
samples, as pictured in figure 3. The maximum
magnitude the state of the plant can reach between
samples is given by

jjxðtÞjj ¼
��� eðÂþB̂KÞðt�tkÞ þ�ðt� tkÞ
� �

xk

þ eAðt�tkÞ ��ðt� tkÞ
� �

ek

���
� e ��ðÂþB̂KÞh þ�maxðhÞ
� �

rþ e ��ðAÞh þ�maxðhÞ
� �

�

ð11Þ

where

�maxðhÞ ¼

Z h

0

e ��ðAÞðh��Þ ��ð ~Aþ ~BKÞe ��ðÂþB̂KÞ�d�

Therefore the plant state will enter and remain in the
region kxk�R defined by

R¼ e ��ðÂþB̂KÞhþ�maxðhÞ
� �

rþ e ��ðAÞhþ�maxðhÞ
� �

� ð12Þ

where

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxððeAh ��ðhÞÞTPðeAh ��ðhÞÞTÞ�2

lminðQDÞ

s
: œ

Remarks: The expressions in Theorem 2 establish a
direct relationship between the quantizer density �, the

robustness of the controller characterized by lmin(QD),
the plant’s dynamics, the error between plant and
model dynamics, the update time, and the convergence
region. Note that the smaller region defined by the
radius r is the region where the plant state can be
found at each update time, while the larger region R
will contain the plant state at all times. In view of the
expression for R when the quantization is coarser (� is
larger) R is also larger. Similarly, the larger �max(h) is,
the larger R is. Note that �max(h) is larger (see (3))
when h is larger, the error between the plant and model
is larger; it also depends on the selected control law K.
R also depends on r. When lmin(QD) is smaller (in view
of (2), this is the case for example when the non
quantized networked control system is less robustly
stable), r is bigger as can be seen from (12).

3.2 State feedback MB-NCS with logarithmic
quantization

We will define a logarithmic quantizer as function
q: Rn ! Rn with the following property:

jjz� qðzÞjj � �jjzjj, z 2 Rn, � > 0: ð13Þ

Theorem 3: Assume that the networked system without
quantization is stable and satisfies

eðÂþB̂KÞTh þ�ðhÞT
� �

P eðÂþB̂KÞh þ�ðhÞ
� �

� P ¼ �QD

ð14Þ

with P and QD symmetric and positive definite. Then when
using the logarithmic quantizer defined by (13), the state
feedback MB-NCS is exponentially stable if

� <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lminðQDÞ

lmaxððeAh ��ðhÞÞTPðeAh ��ðhÞÞÞ

s
:

Proof: The difference between the values of the plant’s
state Lyapunov function V¼ xTPx at two consecutive
update times is given by

Vðxðtkþ1ÞÞ � VðxðtkÞÞ

¼ eTk ðe
Ah ��ðhÞÞTPðeAh ��ðhÞÞek � xTkQDxk: ð15Þ

We can now bound (15) using the quantizer property
given in (13) by

eTk ðe
Ah ��ðhÞÞTPðeAh ��ðhÞÞek � xTkQDxk

� lmax ðeAh ��ðhÞÞTPðeAh ��ðhÞÞ
� �

�2jjxkjj
2

� lminðQDÞjjxkjj
2: ð16Þ

Figure 3. Plant state trajectory.
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This allows us to ensure exponential stability as in (5) if

lmax ðeAh ��ðhÞÞTPðeAh ��ðhÞÞ
� �

�2 � lminðQDÞ < 0:

ð17Þ

Or equivalently (assuming (eAh��(h))TP(eAh�
�(h)) 6¼ 0)

�<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lminðQDÞ

lmaxððeAh ��ðhÞÞTPðeAh ��ðhÞÞÞ

s
ð18Þ

œ

Remarks: Theorem 3 relates similar parameters to
those in Theorem 2, but logarithmic quantizers can
produce an exponentially stable system as opposed to
the bounded output obtained with the uniform quanti-
zers. Note that the result states that the maximum
logarithmic quantizer’s density for stability is reduced
if the controlled closed loop system is not robust. This
can be seen in (18) where lmin(QD) is a measure of
robustness.

Example 2: For this example we will use the following
plant model:

_̂x ¼
0 1
1 3

� �
x̂þ

0
1

� �
u: ð19Þ

Let the actual plant be a perturbed version of the model,
namely:

_x ¼
�0:0689 0:9757

1:0396 3:0720

� �
xþ

0:0707

1:0187

� �
u: ð20Þ

Both are unstable plants. A stabilizing controller,
designed using the plant model, is

u ¼ �2 �5
	 


x̂: ð21Þ

This controller places both eigenvalues of the compen-
sated plant model at �1. We obtain a stable NCS
without quantization for update times less than 1
second.

First we will study the effects of uniform quantization.
For this we will use a quantizer that partitions the state
space in rectangular regions. The quantizer function
for one variable is depicted in figure 4.

This quantizer uses a resolution of 0.1 binary (or
0.5 in decimal notation). The maximum absolute error
between the real value of the state and the quantized
values is calculated to be �¼ 0.3536. By using an
update time of h¼ 0.2 seconds and a QD¼ I in
equation (2) we obtain a suitable P. We then proceed
with (12) to obtain r and R of the region of
attraction. The radius R of the region of attraction
is calculated to be 2. Figure 5 shows the regions
defined by r and R and also the evolution of the plant
state when the system is started with an initial
condition of [2 2]T, figure 6 pictures the plant and
model state as a function of time. We note that the
actual region of attraction is smaller than the region
calculated using Theorem 2, which shows that
the result is conservative. Note that conservativeness
of the approach is the result of the use of norms and
singular values. This can be reduced by traditional

Figure 4. Uniform quantizer function.

92 L. A. Montestruque and P. J. Antsaklis



diagonalization techniques. The results here presented
are meant to relate the different design parameters to
the system stability.
We now use the same plant with a logarithmic

quantizer and an update time of h¼ 0.6 seconds. We
will test two logarithmic quantizer functions: q1 with a
mantissa word length of 12 bits; and q2 with mantissa
word length of 13 bits. The functions for one variable
are depicted in figure 7.

Their relative errors for the two dimensional case
are for q1: 0.33 and for q2: 0.20. Note that figure 7
shows the quantizer functions on one dimension.
When the quantizer is used on vectors the function is
applied element wise. We show next the time response of
the system for each of the quantizers when the plant
state is initialized at [2 3]T.

We observe from figures 8 and 9 that the system
working with quantizer q1 (�¼ 0.33) is unstable, while

Figure 5. Attraction region and plant state evolution.

Figure 6. Plant and model state.
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with q1 (�¼ 0.20) is stable. By using Theorem 3 and
a QD¼I we obtain a maximum relative error (18)
of 0.1241.

4. Stability of MB-NCS with dynamic quantization

In this section we will consider the case of dynamic
quantization, where the quantized region and

quantization error vary at each transmission time. It

has been shown that these type of quantizers can achieve

the smallest bit count per packet while maintaining

stability (Nair and Evans 2000a, b, Ling and

Lemmon 2004). This comes with the price of increased

quantizer complexity. While the static quantizers

did require a relatively small amount of computations,

the dynamic quantizers need to compute new quantiza-

tion regions and detect the plant state presence

Figure 7. Quantizer functions.

Figure 8. Plant and Model state time response for q1.
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within each region. Yet dynamic quantizers are an
attractive alternative when the number of bits available
per transmission is restricted. Our results extend those
already available in the literature to the case of
MB-NCS. It will be shown that our results converge
to existing standard literature results when the model
uncertainty is zero.
Under the dynamic quantizer scheme, an encoder

measures the state of the plant at each transmission time
and sends a symbol to the decoder collocated with the
plant model. To do so, first the encoder and decoder
assume that the plant state is contained in a hyper-
parallelogram Rk. Next, the encoder uses the plant
model and plant-model uncertainties to determine the
region where the plant state is at the next transmission
time. This calculated region will also be a hyper-
parallelogram denoted as R�

kþ1. The encoder can also
calculate R�

kþ1 since its calculation is based on the plant
model dynamics and known uncertainty bounds.
Then, the encoder can divide R�

kþ1 in 2N smaller equal
hyper-parallelograms. N is an integer representing
the number of bits used to identify each smaller
parallelogram. The encoder then sends an N-bit
symbol representing the smaller parallelogram Rkþ1

within R�
kþ1 where the plant state is. The process can

be repeated.
We will assume that the plant model matrix Â has

distinct real unstable eigenvalues. This assumption can
be relaxed at the expense of more complex notation and
problem geometry. We will also assume that the
compensated model is stable.
Previous results (Hespanha et al. 2002, Ling and

Lemmon 2004) consider a similar case but our result

is novel in that it incorporates the plant-model
mismatch within our MB-NCS approach. Ling and
Lemmon (2004) calculate the minimum bit rate for
NCS under network dropouts. Hespanha et al. (2002),
consider the case of a NCS that incorporates an exact
model of the plant. The results in Hespanha et al.
(2002) yield the minimum bit rate for stabilizing the
NCS under bounded measurement noise and input
disturbance. A similar method that does not consider
uncertainty or model-based techniques is used in Ling
and Lemmon (2004) called the uncertain set evolution
method. Namely, at transmission time tk, the encoder
partitions the hyper-parallelogram R�

k , containing the
plant state x(tk) into 2N smaller hyper-parallelograms
and sends the decoder the symbol identifying the
partition Rk that contains the plant state. The
controller then uses the center ck of Rk to update
the plant model generates the control signal using the
plant model until time t�kþ1. At this point, both
encoder and decoder calculate a new hyper-
parallelogram R�

kþ1 that should contain the plant
state by evolving or propagating forward the initial
region Rk. The process is then repeated. Stability will
be ensured if the radius and center of the hyper-
parallelograms converge to zero with time. We will
show now how the hyper-parallelogram R�

kþ1 is
obtained from Rk.

Assume that the plant model matrix Â 2 Rnxn has
n distinct unstable eigenvalues l1,l2, . . . , ln with n
corresponding linearly independent normalized
eigenvectors v1, v2, . . . , vn 2 Rn. We will also assume
that at t¼ 0 both encoder and decoder agree upon a
hyper-parallelogram R0 containing the initial state

Figure 9. Plant and Model state time response for q2.
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of the plant. Denote a hyper-parallelogram as the
(nþ 1)-tuple where c is the center of the hyper-
parallelogram and �i are its axis. In particular

Rðc, �1, �2, . . . , �nÞ ¼

(
x 2 Rn,

Xn
i¼1

�i�i ¼ x� c,

where �i 2 Rn, �i 2 �1, 1½ �,

and c 2 Rn

)
:

Let each hyper-parallelogram Rk with center ck be
defined as follows:

RK ¼ Rðck, �k, 1, �k, 2, . . . , �k, nÞ ð22Þ

where

�k, i ¼ bk, ivi and bk, i 2 R:

Therefore it can be easily verified that according to the
plant dynamics the region Rk evolves into a hyper-
parallelogram R

p
kþ1 defined by

R
p
kþ1 ¼ R c

p
kþ1, �

p
kþ1, 1, �

p
kþ1, 2, . . . , �

p
kþ1, n

� �
with �pkþ1, i ¼ eAh�k, i

ð23aÞ

and

c
p
kþ1 ¼ eAh þ

Z h

0

eAðh�sÞBKeðÂþB̂KÞsds

� �
ck: ð23bÞ

Correspondingly, according to the plant model
dynamics the hyper-parallelogram Rk should evolve
into a different hyper-parallelogram Rm

kþ1

Rm
kþ1 ¼ R cmkþ1, �

m
kþ1, 1, �

m
kþ1, 2, . . . , �

m
kþ1, n

� �
with �mkþ1, i ¼ elih�k, i,

and cmkþ1 ¼ eðÂþB̂KÞhck:

ð24Þ

According to equation (24) the hyper-parallelogram
Rm

kþ1 has edges that are parallel to those of the
original hyper-parallelogram Rk but are longer by a
factor of el,h for each corresponding edge. Also the
center of the parallelogram has shifted. Note that
the hyper-parallelogram Rm

kþ1doesnot necessarily con-
tain the plant state. We will now express R

p
kþ1 in terms of

the parameters of Rm
kþ1. By replacing h by t and using

Laplace transforms the expressions in (23) can be
easily manipulated

eAh �!
L

ðsI� AÞ�1

¼ ðsI� AÞ�1
ðsI� ÂÞðsI� ÂÞ�1

¼ ðIþ ðsI� AÞ�1 ~AÞðsI� ÂÞ�1

¼ ðsI� ÂÞ�1
þ ðsI� AÞ�1 ~AðsI� ÂÞ�1

�!
L�1

eÂh þ

Z h

0

eAðh�sÞ ~AeÂsds

and

eAh þ

Z h

0

eAðh�sÞBKeðÂþB̂KÞsds

�!
L

ðsI� AÞ�1
þ ðsI� AÞ�1BKðsI� ðÂþ B̂KÞÞ�1

¼ ðsI� AÞ�1
ðsI� Âþ ~BKÞðsI� ðÂþ B̂KÞÞ�1

¼ ðsI� ðÂþ B̂KÞÞ�1
þ ðsI� AÞ�1

ð ~Aþ ~BKÞ

� ðsI� ðÂ� B̂KÞÞ�1

�!
L�1

eðÂþB̂KÞh þ

Z h

0

eAðh�sÞð ~Aþ ~BKÞeðÂþB̂KÞsds: ð25Þ

Therefore the parameters of R
p
kþ1 can be expressed in

terms of the parameters of Rm
kþ1

�pkþ1, i ¼ eAh�k, i¼ eÂh þ

Z h

0

eAðh�sÞ ~AeÂsds

� �
�k, i

¼ eÂhbk, ivi þ

Z h

0

eAðh�sÞ ~AeÂsds

� �
�k, i

¼ elih�k, i þ��ðhÞ�k, i

¼ �mkþ1, i þ��ðhÞ�k, i

c
p
kþ1 ¼ eAh þ

Z h

0

eAðh�sÞBKeðÂþB̂KÞsds

� �

ck ¼ eðÂþB̂KÞh þ

Z h

0

eAðh�sÞð ~Aþ ~BKÞeðÂþB̂KÞsds

� �
ck

¼ eðÂþB̂KÞhck þ

Z h

0

eAðh�sÞð ~Aþ ~BKÞeðÂþB̂KÞsds

� �
ck

¼ cmkþ1 þ�cðhÞck: ð26Þ

Note that the matrices �c(h) and ��(h) can be calculated
as follows:

�cðhÞ ¼ ½ I 0 �e

A ~Aþ ~BK

0 ÂþB̂K

� �
h

� �
0

I

� �
,

��ðhÞ ¼ ½ I 0 �e

A ~A

0 Â

� �
h

� �
0

I

� �
: ð27Þ
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Since matrices �c(h) and ��(h) are unknown, the
hyper-parallelogram R

p
kþ1 cannot be constructed.

Instead we will use the expressions in equation (26)
and the bounds over the norms of �c(h) and ��(h) to
construct a hyper-parallelogram that will contain the
plant state, i.e., it will contain R

p
kþ1. This is depicted in

figure 10.

R�
kþ1 ¼ R c�kþ1, �

�
kþ1, 1, �

�
kþ1, 2, . . . , �

�
kþ1, n

� �

with ��kþ1, i ¼ 1þ �� �cðhÞð Þjjckjj
�

jj�mkþ1, ijj

 

þ ��ð��ðhÞÞjj�k, ijj
�

jj�mkþ1, ijj

!
�mkþ1, i

and c�kþ1 ¼ cmkþ1, ð28Þ

where

� ¼ 1=det ½v1v2 . . . vn�ð Þ, jjvijj ¼ 1:

Note that bounds over ��ð�cðhÞÞ and ��ð��ðhÞÞ can be
obtained based on the norms over the error matrices Ã
and ~B. Note also that R�

kþ1 is a hyper-parallelogram with
edges larger but parallel to those of Rm

kþ1. At this time
the encoder will divide R�

kþ1 into smaller parallelograms
and transmits to the decoder the symbol that identifies
the one that contains the plant state Rkþ1. And the
process repeats itself again. This process is depicted
below, also see figure 11

R�
k �!

encoder
Rk �!

plant

h seconds
R�

kþ1 �!
encoder

Rkþ1: ð29Þ

In figure 11 the term dk represents the displacement of
the center of Rkþ1 with respect to the center of R�

kþ1. We
will now establish the relationship between the evolution
of the hyper-parallelograms parameters and stability.
Define the radius of the hyper-parallelogram Rk with
center ck

lmaxðRkÞ ¼ sup
x 2 Rk

jjx� ckjj: ð30Þ

It is clear that in order to ensure the stability of the
system we require that the center and radius of the
hyper-parallelograms must converge to zero with time.
As a matter of fact, for stability, only the radius of the
hyper-parallelograms Rk is relevant. This is stated in
Theorem 4.

Theorem 4: Assume that state feedback NCS without
quantization is asymptotically stable then the NCS with
dynamical quantization is asymptotically stable if and
only if

lim
k!1

lmaxðRkÞ ¼ 0: ð31Þ

Proof: Sufficiency: We know that limk!1 lmaxðRkÞ ¼ 0
implies that the quantization error at each sampling time
also converges to zero: limk!1 eðtkÞ ¼ 0. Also, it can be
proved, as in equation (4), that

xðtkþ1Þ ¼ x t�kþ1

� �
¼ eðÂþB̂KÞh þ�cðhÞ
� �

xðtkÞ þ ðeAh ��cðhÞÞeðtkÞ

¼ MxðtkÞ þNeðtkÞ: ð32Þ

Since the NCS without quantization is stable the matrix
M is Schur stable, therefore is it is clear that if the
quantization error converges to zero then the sequence
of states x(tk) also converges to zero. Note that since the
plant is an LTI plant, the fact that the sequence x(tk)
converges to zero ensures that plant state will also
converge to zero.

Necessity: In order to ensure that there is no non zero
sequence of e(k) that can drive the plant state to zero
and keep it there we just need to prove that the matrix N
has full rank. This is readily observed from the way N
can be computed

N ¼ eAh ��cðhÞ ¼ ½ I 0 �e

A ~Aþ ~BK

0 ÂþB̂K

� �
h I

I

� �
: ð33Þ

From equation (33) it can be observed that the left most
matrix isolates the two upper blocks of the exponential,

Figure 10. Construction of hyper-parallelogram R�
kþ1

from Rm
kþ1.

Figure 11. Evolution of quantized regions.
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since the exponential matrix has rank 2n, the isolated
matrix (of size n�2n) should have rank n. Therefore, any
non zero error vector multiplied by N will yield a non
zero vector. œ

Remarks: Assume that in order to generate the
hyper-parallelograms Rkþ1 each edge of the hyper-
parallelogram R�

kþ1 is divided in equal Qi parts. Note
that all the Qi must be powers of 2, that is Qi ¼ 2bi where
bi represent the number of bits assigned to each axis. The
resulting bit rate is BitRate ¼

Pn
i¼1 bi

� �
=H. We can now

present a sufficient condition for stability of MB-NCS
under the described dynamic quantization.

Theorem 5: The state feedback MB-NCS using the
dynamic quantization described in (29) is globally
asymptotically stable if the following conditions are
satisfied:

(1) The non-quantized MB-NCS is stable.
(2) The test matrix T has all its eigenvalues inside the

unit circle.

where

T ¼
T11a þ T11b T12

T21 T22

� �

with T11a ¼ diag
el1h þ ��ð��ðhÞÞ�

Q1

� �
,

�

. . . ,
elnh þ ��ð��ðhÞÞ�

Qn

� ��
,

T11b ¼

Q1 � 1

Q1

� �
. . .

Qn � 1

Qn

� �
: :

Q1 � 1

Q1

� �
. . .

Qn � 1

Qn

� �
2
66664

3
77775 ��ð�cðhÞÞ�,

T12 ¼

��ð�cðhÞÞ�

:

��ð�cðhÞÞ�

2
64

3
75,

T21‘ ¼
Q1 � 1

Q1

� �
. . .

Qn � 1

Qn

� �� �
�� eðÂþB̂KÞh
� �

,

T22 ¼ ��ðeðÂþB̂KÞhÞ ð34Þ

Proof: In order to characterize the evolution of the
hyper-parallelograms it is convenient to establish
the relationship between the sizes of edges of R�

kþ1 and
the edges of R�

k

��kþ1, i

��� ��� ¼
elih þ ��ð��ðhÞÞ�

Qi

� �
��k, i

��� ���þ ��ð�cðhÞÞ�jjckjj

�
elih þ ��ð��ðhÞÞ�

Qi

� �
��k, i

��� ���
þ ��ð�cðhÞÞ� c�k

�� �� þ ��ð�cðhÞÞ�jjdkjj: ð35Þ

Equation (35) is a scalar discrete linear system. It is
dependent on c�k

�� ��. The evolution of ck is given below

c�kþ1 ¼ eðÂþB̂KÞhck ¼ eðÂþB̂KÞhc�k þ eðÂþB̂KÞhdk: ð36Þ

The term kdkk is bounded by

jjdkjj �
XN
i¼1

��kþ1, i

��� ��� Qi � 1

Qi

� �� �
: ð37Þ

We will now bound jjc�k jj

c�kþ1

�� �� � �� eðÂþB̂KÞh
� �

c�k
�� ��

þ �� eðÂþB̂KÞh
� �XN

i¼1

��kþ1, i

��� ��� Qi � 1

Qi

� �� �
: ð38Þ

From (35), (37) and (38) it is clear that stability is
guaranteed if T has its eigenvalues inside the unit circle.

Remarks: Note that if the plant model is exact, ~A ¼ 0
and ~B ¼ 0, then �c(h)¼ 0 and ��(h)¼ 0. This implies
that if ��ðeðÂþB̂KÞhÞ < 1 then stability is guaranteed
provided that maxiðe

lih=QiÞ < 1 which is a well-
established result (Nair and Evans 2000a, b). In order
to enforce the condition that ��ðeðÂþB̂KÞhÞ < 1 it is
convenient to apply a similarity transformation that
diagonalizes Âþ B̂K. In order to obtain a value of
��ðeðÂþB̂KÞhÞ that is close to the magnitude of the
maximum eigenvalue of eðÂþB̂KÞh.

Next an example is presented, This example depicts the
way a MB-NCS can be designed, namely first a non-
quantized MB-NCS is designed and then a suitable
quantization scheme is added and tested for stability.

Example 3: Consider the plant described by the
following matrices:

A ¼
0 1
a21 0:5

� �
B ¼

0:1
0:2

� �
, ð39Þ

where a11 2 �0:01, 0:01½ � represents the uncertainty in
the A matrix. Let the plant model be the nominal plant,
that is

Â ¼
0 1
0 0:5

� �
B̂ ¼

0:1
0:2

� �
: ð40Þ

A feedback gain K¼ [�3.3333 �8.3333] is selected so
to place the eigenvalues of the plant model at (�0.5,�1).
An update time of h¼ 1 sec is used. To reduce
conservativeness, the following similarity transforma-
tion that diagonalizes Âþ B̂K is applied to the system

xnew ¼ Px, where P ¼
1:8856 0:4714

1:3744 1:3744

� �
: ð41Þ

Finally, the quantized levels are defined as n1¼ 1 bit and
n2¼ 2 bits for the eigenvectors corresponding to the
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eigenvalues at �0.5 and �1 respectively. Note the need
for more bits for faster eigenvalues. The bounds for the
norms of the uncertainty matrices are calculated in the
transformed space by searching along the parameter a21;
they are as follows:

��ð�cðhÞÞ � 0:1354, ��ð��ðhÞÞ � 0:0961 ð42Þ

The maximum eigenvalue for the test matrix T is 0.9531
indicating that the quantized system is stable. Next a

simulation of the system is presented. In this simulation
the parameter a21 is chosen to be 0.0034, the starting
region to have a center [2–3]T, with edges of length 1;
the plant state is placed randomly within this region.
The plots are in the non-transformed original space
(figures 12–14).

In this example we use a simple plant and controller
to show how the design technique is used. Note that
the complexity of the calculations involved depends
on the number of states in the plant. Note that the

Figure 12. Plant state.

Figure 13. Plant model state.
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calculations used to determine the stability of a
particular system are performed off-line. In contrast
the calculations used to quantize the plant state vector
are done on-line. For these on-line calculations, the
proposed scheme carries a similar computational inten-
sity to that of dynamic quantizers without MB-NCS
with the addition of the computations shown in (28) and
the model simulation.

5. Conclusions

Sufficient conditions for the stability of quantized
MB-NCS were presented. These results consider three
different types of quantizers. The quantizers studied
relate to popular data representation models. In
particular, the uniform quantizer is related to fixed-
point number representations, while the logarithmic
quantizer is related to the floating-point representation.
The results although conservative provide a way to
relate the effects of uncertainty, model update times, and
non-networked control robustness to system stability.
A third more complex quantizer based on traditional
dynamic quantization was also introduced; the dynamic
quantizer uses an integral representation of the data in
an adaptive manner. That is, the data transmitted
represents an area within a region where the state of
the plant is known to be. The regions evolve according
to plant model and the uncertainties bound over the
model parameters. It was shown that if the uncertainties
are eliminated, the minimum data rate needed for
stability coincides with the well-known minimal
theoretical rate for stability (Nair and Evans 2000a).

While the computations required to verify stability can
be complex, the calculations performed by the quantizer
are similar in nature to those performed by dynamic
quantizers that do not consider uncertainty. An
important feature of the paper is that the results show
explicitly the dependence on several design parameters
such as modelling error, quantization parameters,
measures of robustness.
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