
neclab: The Network Embedded Control Lab

Nicholas Kottenstette and Panos J. Antsaklis
�

Department of Electrical Engineering
University of Notre Dame
Notre Dame, IN 46556 USA�
nkottens,antsaklis.1 � @nd.edu

Abstract — The network embedded control lab, neclab, is a software environment
designed to allow easy deployment of networked embedded control systems, in par-
ticular wireless networked embedded control systems (wnecs). A wnecs is a collec-
tion of interconnected plant sensors, digital controllers, and plant actuators which
communicate with each other over wireless channels. In this paper neclab is intro-
duced and explained using a simple ball and beam control application. We focus on
wnecs which use the MICA2 Motes.

1 Introduction

Typically, when a controls engineer needs to develop a new closed-loop control sys-
tem she develops the control system in phases. The first phase is to develop a math-
ematical model of the system and synthesize a controller. The second phase is to
simulate the control system using tools such as MATLAB [23]. In the third phase,
using the results from the simulations, the engineer integrates sensors, actuators, re-
mote data acquisition and control equipment into the system. This is done in order
to acquire additional data and refine the models in order to optimize the controller.
When the third phase is complete, the engineer has optimized and deployed a robust
control system. Systems with a higher degree of autonomy will also have fault de-
tection and remote monitoring systems. Typically these digital control systems are
developed using a dedicated data acquisition system attached to a cable interfaced
to a computer running a real-time-control software, such as RTLinux [1]. For con-
trol systems in which a wired control system is not possible or desired, the available
design tools for the engineer are limited at best.

In this paper, a software environment is introduced called neclab, that is a
software environment designed to allow easy deployment of networked embedded
control systems, in particular wireless networked embedded control systems called
wnecs. The components of neclab are presented in the following and described in
terms of a classical control experiment, the ball and beam.

Nicholas Kottenstette, Panos J. Antsaklis, “neclab: The Network Embedded Control Lab,” Networked
Embedded Sensing and Control, Proceedings of Workshop NESC’05: University of Notre Dame, USA, October
17-18, 2005, Panos Antsaklis and Paulo Tabuada (Eds.), Lecture Notes in Control and Information Sciences
(LNCIS) 331, pp. 107-126, Springer 2006.

2 Nicholas Kottenstette and Panos J. Antsaklis

Note that most of the tools currently available to aid the engineer develop soft-
ware for wireless embedded systems are geared specifically for sensing. The ma-
jority uses Berkley’s TinyOS [2]. Note also that the majority of the TinyOS appli-
cations listed in [2], are not designed to be wirelessly reconfigurable. For example,
one reconfigurable system which uses TinyOS is Harvard’s moteLab [3], where each
mote is connected to a dedicated programming board that is connected to an Eth-
ernet cable. This is necessary in order for each mote to be reconfigured in order to
use TinyOS. A reliable protocol, called Deluge, to enable wireless programming of
TinyOS applications has been developed [4]. Deluge is currently part of the TinyOS
development tree, and should be an integral part of the next stable release of TinyOS.

We considered Deluge but in view of our sensor and control applications of inter-
est we decided to work with an alternative to the TinyOS operating system called SOS
[16]. SOS offered an alternative working design for network reprogramming for the
three following reasons. First the SOS operating system utilizes a basic kernel which
should only have to be installed on the mote once. The second key element is that
the SOS kernel supports small, typically one-twentieth the size of a TinyOS applica-
tion, dynamically loadable modules over a network. Last, the SOS kernel supports a
robust routing protocol, similar to MOAP [5], to distribute modules over a wireless
network.

We built neclab, our networked embedded control system software environment
using SOS. Specifically, neclab is a collection of software consisting of five main
components. The first component, build utilities, is a set of utilities designed to build
and download all required software tools and libraries in order to use neclab. The
second component, SOS, is an operating system developed by the Networked and
Embedded Systems Lab (NESL) at UCLA. SOS is a highly modular operating sys-
tem built around a message passing interface (MPI) which supports various processor
architectures, including those on the MICA2 Motes. The third component, sos utili-
ties, are the utilities to facilitate code development and deployment of SOS modules.
The fourth component, necroot, is a file system structure and language designed to
seamlessly interconnect individual motes for distributed control. The fifth compo-
nent, FreeMat utilities, are a set of utilities to facilitate wnecs design using FreeMat.
FreeMat is a free interpreter similar to MATLAB but has two important advantages.
First, FreeMat supplies a direct interface for C, C++, and FORTRAN code. Second,
FreeMat has a built-in API for MPI similar to MatlabMPI [6].

neclab provides a mini-language built on facilities similar to those supported by
UNIX. A modern UNIX OS supports facilities such as pipes, sockets and filters.
neclab allows the engineer to develop a wnecs by designing control modules which
can be interconnected using networking message pipes. A networking message pipe
is an abstraction to pass arrays of structured binary data from one module to an-
other over a network. A networking message type indicates how the data should be
handled, for example, descriptors are used to indicate standard, error, routing, and
control messages which are passed over a network; e.g. control messages are indi-
cated by the control message type.

Specifically, a networking message pipe is used to interconnect data flows be-
tween networking sources, networking filters, and networking sinks. A networking

neclab: The Network Embedded Control Lab 3

source creates data which will be sent over a network to networking filters, and
networking sinks. Similarly, a networking filter will receive data from either a net-
working source or another networking filter. The networking filter will proceed to
optionally modify the data and send the new data to another networking filter or net-
working sink. A networking sink is where the network data flow for a given route
ends. In order to implement networking message pipes we will use the network mes-
sage passing protocol provided by SOS. Like UNIX, SOS provides a way to run and
halt programs which have a corresponding process id. These executable programs on
SOS are known as modules. neclab provides an interface to pass networking config-
uration messages to a module in order to configure and enable the network flow of
data between modules in the wnecs at run-time.

Using these facilities we will demonstrate an implementation of a highly parallel
wnecs in which a secondary controller is reconfigured, while the primary controller
maintains a stable control-loop. Once reconfigured, the roles of the two controllers
will be switched. Other, highlights will illustrate that a controls engineer can actually
create concise routing tables by simply describing a wnecs with neclab. This is a
natural result of wnecs in general.

neclab’s use of SOS’s dynamic memory allocation services, easily allows for a
system which enables a control engineer to work through the second and third phases
of her design project. This highly configurable environment without wires would
have been difficult to implement with TinyOS since TinyOS does not support dy-
namic memory management. SOS on the other hand does. Other SOS features which
neclab utilized are the ability to dynamically share functions and load executable
files (modules) over a wireless channel while the SOS kernel is still running. SOS
implies flexibility, and as a result it was chosen as the core component to neclab. For
a more detailed discussion on the advantages and differences of SOS as compared
to other solutions, refer to [7]. neclab is not the first project to utilize SOS. Other
projects such as Yale’s XYZ Sensor Node project [8] and various projects at NESL
are starting to use SOS such as the RAGOBOT [9].

In presenting neclab, we will illustrate its use by presenting a typical undergradu-
ate control lab problem modified to be a wnecs. We will then generalize this problem,
by describing a tutorial application, which a user can create if five MICA2 Motes and
a programming board are available. As the tutorial application is described we will
highlight the various components of neclab which highlight the many issues that
have to be addressed in order to develop a robust wnecs.

2 Problem Description

Consider an undergraduate controls laboratory experiment that teaches a student how
to control the position of a metal ball on a beam. The experiment uses a motor as
an actuator, and two variable Wheatstone bridges for sensing. The bridges measure
angular position of the motor, and the absolute position of the ball on the beam.
In the first laboratory experiment, the students are required to determine the actual
model parameters of the ball and beam plant [10]. The next lab [11] teaches the

4 Nicholas Kottenstette and Panos J. Antsaklis

student how to control the exact position of the ball on the beam. The student designs
and implements the control system using MATLAB, Simulink [23], and the Wincon
server for real-time control [12]. The sensor inputs and outputs are accessible through
the MultiQ board. We are going to replace this system using neclab, the MICA2
motes and a general purpose I/O boards developed for the MICAbot [13].

Figure 1 illustrates such a system. With neclab installed on a host computer a
MICA2 N gateway mote is typically accessed via a serial port. Figure 1 indicates
that MICA2 N gateway is interconnected to a MIB510 programming board. See
[14] for additional details on the MIB510. In order to control the ball and beam
plant the following control loops (jobs) need to be implemented (spawned). First
the MICA2 N actuator needs to reliably control the angular position � of the beam.
This is achieved by controlling the angular position ��� of the motor. The actuator
will receive a desired angular position set-point and will control the motor. In net-
working terms, the MICA2 N actuator behaves as a networking sink for networking
messages, and takes actions based on the messages sent to its control standard in-
put. According to [11] the desired response time for controlling � should be around
0.5 seconds. This is a fairly aggressive target to meet for the low data rate wireless
network control system. As a result, we have initially kept this control loop internal
to the MICA2 N actuator. In order to do this we link this code statically to the ker-
nel in order to guarantee a stable control loop on start-up. The second control loop
involving the actual position of the ball, requires around a 4 second settling time,
which is reasonable to implement over the wireless channel. This loop is accom-
plished by MICA2 N sensor sampling data from the ball position sensor output with
the ATmega 128L built-in 10 bit A/D converter (see [15] for additional information
on this chip’s features). The MICA2 N sensor behaves as a networking source for
generating networking messages, sending its data along to MICA2 N controller-A
and MICA2 N controller-B respectively. Depending on which controller is enabled,
the enabled controller will behave as a networking filter by calculating an appro-
priate command to send to MICA2 N actuator based on the users desired set-point
received. Figure 2, illustrates how this system can be implemented using SOS mod-
ules and messages which we will refer to as we discuss neclab.

3 neclab

Looking at figure 2, one can appreciate the number of distinct software components
required for an engineer to obtain a working wnecs. In this figure the engineer has
successfully built and installed kernels on five motes, loaded all the required modules
on to the network, and created routing tables in order to create a stable closed loop
controller to monitor and maintain the position of the ball. In order to use neclab
the engineer must first download the 1.x version of SOS to a unix based PC. The
location SOS is installed will be referred to as SOSROOT; neclab will be in the
SOSROOT/contrib/neclab directory which will be referred to as NECLABROOT.
From there all the engineer needs to do is follow the instructions in the NECLAB-
ROOT/README SOS-1.X file. The first task that neclab will do for the user is

neclab: The Network Embedded Control Lab 5

download, build and install all the necessary tools to build and install software on
the MICA2 motes so to work with the FreeMat environment. Once the tools are
installed, neclab will apply some minor patches in order to fully utilize the SOS soft-
ware. From there the engineer should test and fully understand the example blink lab.
The blink lab is discussed in Appendix A.

3.1 build utilities

neclab has been designed so that a user does not require root access to build and
install her tools. This offers two distinct advantages, the first being that the user can
modify any appropriate component that is needed to maximize the performance of
the system. For example, neclab actually downloads and allows the user to build an
optimized BLAS (Basic Linear Algebra Subprograms) library using ATLAS (Au-
tomatically Tuned Linear Algebra Software) [17]. Second it provides all users with
a consistent tool-kit eliminating potential software bugs associated with not using a
consistent tool-chain. The key tool used is the build tool makefiles program which
reads a configuration file located in NECLABROOT/etc/build.conf and generates a
custom makefile for all the following tools:
� perl – key tool for various utilities in neclab [18]� avr-binutils – used for the MICA2 and MICAz motes [19]� avr-gcc – used for the MICA2 and MICAz motes [20]� avr-libc – used for the MICA2 and MICAz motes [21]� ATLAS – used with FreeMat[17]� FreeMat [22]� uisp – used to load an image on to the MICA2 and MICAz motes [24]� tcl – (Tool Command Language) required for the tk library [25]� tk – graphical user interface toolkit library required for python [25]� python – [26] used in conjunction with pexpect [27] for automation� SWIG – [28] is a tool to connect programs written in C and C++ with high-level

programming languages such as perl and python.

The auto-generated makefiles are then installed in each corresponding NECLAB-
ROOT/src/build utilities/ �
	��
�
��� directory and invoked to download, build and
install each ��	��
�
��� . The installation directory is in NECLABROOT/tools/. As a
result any user can build and use her own tools, without having to ask the system
administrator for permission!

3.2 SOS, and sos utilities

Referring back to Figure 2, on the local host PC (HOST PC), the engineer has
just finished creating a wnecs using the neclab run tool provided by neclab. Each
mote has a kernel; however, they do not have to be unique, as is clearly shown in
Figure 2. For example, the MICA2 N gateway mote has the sosbase kernel which
has a statically linked module which we will refer to by it’s process id SOS-
BASE PID. Other motes such as MICA2 N sensor, MICA2 N controller-A, and

6 Nicholas Kottenstette and Panos J. Antsaklis

MICA2 N controller-B have a blank sos kernel with no statically linked modules.
Finally the MICA2 N actuator has a custom kernel, custom sos, with statically
linked modules ANG POS SEN PID (a module which manages the angular posi-
tion sensor), and MOT ACT PID (a module which controls the angular position on
the motor). The custom sos kernel was required to generate a pwm output in order
to drive the H-Bridge on the MICAbot board. The remaining modules which are dy-
namically loaded and unloaded over the network, are either in an active or inactive
state. When in an inactive state they do not consume any additional processor RAM
but do take up program space in the flash.

In order to load and unload the modules the following programs are required.
First, the sos server, sossrv, needs to be built, installed and started. neclab manages
this with the makerules and neclab � sim,run � commands. The makerules first man-
age building and installing sossrv into NECLABROOT/tools/bin. The neclab � sim,run �
commands can be used either to begin a simulation of a wnecs with the neclab sim
command or to run a wnecs using the neclab run command. Either command can be
treated as equivalent for discussion. The neclab run command starts the sossrv and
connects it to the MICA2 N gateway mote. Figure 2 indicates that sossrv is listening
for clients on HOST PC via the loop-back interface on port 7915 while listening for
incoming packets filtered through the MICA2 N gateway attached to /dev/ttyS0.

Next the neclab run tool creates an input fifo and starts the SOS modd gw client.
The modd gw client is an SOS application that runs natively on a PC, it provides a
shell like interface in which user input can be redirected to the fifo for automation.
The modd gw client maintains a database file .mod version db local to where it is
started. This database tracks the different dynamic modules which are loaded and
unloaded from the network. If another engineer chose to use the same motes in the
lab, they will either need access to this file or re-install new kernels on all the motes.
As a result neclab makes sure that the modd gw is started such that the database is
located in a publicly accessible directory such as /tmp so others can access and run
their own experiments. The neclab run tool then proceeds to build all the required
network modules, load them on to the network, and establish the networking routes
for the control system. Lastly, the closed loop control system is enabled and can be
monitored and modified as necessary.

Another tool neclab provides is the create module proto tool to generate a new
module prototype for beginning development. neclab has built into its makerules a
mechanisms to generate tags files to assist in tracking all the interrelationships that
modules have with the kernel and other modules. Once the engineer has a satisfactory
implementation she can use the appropriate options from the neclab run tool to easily
rebuild and re-install new module images as necessary. These tools provide a stream-
lined mechanism for simulating and generating wnecs. Building off of SOS’s novel
technique of tracking module version numbers as they are dynamically loaded and
unloaded. neclab has created a file-structure known as necroot to track, simulate, and
develop wnecs.

neclab: The Network Embedded Control Lab 7

3.3 necroot

Modules are tracked by their process id, similar to a process id generated by the ps
command on a unix machine. This id is actually used to direct messages which are
passed on an SOS network. Every message passed on the SOS network has a corre-
sponding destination process id and address. The process id field; however, is only
8 bits, which supports only 255 unique process ids. Clearly more than 255 unique
modules will be developed to be run on the SOS operating system, so there needs to
be a clean way to address this limitation. SOS uses two files to define the association
of a process id with a given module, mod pid.h and mod pid.c. The gen mod pid
tool combined with makerules and the necroot design allow for dynamic generation
of mod pid.h and mod pid.c for a corresponding lab project.

In necroot the NECLABROOT/src/necroot/modules.conf provides a line by line
list in which each entry consists of a full-path to a corresponding module and a short
description of the module. Each item is delimited by a colon. The module process id
is parsed directly from each modules.conf entry and added to mod pid.h. The cor-
responding description is then added to mod pid.c for simulation and debugging.
Furthermore, static modules and modules to be loaded over the network are uniquely
identified by grouping these modules between the ����	���	�������� �"!�� 	��#	������ , and
�%$'&(�)*�,+.-/��� �0!
$'&�	�)��,+
-/� tags respectively. The modules.conf is to serve as a
global file, in it the key modules for neclab are listed. These entries include the mod-
uled pc module (MOD D PC PID) and neclab’s configuring module (CONFIGUR-
ING PID). The moduled pc module, is a statically linked module which runs on the
modd gw client. The configuring module provides an interface for creating network-
ing sources, networking sinks and networking filters. It also provides the interface to
configure modules and enable the control standard input/control standard output net-
working design referred to in the introduction. The remaining modules are identified
in the engineer’s NECLABROOT/labs/ball beam lab/etc/modules.conf.local file.

The next issue is to create a design which would allow a user to easily manage
programming and tracking each corresponding mote’s kernel and module configura-
tion. This is solved by the construction of the NECLABROOT/src/necroot/etc/network.conf
and the corresponding
NECLABROOT/labs/ball beam lab/etc/network.conf.local files. Each entry follows
nearly the same language structure as the build.conf file described in the build utili-
ties section. The only difference instead of identifying a tool, each entry describes a
mote and all the properties local to that mote. Using the build mote makefiles tool, a
custom makefile for each mote described in the network configuration files is gener-
ated. Then the necroot directory structure is generated in the ball beam lab directory.
Furthermore the engineer can use neclab run with the appropriate options to build
and install the corresponding kernel on to her motes. For reference, a typical net-
work.conf entry for a mote is as follows:

<mote>
SOS_GROUP = 13
ADDRESS = 2
NECLAB_PLATFORM = mica2

8 Nicholas Kottenstette and Panos J. Antsaklis

KERNEL_DIR = ${NECLABROOT}/src/patched_sos-1.x/sosbase #$
X = 6
Y = -12
Z = 5
LOC_UNIT = UNIT_FEET
TX_POWER = 255
#CHANNEL = ? has no effect for mica2
</mote>

The configuration language is GNU Make combined with some XML-like tags to
separate each mote entry. Although, not true for mobile motes, each non-mobile
mote has a fixed location. This information is typically used for geographic routing
protocols, such as those implemented on Yale’s XYZ platform. SOS has built in the
capability to track the location of each mote into its kernel; hence, the X, Y, Z, and
LOC UNIT entries. The neclab project assisted in this design by introducing the Z
dimension, a LOC UNIT to associate relative position with a given dimension, and
a gps loc variable to track GPS location information. The gateway mote should typ-
ically assign itself a GPS location in order to assist with routing and interconnecting
of other laboratories around the globe. Presently, gps loc maintains precision down
to one second. A sample GPS entry, here at Notre Dame would have the following
format (note the Z coordinate is an elevation relative to sea-level in feet).

GPS_X_DIR = WEST
GPS_X_DEG = 86
GPS_X_MIN = 14
GPS_X_SEC = 20
GPS_Y_DIR = NORTH
GPS_Y_DEG = 41
GPS_Y_MIN = 41
GPS_Y_SEC = 50
GPS_Z_UNIT = UNIT_FEET
GPS_Z = 780

Note, each platform that SOS supports has a wireless radio setting unique to each
mote. In the above sample the radio was set to full power. neclab is also working on
formalizing the interface to modify the frequency and channel of the radio. As the
comment notes, the MICA2 mote does not currently support the channel interface;
however, the MICAz mote does. The other parameters such as the SOS GROUP id
is used to filter radio packets out in the network that do not belong to that particular
group. Each mote entry should have a unique, (SOS GROUP, ADDRESS) pair. Being
able to group motes and designate different channels, provides one way to allow
multiple laboratories to interact and perform co-operative tasks.

For example, the ball and beam lab, can be modified to simulate the transfer of
one ball from one station to another, as might be done in transferring parts from
one assembly cell to another. Furthermore, by building in the ability to group the
motes and assign each group to a separate radio channel, we have created a mecha-
nism to create groups which can co-operate without worrying about generating radio

neclab: The Network Embedded Control Lab 9

interference. This feature we plan to exploit with the MICAz motes when develop-
ing routing algorithms between groups. The routing will be implemented between
the gateway motes of a group. The gateway mote will typically be attached to their
respective HOST PC and the routing of packages will occur over the Internet.

Finally, the issue of declaring the desired kernel is addressed with the KER-
NEL DIR entry. The KERNEL DIR entry provides the full path to the desired kernel
to be loaded and built. Any modules that the engineer plans to statically link in her
kernel should be addressed in her respective kernel makefile.

After the engineer has successfully built her newly created necroot file structure,
the following root tree will result.

[user@host_pc ball_beam_lab]$ find ./ -name "mote*"
./root/group13/mote1
./root/group13/mote2
./root/group13/mote3
./root/group13/mote4
./root/group13/mote5
./root/group14/mote1
./root/group14/mote2
./root/group14/mote3
./root/group14/mote4
./root/group14/mote5
[user@host_pc ball_beam_lab]$

In each mote directory there is a module configuration file, corresponding to every
module identified in the corresponding modules.conf and modules.conf.local files.
These are used in conjunction with the configuring module to set module parameters
and set up routes in the network. Looking in the mote1 directory for example the
user will see the following additional files.

[user@host_pc ball_beam_lab]$ ls -1 root/group13/mote1/*.mod
root/group13/mote1/ball_beam_con.mod
root/group13/mote1/ball_pos_sen.mod
root/group13/mote1/configuring.mod
root/group13/mote1/moduled_pc.mod
root/group13/mote1/ang_pos_sen.mod
root/group13/mote1/mot_act.mod
[user@host_pc ball_beam_lab]$

These user editable files provide an interface in order to use the configuring module
to create routes. These routes can be configured using the command line or can op-
tionally be declared in the routing.conf file. All lines starting with a # are comments.
What the following segment of routing.conf should illustrate is that we have created
a compact language to describe networking routes. The net source, net filter, and
net sink commands are intended to emphasize that a module will be configured to be
in one of those three states. The optional arguments such as –d � 0,1 � are to show that
the engineer can describe up to two destinations and the behavior is determined by

10 Nicholas Kottenstette and Panos J. Antsaklis

the respective –m � 0,1 � option which describes the networking message type for each
destination. This allows an engineer to redirect control data flow into error data flow
for monitoring for example. It should also be noted that although we are using the
necroot file system to maintain and describe our routes, an ad-hoc routing module
could be designed to utilize the configuring module interface in order to build arbi-
trary networking routes based on some metric. This language can further be utilized
to describe these routes using a graphical user interface.

The ball beam lab’s etc/routing.conf file is as follows:

#!/bin/sh
#routing.conf
#define some constants
TIMER_REPEAT=0;TIMER_ONE_SHOT=1
SLOW_TIMER_REPEAT=2;SLOW_TIMER_ONE_SHOT=3
MSG_STANDARD_IO=35;MSG_ERROR_IO=36
MSG_CONTROL_IO=37;MSG_ROUTING_IO=38
cd $NECLABROOT/labs/ball_beam_lab/root/group13
#Main control-loop
#MICA_2_N_sensor -> MICA_2_N_controller-A -> MICA_2_N_actuator
#Secondary control-route
#MICA_2_N_sensor -> MICA_2_N_controller-B
#Configure the MICA_2_N_sensor (mote2/ball_pos_sen) routes
net_source -m mote2/ball_pos_sen -t "$TIMER_REPEAT:1024" \

--d1=mote3/ball_beam_con --m1=$MSG_CONTROL_IO \
--d2=mote4/ball_beam_con --m2=$MSG_CONTROL_IO

#Configure MICA_2_N_controller-A (mote3/ball_beam_con) routes
net_filter -m mote3/ball_beam_con -t "$TIMER_REPEAT:2048" \

--d1=mote5/mot_act --m1=$MSG_CONTROL_IO \
--d2=mote1/moduled_pc --m2=$MSG_ERROR_IO

#Configure MICA_2_N_controller-B (mote4/ball_beam_con)
net_sink -m mote4/ball_beam_con -t "$TIMER_REPEAT:2048"
#Configure MICA_2_N_actuator (mote5/mot_act)
net_sink -m mote5/ball_beam_con -t "$TIMER_REPEAT:256"
#Activate the routes $
net_enable {mote5/mot_act,mote4/ball_beam_con}
net_enable {mote3/ball_beam_con,mote2/ball_pos_sen}

As shown in Figure 2, three routes are clearly established. One route establishes the
control loop from sensor to controller to actuator. A second route delivers sensor and
controller debugging information back to a gateway mote. A third route enables a
second controller to act as a slave. The ball-position-sensor module on mote2 is con-
figured as a networking source, generating a control standard input output message to
be sent to the ball-beam-controller module, on mote3 every second or 1024 counts.
The ball-beam-controller on mote3 is configured as a networking filter. As a net-
working filter it handles control standard input output messages from mote2’s ball-
position-sensor, computes the appropriate command and sends a control standard

neclab: The Network Embedded Control Lab 11

input output message to mote5’s motor-actuator module. Furthermore mote3’s ball-
beam-controller module will generate a debugging message destined for the gateway
mote1’s non-resident moduled pc module every two seconds. By sending informa-
tion to the gateway mote, neclab can support remote monitoring. The moduled pc
module was arbitrarily chosen to illustrate that an arbitrary non-resident module id
can be reserved in order to pass a message up to the sossrv program and a client can
be designed to handle and display this message on the engineers HOST PC display.
Terminating the control loop route as a networking sink, mote5’s motor-actuator,
handles control standard input output messages from mote3’s ball-beam-controller
and actuates the beam. The motor-actuator controls the angular position of the beam
and requires a faster control loop of a quarter of a second; hence, the timer is set to
256 counts.

3.4 FreeMat utilities

The FreeMat utilities will provide an interface for users familiar with MATLAB
to appropriately modify configuration parameters for neclab modules designed and
written in C. These utilities are currently the least developed for neclab; however, the
major design problems have been confronted. There were numerous obstacles which
had to be overcome in order to develop these utilities. The first accomplishment
was getting FreeMat to build and install. Second was to integrate ATLAS, so that the
engineer can have an optimized matrix library for simulation and development. Third
was to develop the configuring module to allow a higher level networking protocol
to be implemented in order to interconnect modules in a manner similar to the MPI
protocols identified in the introduction. Lastly, was identifying SWIG as a possible
candidate to assist with generating shared libraries to allow us to interface our SOS
modules with FreeMat. We have used SWIG to generate interface files and shared
libraries for python which we have used to create our initial graphical user interface
application. We have also used SWIG to interface to our configuring module and
do initial testing of the module. Although, FreeMat does provide a native interface
for C and C++ programs, we feel that learning to effectively use SWIG to handle
interfacing with SOS will allow a more flexible development environment in which
users of neclab can use whatever high-level software tools they desire to use.

The FreeMat utilities will allow an engineer to generate her own routing tables
while allowing users to receive and monitor data from modules using the FreeMat
client. The FreeMat client will connect to the sossrv and relay all data destined for the
FREEMAT MOD PID. Setting parameters and displaying data should be transparent
due to the configuring interface provided by the combined configuring module and
the data flash swapping interface provided by SOS. The configuring interface pro-
vides all the necessary elements for a module to establish up to two routes, configure
a timer and change up to 8 bytes of parameter data in the modules RAM. To handle
larger data-sizes the user can either rely on the larger SOS RAM memory block of
128 bytes. The difficulty is that there are only four 128 byte RAM blocks available
for the MICA2 and MICAz motes on SOS. The problem is further compounded in
that the radio requires at least one 128 byte block to receive an SOS message over the

12 Nicholas Kottenstette and Panos J. Antsaklis

network. In order to simultaneously send and receive a 128 byte message, a second
128 byte block of RAM needs to be allocated by the radio. This means that the user
essentially has only two 128 large blocks of RAM available for allocation and they
should be used for temporary operation such as being allocated to perform linear
algebra routines. The second option is to dedicate a section of internal flash memory
for storing configuration parameters and reading the configuration parameters into
the local stack during module run-time. This is a preferred option because swapping
in 256 bytes of data into the stack should only require around a tenth of a millisecond.
This is a feasible option as long as the engineer utilizes the co-operative scheduler
provided by SOS, and avoids interrupt service routines, and nested function calls
which require large amounts of the stacks memory.

Being able to effectively manage the RAM and stack will allow neclab to support
a much larger design space. For example, by gaining the ability to configure up to
256 bytes of data, the engineer can begin to develop four-by-four full-state observers.
The following sections of configuring.h illustrate both the networking configuration
and control standard input interface. The networking configuration is defined by
the configuring message type. The control standard input is handled using the stan-
dard io message t and indicated by the MSG CONTROL IO message id.

#define MSG_CONFIGURING MOD_MSG_START
#define MSG_CONFIGURING_ENABLE (MOD_MSG_START + 1)
#define MSG_CONFIGURING_DISABLE (MOD_MSG_START + 2)
/* #define MSG_*_IO */
#define MSG_STANDARD_IO (MOD_MSG_START + 3)
#define MSG_ERROR_IO (MOD_MSG_START + 4)
#define MSG_CONTROL_IO (MOD_MSG_START + 5)
#define MSG_ROUTING_IO (MOD_MSG_START + 6)
/* #define MSG_*_IO */
#define CONFIGURING_SOURCE (1<<0)
#define CONFIGURING_SINK (1<<1)
#define CONFIGURING_FILTER (1<<2)
#define CONFIGURING_ENABLED (1<<3)
#define CONFIGURING_CONFIGURED (1<<4)
#define CONFIGURING_RESERVED (1<<5)
#define CONFIGURING_TIMER_0_BIT_0 (1<<6)
#define CONFIGURING_TIMER_0_BIT_1 (1<<7)
#define CONFIGURING_TIMER_0 0
#define SIZE_OF_MULTI_HOP_PACKET SOS_MSG_HEADER_SIZE
#define SIZE_OF_MSG_SMALL_BLOCK (32)
#define SIZE_OF_MSG_LARGE_BLOCK (128)
typedef struct destination_type{

uint16_t daddr; /* Destination address */
sos_pid_t did; /* Destination pid */
uint8_t type; /* Message type to send */

} __attribute__ ((packed))

neclab: The Network Embedded Control Lab 13

destination_t;

#define CONFIGURING_N_DESTINATIONS 2
typedef struct configuring_type{

uint8_t flag; /* source, sink, etc. */
uint8_t size; /* Size of user data */
sos_pid_t pid; /* pid of user module */
uint8_t pad; /* pad for alignment */
/* destinations takes up to 8 bytes */
destination_t destinations[CONFIGURING_N_DESTINATIONS];
uint8_t data[8]; /* 8 bytes for user to store

user specific data */
} __attribute__ ((packed))
configuring_t;/* 20 bytes leaving 12 bytes for 6 function

pointers in the app_state_t structure
= 32 bytes = SIZE_OF_SMALL_BLOCKS
for the avr processor */

typedef struct configuring_message_type{
int32_t interval; /* The ticks/counts you want to place

for the timer if timer < 0 the
timer is disabled by definition! */

configuring_t conf;
} __attribute__ ((packed))
configuring_message_t; /* 24 byte packet leaving 8 bytes

(8 required) for multi-hop routing
worst case */

typedef enum {UINT8_T, INT8_T, UINT16_T, INT16_T,
UINT32_T, INT32_T, FLOAT_T,
USER_STRUCT_T} standard_io_types;

typedef struct standard_io_message_type{
/* Engineer can send a vector of data_types */
uint8_t data_r;
/* Engineer can send an array of structures

as long as the size_of is specified */
uint8_t data_size_of;
/* One of standard_io_types */
uint8_t data_type;
/* sid of sender of standard io message */
sos_pid_t sid;
uint8_t data[MAX_STANDARD_IO_LENGTH]; /*32-8-4=20*/

} __attribute__ ((packed))
standard_io_message_t;

14 Nicholas Kottenstette and Panos J. Antsaklis

Refer to the neclab documentation for additional details.

4 Conclusion

In developing neclab many challenging design issues were addressed and solved.
neclab first addressed the need to have a consistent tool chain, such as cross-
compilers, for the MICA2 motes. This design problem was solved using neclab’s
build utilities. The next design issue to be addressed was automating all the tasks
associated with loading software on to the MICA2 motes. This was addressed by
developing sos utilities. These utilities assisted in generating new modules, loading
modules on to the network, building and installing new kernels on to the MICA2
motes. The next design issue was to create a mechanism to track the type of ker-
nels and properties of each MICA2 mote on the network. This was accomplished,
using the necroot design. Building on the tools developed from build utilities, the
network.conf file provides a simple interface to manage each motes kernel, static-
modules, radio configuration, location, group, and address properties. Next by show-
ing a well-designed configuring module interface combined with necroot we demon-
strated an efficient way to establish routes using a routing.conf file. Finally, all these
components allow us to build a set of FreeMat utilities to enable control-engineers
to develop wnecs, using a MATLAB like interface.

Using the routing.conf file, we also illustrated how control systems naturally cre-
ate their own routes. The sensor is a networking source, creating a time-base for the
system and generating messages to be routed to either a networking filter, or network-
ing sink. The controller is a networking filter, receiving messages from the sensor,
modifying the data and sending an appropriate message to either a networking filter,
or networking sink. In the ball and beam example the controller sent a command
message to the motor actuator. The motor actuator behaved as a networking sink,
receiving the messages from either a networking source or networking filter and ap-
plied the appropriate input to the motor. We also showed in the ball and beam exam-
ple how by utilizing a redundant controller we can accomplish the reprogramming
on the fly. Specifically, the second controller, initially configured as a networking
sink, can be reconfigured with new control parameters and then switched to become
a networking filter while configuring the initial controller to be a networking sink.
This shows that if a control system requires extensive time to reconfigure itself, the
parallel architecture just described, can safely do so without having to risk having
the system go unstable. This is a valuable feature, which may be used for control,
reconfiguration and fault diagnostics and identification, switching control, etc.

Working with the memory constrained MICA2 and MICAz motes, we identified
a unique way to increase our module configuration space. State-space control ap-
plications, in particular, those which require a state-observer, require large amounts
of memory to describe a model of the system. In order to describe the system and
make it re-configurable, we have identified that a section of internal flash can be
reserved for reading in module control parameters into the stack during module run-
time. Using SOS with it’s co-operative scheduler, an engineer can wirelessly send

neclab: The Network Embedded Control Lab 15

new control parameters to the internal flash section in order to reconfigure and tune a
state-observer. The current implementation is slower, however, due to the increased
memory read times from the internal flash section.

Although, neclab, is in its initial release, it has become a fairly advanced piece
of software. One limitation, is related to the limited message routing infrastructure.
Presently, neclab relies on the built in SOS message routing structure, which is quite
advanced; however, configuration messages can only be established if the gateway
mote can access an individual node directly on the network. We are particularly inter-
ested in adding a more advanced routing interface, to enable multiple-hop routing for
initial configuration. We are going to be actively using neclab for designing wnecs,
and hope the control-community will find neclab a useful tool for their own research.

5 Acknowledgment

We would like to thank Simon Han from NESL, UCLA for inviting us to contribute to
the SOS project and making neclab one of many projects which will make extensive
use of the SOS operating system. Simon has provided valuable development, feed-
back and support for integrating neclab with SOS. We would also like to acknowl-
edge the rest of the SOS team: Ram Kumar, Roy Shea, Andrew Barton-Sweeney,
Eddie Kohler and Mani Srivastava for their collective feedback and support. Finally,
we would like to acknowledge Joey Ernst for testing and assisting in the development
of neclab.

References

1. Victor Yodaiken, FSMLabs Lean POSIX for RTLinux ,
http://www.fsmlabs.com/fsmlabs-lean-posix-for-rtlinux.html

2. Berkley WEBS: Wireless Embedded Systems, TinyOS Community Forum: Related ,
http://www.tinyos.net/related.html

3. Harvard University: Maxwell Dwoorkin Laboratory, moteLab Harvard Network Sensor
Testbed , http://www.motelab.eecs.harvard.edu

4. Jonathan Hui, Deluge 2.0 - TinyOSNetwork Reprogramming,
http://www.cs.berkeley.edu/ 1 jwhui/research/deluge/deluge-manual.pdf

5. Thanos Stathopoulos, John Heidemann and Deborah Estrin, “A remote Code Update
Mechanism for Wireless Sensor Networks,” CENS Technical Report # 30, December
2003, http://lecs.cs.ucla.edu/ 1 thanos/moap-TR.pdf

6. Dr. Jeremy Kepner, Parallel Programming with MatlabMPI
http://www.ll.mit.edu/MatlabMPI/

7. Chih-Chieh Han, Ram Kumar Rengaswamy, Roy Shea, Eddie Kohler and Mani Srivas-
tava, SOS: A dynamic operating system for sensor networks. Proceedings of the Third In-
ternational Conference on Mobile Systems, Applications, and Services (Mobisys), 2005

8. D. Lymberopoulos and A. Savvides, XYZ: A Motion-Enabled, Power Aware Sensor
Node Platform for Distributed Sensor Network Applications. Proceedings of IPSN 05,
Los Angeles, CA, April 25-27 2005

16 Nicholas Kottenstette and Panos J. Antsaklis

9. NESL (Networked and Embedded Systems Laboratory), RAGOBOT.COM,
http://www.ragobot.com

10. University of Notre Dame Department of Electrical Engineering, Model identification of
Ball and Beam Plant , http://www.nd.edu/ 1 eeuglabs/ee455/lab/lab3/lab3 2003.pdf

11. University of Notre Dame Department of Electrical Engineering, Ball and Beam Balanc-
ing Problem , http://www.nd.edu/ 1 eeuglabs/ee455/lab/lab4/lab4 2003.pdf

12. Quanser WinCon 5.0,
http://www.quanser.com/english/html/solutions/fs soln software wincon.html

13. M. Brett McMickell, Bill Goodwine, and Luis Antonio Montestruque. MICAbot: A
Robotic Platform for Large-Scale Distributed Robotics. In Proceedings of the 2003 IEEE
International Conference on Robotics & Automation Taipei, Taiwan, September 14-19,
2003

14. Crossbow Technology, Inc. MPR-MIB Series Users Manual,
http://www.xbow.com/Support/Support pdf files/MPR-MIB Series Users Manual.pdf

15. Atmel ATmega128(L) Users Manual,
http://www.atmel.com/dyn/resources/prod documents/doc2467.pdf

16. SOS Operating System, http://nesl.ee.ucla.edu/projects/sos-1.x/
17. Automatically Tuned Linear Algebra Software (ATLAS), http://math-

atlas.sourceforge.net/
18. Larry Wall, Tom Christiansen, Randal L. Schwartz. Programming Perl, Third Edition.

O’Rielly 2000
19. GNUBinutils, http://www.gnu.org/software/binutils/
20. Host/Target specific installation notes for GCC,

http://gcc.gnu.org/install/specific.html#avr
21. AVR C Runtime Library, http://savannah.nongnu.org/projects/avr-libc
22. FreeMat, http://freemat.sourceforge.net/
23. MATLAB, http://www.mathworks.com/
24. AVR In-System Programmer, http://savannah.nongnu.org/projects/uisp/
25. Tcl/Tk, http://www.tcl.tk/software/tcltk/
26. Python Programming Language, http://www.python.org
27. Pexpect - a Pure Python Expect-like module, http://pexpect.sourceforge.net/
28. Simplified Wrapper and Interface Generator, http://www.swig.org

6 Appendix A

As shown in Figure 3, a basic network has been created and a blink module has
been loaded and enabled on each MICA2 mote in order to control the blink rate
of the yellow, green, and red LEDs. Each mote is a member of group 2, and each
mote name corresponds to its address (mote1 has an address of 1). The blink mod-
ule utilizes the configuring module interface and a module specific LED structure.
The LED structure contains the state of each LED, a basic clock structure for each
LED, and a mask to selectively filter the state of a given LED. Mote1 serves as a
networking source in which its timer is configured to repeat every 1024 counts or
one second. Once configured, and enabled by a MSG CONFIGURING ENABLE
message, mote1’s blink module will change the status (on/off) of the red LED every
4 seconds, green LED every 2 seconds, and the yellow LED every 8 seconds. Each
time the led state changes a MSG STANDARD IO message is delivered to mote2’s

neclab: The Network Embedded Control Lab 17

blink module. Figure 3 indicates that mote1 currently has the yellow and green LEDs
on. The message received by mote2 contains the new led state of mote1. Mote2, con-
figured as a networking filter masks the received led state such that only the red and
green led state will pass. As a result only mote2’s green LED is indicated as on. In
this example, we chose to let the interval timer for mote2’s blink module update the
new status of the led state on the physical blink display so there could be a delay
up to half a second. This is done to illustrate that we can isolate the handling of
asynchronous events with a synchronous task. Last, the filtered led state of mote2
is delivered to mote3 as a MSG STANDARD IO message. Mote3, configured as a
networking sink updates the newly received led state and displays the lit green LED
with a lag of no greater than half a second. Note that modules on the network can be
enabled/disabled by broadcasting a MSG CONFIGURING � ENABLE,DISABLE �
message or motes can be enabled/disabled individually. Configuring messages are
delivered reliably to individual motes, using the SOS MSG RELIABLE interface.
As a result, configuring messages which are broadcast can not currently be acknowl-
edged as being reliably sent; however, may still be deemed useful for a quick initial
shutdown of a system.

18 Nicholas Kottenstette and Panos J. Antsaklis

Fig. 1. Ball and Beam Network Embedded Control System.

neclab: The Network Embedded Control Lab 19

Fig. 2. neclab block diagram for ball and beam control.

20 Nicholas Kottenstette and Panos J. Antsaklis

Fig. 3. blink lab network routing diagram.

