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The performance of a class of Model-Based Networked Control System (MB-
NCS) is considered in this paper. A MB-NCS uses an explicit model of the
plant to reduce the network bandwidth requirements. In particular, an Out-
put Feedback MB-NCS is studied. After reviewing the stability results for this
system and some lifting techniques basics, two performance measures related
to the traditional H2 performance measure for LTI systems are computed.
The first H2 like performance measurement is called the Extended H2 norm
of the system and is based on the norm of the impulse response of the MB-
NCS at time zero. The second performance measure is called the Generalized
H2 norm and it basically replaces the traditional trace norm by the Hilbert-
Schmidt norm that is more appropriate for infinite dimensional operators.
The Generalized H2 norm also represents the average norm of the impulse re-
sponse of the MB-NCS for impulse inputs applied at different times. Examples
show how both norms converge to the traditional H2 norm for continuous H2
systems. Finally, with the help of an alternate way of representing lifted pa-
rameters, the relationship between the optimal sampler and hold of a sampled
data system and the structure of the Output Feedback MB-NCS is shown.

1 Introduction

A networked control system (NCS) is a control system in which a data net-
work is used as feedback media. NCS is an important area see for example
[6] and [5, 7, 8]. Industrial control systems are increasingly using networks as
media to interconnect the different components. The use of networked control
systems poses, though, some challenges. One of the main problems to be ad-
dressed when considering a networked control system is the size of bandwidth
required by each subsystem. Since each control subsystem must share the
same medium the reduction of the individual bandwidth is a major concern.
Two ways of addressing this problem are: minimizing the frequency of transfer
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of information between the sensor and the controller/actuator; or compress-
ing or reducing the size of the data transferred at each transaction. A shared
characteristic among popular digital industrial networks are the small trans-
port time and big overhead per packet, thus using fewer bits per packet has
small impact over the overall bit rate. So reducing the rate at which packets
are transmitted brings better benefits than data compression in terms of bit
rate used. The MB-NCS architecture makes explicit use of knowledge about
the plant dynamics to enhance the performance of the system. Model-Based
Networked Control Systems (MB-NCS) were introduced in [1].

Consider the control of a continuous linear plant where the state estimated
by a standard observer is sent to a linear controller/actuator via a network. In
this case, the controller and observer uses an explicit model of the plant that
approximates the plant dynamics and makes possible the stabilization of the
plant even under slow network conditions. The controller makes use of a plant
model, which is updated with the observer estimate, to reconstruct the actual
plant state in between updates. The model state is then used to generate
the control signal. The main idea is to perform the feedback by updating the
model’s state using the observer estimated state of the plant. The rest of the
time the control action is based on a plant model that is incorporated in the
controller/actuator and is running open loop for a period of h seconds. Also
a disturbance signal w and a performance or objective signal z are included
in the setup. The control architecture is shown in Figure 1.

The observer has as inputs the output and input of the plant. In the im-
plementation, in order to acquire the input of the plant, which is at the other
side of the communication link, the observer can have a version of the model
and controller, and knowledge of the update time h. In this way, the output
of the controller, that is the input of the plant, can be simultaneously and
continuously generated at both ends of the feedback path with the only re-
quirement being that the observer makes sure that the controller has been
updated. This last requirement ensures that both the controller and the ob-
server are synchronized. Handshaking protocols provided by most networks
can be used.

The performance characterization of Networked Control Systems under
different conditions is of major concern. In this paper a class of networked
control systems called Model-Based Networked Control Systems (MB-NCS)
is considered. This control architecture uses an explicit model of the plant
in order to reduce the network traffic while attempting to prevent excessive
performance degradation. MB-NCS can successfully address several important
control issues in an intuitive and transparent way. Necessary and sufficient
stability results have been reported for continuous and discrete linear time
invariant systems with state feedback, output feedback, and with network-
induced delays (see [1, 2, 3]). Results for stochastic update-times have also
been derived [4]. We have observed that the stability of MB-NCS is, in general,
a function of the update times, the difference between the dynamics of the
plant and the dynamics of the plant model, and of the control law used,
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Fig. 1. MB-NCS with disturbance input and objective signal output.

and we have quantified these relations. The performance of the MB-NCS can
be studied using several techniques and considering different scenarios. One
promising technique is called Continuous Lifting [9, 10, 11]. Lifting is basically
a transformation of a periodic system to a discrete LTI system. The main
advantage of this approach is that most of the results available for LTI systems
are readily applicable to the lifted system. The disadvantage is that the input
and output spaces are infinite dimensional and thus the parameters of the
lifted system are operators and not matrices. New results in this area allow
overcoming these difficulties [12, 13].

The next section briefly introduces the lifting techniques used to derive
the results contained in the paper. Then, an H2 like performance measure is
introduced as the Extended H2 norm, here the interplay between the discrete
and continuous nature of the system is observed in the calculation of the
norm. Also, a way of calculating the Extended H2 norm using an auxiliary
LTI discrete system is presented. The next section presents the Generalized
H2 norm. This norm is important because it can also be related to the norm
of a operator based transfer function. Again, a way of computing the norm
using an auxiliary LTI discrete system is derived. The paper is finalized with
a discussion of the techniques described in [12, 13] and their application to
optimal control synthesis problems for data sampled systems. This allows to
efficiently compute the optimal gains for the controller and observer. Not
surprisingly it is shown that under certain conditions, the optimal gains for
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the H2 optimal observer and controller of the MB-NCS are equivalent to the
optimal gains for the non-networked system.

We will start by defining the system dynamics:

Plant Dynamics:
ẋ = Ax + B1w + B2u
z = C1x + D12u
y = C2x + D21w + D22u
Observer Dynamics:
˙̄x = (Â − LĈ2)x̄ + (B̂2 − LD̂22)u + Ly
Model Dynamics:
˙̂x = Âx̂ + B̂2u
Controller:
u = Kx̂

(1)

The model state x̂ is updated with the observer state x̄ every h seconds.
It can be shown that the system dynamics can be described by:

Gzw :




ẋ
˙̄x
ė



=





A B2K −B2K

LC2 Â − LĈ2 + B̂2K + LD̃22K −B̂2K − LD̃22K

LC2 LD̃22K − LĈ2 Â − LD̃22K









x
x̄
e



+





B1

LD21

LD21



w

z =
[

C1 D12K −D12K
]





x
x̄
e



 , ∀t ∈ [tk, tk+1)

e = x̄ − x̂ = 0, t = tk+1

(2)
We will also use the following definitions:

ϕ(t) =





x(t)
x̄(t)
e(t)



, Λ =





A B2K −B2K

LC2 Â − LĈ2 + B̂2K + LD̃22K −B̂2K − LD̃22K

LC2 LD̃22K − LĈ2 Â − LD̃22K





BN =





B1

LD21

LD21



, CN =
[

C1 D12K −D12K
]

(3)
Throughout this paper we will assume that the compensated model is

stable and that the transportation delay is negligible. We will assume that
the frequency at which the network updates the state in the controller is
constant. The goal is to find the smallest frequency at which the network
must update the state in the controller, that is, an upper bound for h, the
update time. A necessary and sufficient condition for stability of the output
feedback MB-NCS is now presented.
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Theorem 1. The non-disturbed output feedback MB-NCS described by (1) is

globally exponentially stable around the solution
[

xT x̄T eT
]T

= 0 if and only

if the eigenvalues of M =





I 0 0
0 I 0
0 0 0



 eΛh





I 0 0
0 I 0
0 0 0



 are inside the unit circle.

A detailed proof for Theorem 1 can be found in [2].
Before defining the performance measures previously described a brief

summary of the lifting technique is presented. As it was pointed out, lift-
ing can transform a periodic linear system such as a MB-NCS into a discrete
linear time invariant system with operator-valued parameters. These param-
eters are computed for a class of MB-NCS and used throughout the paper.

2 Continuous Lifting Technique

We will give a brief introduction into the Lifting technique. We need to define
two Hilbert spaces, the first space is defined as follows:

L2[0, h) =

{

u(t)/

∫ h

0

uT (t)u(t)dt < ∞
}

(4)

The second Hilbert space of interest is formed by an infinite sequence of
L2[0, h) spaces and is defined:

l2 (Z, L2[0, h)) = l2 =

=

{

[..., u−2, u−1, u0, u1, u2, ...]
T

/ui ∈ L2[0, h),
+∞
∑

−∞

∫ h

0
uT

j (t)uj(t)dt < ∞
}

(5)
Now we can define the lifting operator L as mapping from L2e (L2 ex-

tended) to l2:

L : L2e → l2, Lu(t) = [..., u−2, u−1, u0, u1, u2, ...]
T

where uk(τ) = u(τ + kh), τ ∈ [0, h)
(6)

It can be shown that L preserves inner products and thus is norm preserving
[10]. Since L is surjective, it is an isomorphism of Hilbert spaces. So, lifting
basically transforms a continuous function into a discrete function where each
element of the sequence is a continuous function restricted to [0, h).

As an example of the application of this lifting technique we will compute
the lifted parameters of a MB-NCS with output feedback previously presented
(1). This system is clearly h periodic, and therefore we expect to get, after
the lifting procedure, an LTI system of the form:

_

ϕk+1 =
_

A
_

ϕk +
_

B
_

wk,
_

z k =
_

C
_

ϕk +
_

D
_

wk (7)
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To obtain the operators we “chop” the time response of the system de-
scribed in (1) and evaluate at times kh. The lifted parameters can be calcu-
lated as:

_

A =





I 0 0
0 I 0
0 0 0



 eΛh,
_

B
_

w =
∫ h

0





I 0 0
0 I 0
0 0 0



 eΛ(h−s)BN
_

w(s)ds

_

C = CNeΛτ ,
_

D
_

w = CN

∫ τ

0
eΛ(τ−s)BN

_

w(s)ds

(8)

The new lifted system is now a LTI discrete system. Note the dimension
of the state space is left unchanged, but the input and output spaces are
now infinite dimensional. Nevertheless, the new representation [12, 13] allows
extending the results available for discrete LTI systems to the lifted domain.
These tools have been traditionally used to analyze and synthesize sample
and hold devices, and digital controllers. It is to be noted, though, that in
this application the discrete part is embedded in the controller that doesn’t
operate in the same way a typical sampled system does. Here, for instance,
the controller gain operates over a continuous signal, as opposed to over a
discrete signal as it is customary in sampled data systems.

3 An H2 Norm Characterization of a MB-NCS

It is clear that, since the MB-NCS is h-periodic, there is no transfer function in
the normal sense whose H2 norm can be calculated [10]. For LTI systems the
H2 norm can be computed by obtaining the 2-norm of the impulse response
of the system at t = t0. We will extend this definition to specify an H2 norm,
or more properly, to define an H2-like performance index [10]. We will call
this performance index Extended H2 Norm. We will study the extended H2
norm of the MB-NCS with output feedback studied in the previous section
and shown in Figure 1. The Extended H2 Norm is defined as:

‖Gzw‖xh2 =

(

∑

i

‖Gzwδ (t0) ei‖2
2

)1/2

(9)

Theorem 2. The Extended H2 Norm, ‖G‖xh2, of the Output Feedback MB-

NCS is given by ‖G‖xh2 =
(

trace
(

BT
NXBN

))1/2
where X is the solution of the

discrete Lyapunov equation M(h)T XM(h) − X + Wo(0, h) = 0 and Wo(0, h)

is the observability Gramian computed as Wo(0, h) =
∫ h

0
eΛT tCT

NCNeΛtdt.

Proof. We will compute the extended H2 norm of the system by obtaining
the 2-norm of the objective signal z to an impulse input w = δ(t− t0). It can
be shown that the response of the system to an input w = δ(t− t0) (assuming
that the input dimension is one) is:
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z(t) =





C1

D12K
−D12K



 ϕ(t), ϕ(t) = eΛ(t−tk)









I 0 0
0 I 0
0 0 0



 eΛh





k

[

B1 LD21 LD21

]

.

(10)
With

ϕ(t) =
[

x(t) x̄(t) e(t)
]

,

Λ =





A B2K −B2K

LC2 Â − LĈ2 + B̂2K + LD̃22K −B̂2K − LD̃22K

LC2 LD̃22K − LĈ2 Â − LD̃22K



 ,

h = tk+1 − tk.

So we can compute the 2-norm of the output:

‖z‖2
2 =

∫ ∞

t0
z(t)T z(t)dt

=
∫ ∞

t0
BT

N

(

M(h)T
)k

eΛT (t−tk)CT
NCNeΛ(t−tk) (M(h))

k
BNdt

where

M(h) =





I 0 0
0 I 0
0 0 0



 eΛh, BN =
[

B1 LD21 LD21

]

, CN =





C1

D12K
−D12K





(11)

It is easy to see that the norm of a system with more than one inputs can
be obtained by taking the norm of the integral shown in (11). So at this point
we can drop our assumption of working with a one dimension input system.
We will concentrate now on the integral expression (11).

Σ(h) =
∫ ∞

t0
BT

N

(

M(h)T
)k

eΛT (t−tk)CT
NCNeΛ(t−tk) (M(h))

k
BNdt

= BT
N

(

∞
∑

i=0

∫ ti+1

ti

(

M(h)T
)i

eΛT (t−ti)CT
NCNeΛ(t−ti) (M(h))

i
dt

)

BN

= BT
N

(

∞
∑

i=0

(

M(h)T
)i

Wo(0, h) (M(h))
i

)

BN

(12)
where

Wo(0, h) =

∫ h

0

eΛT tCT
NCNeΛtdt

Note that Wo(0, h) has the form of the observability Gramian. Also note
the summation resembles the solution of a discrete Lyapunov equation. This
Lyapunov equation can be expressed as:

M(h)T XM(h) − X + Wo(0, h) = 0 (13)

In this equation we note that M(h) is a stable matrix if and only if the
networked system is stable. Note that Wo(0, h) is a positive semi definite
matrix. Under these conditions the solution X will be positive semi definite.♦
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Note that the observability gramian can be factorized as Wo(0, h) =

CT
auxCaux =

∫ h

0
eΛT tCT

NCNeΛtdt. This allow us to compute the norm of the
system as the norm of an equivalent discrete LTI system.

Corollary 1. Define CT
auxCaux =

∫ h

0
eΛT tCT

NCNeΛtdt and the auxiliary dis-
crete system Gaux with parameters:Aaux = M (h) , Baux = BN , Caux, and
Daux = 0 then the following holds:

‖Gzw‖xh2 = ‖Gaux‖2 (14)

Example 1. We now present an example using a double integrator as the

plant. The plant dynamics are given by: A =

[

0 1
0 0

]

; B1 =
[

0.1 0.1
]

;

B2 =
[

0 1
]

; C1 =

[

0.1
0.1

]

; C2 =

[

1
0

]

; D12 = 0.1; D21 = 0.1; D22 = 0.

We will use the state feedback controller K =

[

−1
−2

]

. A state estimator with

gain L =
[

20 100
]

is used to place the state observer eigenvalues at −10. We

will use a plant model with the following dynamics: Â =

[

0.1634 0.8957
−0.1072 −0.1801

]

,

B̂2 =
[

−0.1686 1.0563
]

, Ĉ2 =

[

0.8764
0.1375

]

, and D̂22 = −0.1304. This model

yields a stable NCS for update times up to approximately 7.5 sec. In Figure
2 we plot the extended H2 norm of the system as a function of the updates
times.

0 1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

||G
zw

||2 xh
2

update times h (sec)

0.0394 

Fig. 2. Extended H2 norm of the system as a function of the update times.

Note that as the update time of the MB-NCS approaches zero, the value
of the norm approaches the norm of the non-networked compensated system.
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Also note that the optimal update time is around 0.8 sec, and it starts to
degrade as the update times become smaller. This pattern is repeated with
other norms as shown in the next example.

4 A Generalized H2 Norm for MB-NCS

In the previous section the Extended H2 Norm was introduced to study the
performance of MB-NCS, this norm was defined as the norm of the output of
the system when a unit impulse at t = t0 is applied to the input. But since
the MB-NCS is a time varying system it may seem inappropriate to apply
this input only at t = t0. By letting the input be δ (t − τ) we arrive to an
alternate definition. Since the system is h periodic we only need to consider
τ ∈ [t0, t0+h). We will call this norm the Generalized H2 Norm and we define
it as:

‖Gzw‖gh2 =

(

1

h

∫ t0+h

t0

(

∑

i

‖Gzwδ (t − τ) ei‖2
2

)

dτ

)1/2

(15)

A detailed study of this norm can be found in [10]. Note that this norm
evaluates the time average of the system response to the impulsive function
applied at different times. Another option for a generalized norm could have
replaced the time average by the maximum over time. However, as it is shown
later, there is relationship between the time averaged norm (15) and the norm
of the operator-valued transfer function of Gzw that can be useful for frequency
domain analysis. We will now show some relations arising from this norm.

Let a continuous-time linear transformation G : L2[0, h) → L2[0,∞) be
defined by:

(Gu) (t) =

∫ t

0

g (t, τ) u (τ) dτ (16)

Where g (t, τ) is the impulse response of G. Let G be periodic and let its
Hilbert-Schmidt norm ‖G‖HS be defined as:

‖G‖HS =

(

∫ h

0

∫ ∞

0

trace
[

g (t, τ)
T

g (t, τ)
]

dtdτ

)1/2

(17)

Then it is clear that:

‖Gzw‖gh2 =
1√
h
‖Gzw‖HS (18)

Note the slight abuse of notation since originally Gzw was considered a
transformation with domain L2[0,∞) while the Hilbert-Schmidt norm in (17)
is defined for transformations with domain on L2[0, h). Now denote the lifted
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operator
_

Gzw = LGzwL−1 with input-output relation given by the convolu-
tion:

_

z k =
k
∑

l=0

_

gk−l
_

wl

where
_

gk : L2[0, h) → L2[0, h) and
(

_

gku
)

(t) =
∫ h

0
g (t + kh, τ) u (τ) dτ

(19)

The Hilbert-Schmidt operator for
_

gk is given by:

∥

∥

∥

_

gk

∥

∥

∥

HS
=

(

∫ h

0

∫ h

0

trace
[

g (t + kh, τ)
T

g (t + kh, τ)
]

dtdτ

)1/2

(20)

Then it is easy to show that:

‖Gzw‖2
HS =

∞
∑

k=0

∥

∥

∥

_

gk

∥

∥

∥

2

HS
=

∥

∥

∥

_

g
∥

∥

∥

2

2
(21)

The last expression shows a relationship between the discrete lifted repre-
sentation of the system and the Generalized H2 Norm. Finally we will show the
relationship between the Generalized H2 Norm and the norm of an operator-
valued transfer function:

g̃ (λ) =
∞
∑

k=0

_

gkλk (22)

By defining in a similar way the λ-transform for the input and output of
the system we get:

z̃ (λ) = g̃ (λ) w̃ (λ) (23)

Note that for every λ in their respective regions of convergence, w̃ (λ) and
z̃ (λ) are functions on [0, h); while g̃ (λ) is a Hilbert-Schmidt operator. Define
the Hardy space H2 (D,HS) with operator-valued functions that are analytic
in the open unit disc, boundary functions on ∂D, and with finite norm:

‖g̃‖2 =

[

1

2π

∫ 2π

0

∥

∥g̃
(

ejθ
)∥

∥

2

HS
dθ

]1/2

(24)

Note the norm in H2 (D,HS) is a generalization of the norm in H2 (D) by
replacing the trace norm by the Hilbert-Schmidt norm. It can be shown that:

‖Gzw‖2
HS =

∥

∥

∥

_

g
∥

∥

∥

2

2
= ‖g̃‖2

2 (25)
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We will now show how to calculate the Generalized H2 Norm of the Output
Feedback MB-NCS. Define the auxiliary discrete LTI system:

Gaux
S
=

[

_

A Baux

Caux 0

]

(26)

Where:

BauxBT
aux =

∫ h

0









I 0 0
0 I 0
0 0 0



 eΛτBNBT
NeΛT τ





I 0 0
0 I 0
0 0 0







 dτ

CT
auxCaux =

∫ h

0

(

eΛT τCT
NCNeΛτ

)

dτ

(27)

Theorem 3. The Generalized H2 Norm, ‖Gzw‖gh2, of the Output Feedback

MB-NCS is given by ‖Gzw‖gh2 = 1√
h

(

∥

∥

∥

_

D
∥

∥

∥

2

HS
+ ‖Gaux‖2

2

)1/2

.

Proof.

The transfer function for Gzw can be written as:

g̃ (λ) =
_

D +
_

C (g̃t (λ))
_

B with g̃t (λ) =

[

_

A I
I 0

]

(28)

Note that g̃t (λ) is a matrix-valued function and that g̃t (0) = 0 therefore
the two functions on the right of (28) are orthogonal and:

h ‖Gzw‖2
gh2 = ‖g̃ (λ)‖2

2 =
∥

∥

∥

_

D
∥

∥

∥

2

HS
+

∥

∥

∥

_

C (g̃t (λ))
_

B
∥

∥

∥

2

2
(29)

The second norm on the right can be calculated as:

∥

∥

∥

_

C (g̃t (λ))
_

B
∥

∥

∥

2

2
=

1

2π

∫ 2π

0

∥

∥

∥

_

C
(

g̃t

(

ejθ
))

B
∥

∥

∥

2

HS
dθ (30)

By fixing θ the integrand F =
_

C
(

g̃t

(

ejθ
)) _

B is a Hilbert-Schmidt operator
with impulse response:

f (t, τ) = CNeΛtg̃t

(

ejθ
)





I 0 0
0 I 0
0 0 0



 eΛ(h−τ)BN (31)

Then:
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‖F‖2
HS = trace

[

∫ h

0

∫ h

0
f (t, τ)

∗
f (t, τ) dtdτ

]

= trace





∫ h

0
BT

NeΛT (h−τ)





I 0 0
0 I 0
0 0 0



 g̃t

(

ejθ
)∗

CT
auxCauxg̃t

(

ejθ
)





I 0 0
0 I 0
0 0 0



 eΛ(h−τ)BNdτ





= trace





∫ h

0









I 0 0
0 I 0
0 0 0



 eΛ(h−τ)BNBT
NeΛT (h−τ)





I 0 0
0 I 0
0 0 0







 dτ

(

g̃t

(

ejθ
)∗

CT
auxCauxg̃t

(

ejθ
)

)]

= trace
[

BauxBT
auxg̃t

(

ejθ
)∗

CT
auxCauxg̃t

(

ejθ
)

]

= trace
[

BT
auxg̃t

(

ejθ
)∗

CT
auxCauxg̃t

(

ejθ
)

Baux

]

(32)
So (30) can be calculated as the H2 norm of Cauxg̃t

(

ejθ
)

Baux which cor-
responds to the H2 norm of Gaux.♦

To calculate the Generalize H2 Norm several calculations need to be done,
among these are:

∥

∥

∥

_

D
∥

∥

∥

2

HS
= trace

(

∫ h

0

∫ t

0
BT

NeΛT τCT
NCNeΛτBNdτdt

)

BauxBT
aux =





I 0 0
0 I 0
0 0 0



 PT
22P12





I 0 0
0 I 0
0 0 0



 ;

[

P11 P12

0 P22

]

= exp

(

h

[

−Λ BNBT
N

0 ΛT

])

CT
auxCaux = MT

22M12;

[

M11 M12

0 M22

]

= exp

(

h

[

−ΛT CT
NCN

0 Λ

])

(33)
Note that in this particular case it was relatively easy to separate the

infinite dimensional components of the system from a finite dimensional core
component. This is not always possible. In particular one might be tempted to
apply the previous techniques to obtain a finite dimensional auxiliary discrete
LTI that can be used to solve an H2 optimal control problem. The described
separation technique can’t be carried out since the controller and observer
gains operate over continuous signals. Nevertheless it will be shown later how
to address an H2 optimal control problem using other techniques.

Example 2. We now calculate the generalized H2 norm for the same system
studied in the previous example. Some computational issues have to be ad-
dressed in order to do this. In particular the formulas given in (33) may yield
inaccurate results because of scaling issues. In particular for the calculation of
Baux and Caux the term (1,1) of the exponentials calculated may be too large
in comparison with the other terms, this is because of the negative sign in
front of the stable matrix Λ. Direct integration yields better results. Also the
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Cholesky factorization is usually only an approximation. The results though
seem to represent reality in a reasonable way. This is verified by varying the
tolerances in the integration algorithm and by measuring the error in the
Cholesky factorization. The calculated generalized H2 norm is shown below
for the same range of update times used for the previous example:

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

||G
zw

||2 gh
2

update times h (sec)

0.0394 

Fig. 3. Generalized H2 norm of the system as a function of the update times.

In this example we see that the norm converges again to the non-networked
H2 norm of the system as the update time goes to zero. The optimal update
time in this case is around 1 sec, this is somewhat consistent with the previous
example where the optimal update time is around 0.8 sec. Both examples co-
incide in that after the update time of 1 sec the performance starts to degrade.
Since both performance measurements are defined in a different manner no
real comparison can be made between them. It seems though that the Gener-
alized H2 Norm is more appropriate since it considers the application of the
impulse input at different times. Also its link with a well-defined operator-
valued transfer function makes it very attractive. The next section presents
an alternate parameter representation that overcomes the inconveniencies of
dealing with infinite dimensional operators.

5 Optimal Controllers for MB-NCS

In this section we address the issue of designing optimal controllers for MB-
NCS. We saw previously that lifting can transform a periodic system such as
the MB-NCS into a discrete LTI system. Most results for the design of optimal
controllers for discrete systems directly apply to the lifted system. Since the
parameters of the lifted system are infinite dimensional, computations using
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the integral representation given in (8) can be difficult. This is evident when

one considers operators such as

(

I −
_

D
∗ _

D

)−1

, which appears for instance in

sampled data Hinf problems.
To circumvent some of the problems associated with optimal control prob-

lems, an auxiliary discrete LTI system is obtained so that its optimal controller
also optimizes the lifted system. The separation of the infinite dimensionality
from the problem is not always guaranteed. In particular we note that the
controller for the auxiliary system works in the discrete time domain while
the controller for the lifted system representing the MB-NCS in (8) works in
continuous time. This means the controller has to be obtained using the lifted
parameters directly.

In this section we start by giving a brief summary of an alternative rep-
resentation of the lifted parameters proposed by Mirkin & Palmor [12, 13].
This alternative representation allows performing complex computations using
lifted parameters directly. Results on the computation of an optimal sampler,
hold, and controller are shown and their equivalence with the components of
the output feedback MB-NCS is shown.

The representation of lifted parameters proposed by Mirkin & Palmor con-
siders the lifted parameters as continuous LTI systems operating over a finite
time interval. The main advantage of such representation lies in the possibility
of simplifying operations over the parameters to algebraic manipulations over
LTI systems with two-point boundary conditions. These manipulations can
then be performed using well-know state-space machinery.

Consider the following LTI system with two-point boundary conditions
(STPBC):

G : ẋ (t) = Ax (t) + Bu (t)
y (t) = Cx (t) + Du (t)
Ωx (0) + Υx (h) = 0

(34)

Here the square matrices Ω and Υ define the boundary conditions. In
is said that the boundary conditions are well-posed if x (t) = 0 is the only
solution to (34) when u (t) = 0. It can be verified that the STPBC G has
well-posed boundary conditions if and only if the matrix:

ΞG = Ω + ΥeAh (35)

is non-singular. If the STPBC G has well-posed boundary conditions, then
its response is uniquely determined by the input u(t) and is given as follows:

y (t) = Du (t) +

∫ h

0

KG (t, s) u (s) ds (36)

where the kernel KG (t, s) is given by:

Luis Montestruque, Panos J. Antsaklis, “Performance Evaluation for Model-Based Networked Control 
Systems,” Networked Embedded Sensing and Control, Proceedings of Workshop NESC’05: University of Notre 
Dame, USA, October 17-18, 2005, Panos Antsaklis and Paulo Tabuada (Eds.), Lecture Notes in Control and 
Information Sciences (LNCIS) 331, pp. 231-250, Springer 2006.



Performance Evaluation for Model-Based Networked Control Systems 15

KG (t, s) =

{

CeAtΞ−1
G Ωe−AsB if 0 ≤ s ≤ t ≤ h

−CeAtΞ−1
G ΥeA(h−s)B if 0 ≤ t ≤ s ≤ h

(37)

We will use the following notation to represent (34):

G =

(

A

C
Ω ⇀↽ Υ

B

D

)

(38)

The following is a list of manipulations that are used to perform operations
over STPBCs.

1) Adjoint System:

G∗ =

(−AT

−BT
eAT hΥT Ξ−T

G
⇀↽ ΩT Ξ−T

G eAT h CT

DT

)

(39)

2) Similarity Transformation: (for T and S non singular)

TGT−1 =

(

TAT−1

CT−1
SΩT−1 ⇀↽ SΥT−1 TB

D

)

(40)

3) Addition:

G1 + G2 =









A1 0
0 A2

C1 C2

[

Ω1 0
0 Ω2

]

⇀↽

[

Υ1 0
0 Υ2

]

B1

B2

D1 + D2









(41)

4) Multiplication:

G1G2 =









A1 B1C2

0 A2

C1 D1C2

[

Ω1 0
0 Ω2

]

⇀↽

[

Υ1 0
0 Υ2

]

B1D2

B2

D1D2









(42)

5) Inversion (exists if and only if det (D) 6= 0 and

det
(

Ω + Υe(A−BD−1C)h
)

6= 0)

G−1 =

(

A − BD−1C

−D−1C
Ω ⇀↽ Υ

BD−1

D−1

)

, (43)

This representation reduces the complexity of computing operators such

as

(

I −
_

D
∗ _

D

)−1

. Using the integral representation of (8) one can get that

ξ =

(

I −
_

D
∗ _

D

)−1

ω if and only if:

ω (t) = ξ (t) +

∫ h

t

BT
Ne−ΛT (t−s)CT

NCN

∫ s

0

eΛ(s−τ)BNξ (τ) dτds (44)

Luis Montestruque, Panos J. Antsaklis, “Performance Evaluation for Model-Based Networked Control 
Systems,” Networked Embedded Sensing and Control, Proceedings of Workshop NESC’05: University of Notre 
Dame, USA, October 17-18, 2005, Panos Antsaklis and Paulo Tabuada (Eds.), Lecture Notes in Control and 
Information Sciences (LNCIS) 331, pp. 231-250, Springer 2006.



16 Luis A. Montestruque and Panos J. Antsaklis

It is not clear how to solve this equation. On the other hand using the
alternative representation we note that:

_

D =

(

Λ

CN
I ⇀↽ 0

BN

0

)

(45)

Using the properties previously listed we obtain:

(

I −
_

D
∗ _

D

)−1

=
(

I −
(

Λ
CN

I ⇀↽ 0 BN

0

)∗ (

Λ
CN

I ⇀↽ 0 BN

0

))−1

=









−ΛT CT
NCN

−BNBT
N Λ

−BT
N 0

[

0 0
0 I

]

⇀↽

[

I 0
0 0

]

0
BN

I









(46)

To be able to represent operators with finite dimension domains or ranges

such as
_

B and
_

C two new operators are defined. Given a number θ ∈ [0, h],
the impulse operator Iθ transforms a vector η ∈ Rn into a modulated impulse
as follows:

ς = Iθη ⇔ ς (t) = δ (t − θ) η (47)

Also define the sample operator I∗
θ , which transforms a continuous function

ς ∈ Cn [0, h] into a vector η ∈ Rn as follows:

η = I∗
θ ς ⇔ η = ς (θ) (48)

Note that the representation of I∗
θ is as the adjoint of Iθ, even when this

is not strictly true, it is easy to see that given an h ≥ θ the following equality
holds:

〈ς, Iθη〉 =

∫ h

0

ς (τ)
T

(Iθη) (τ) dτ = ς (θ)
T

η = 〈I∗
θ ς, η〉 (49)

The presented results allow to make effective use of the impulse and sam-
ple operator. Namely the last two lemmas show how to absorb the impulse
operators into an STPBC. Now let us present a result that links the solutions
of the lifted algebraic discrete Riccati equation and the algebraic continuous
Riccati equation for the continuous system for the H2 control problem.

Lemma 1. Let the lifted algebraic discrete Riccati equation for the lifted sys-

tem
_

G = LGL−1 be as follows:

_

A
T _

X
_

A −
_

X +
_

C
∗_

C

−
(

_

A
T _

X
_

B +
_

C
∗ _

D

) (

_

D
∗ _

D +
_

B
T _

X
_

B

)−1 (

_

D
∗_

C +
_

B
T _

X
_

A

)

= 0
(50)
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and let the algebraic continuous Riccati equation for G be:

AT X + XA + CT C −
(

XB + CT D
) (

DT D
)−1 (

DT C + BT X
)

= 0 (51)

then the conditions for existence of a unique stable solution for both Ricatti

equations are equivalent, moreover if they exist, then
_

X = X.

This implies that in order to solve the optimal control problem we just
need to solve the regular continuous Ricatti equation. We can for example
obtain the optimal H2 state feedback “gain” given by

_

F = −
(

_

D
∗ _

D +
_

B
∗

X
_

B

)−1 (

_

D
∗_

C +
_

B
∗

X
_

A

)

.

It can be shown [12, 13] that:

_

F =

(

A + BF

F
I ⇀↽ 0

I

0

)

(52)

Here F is the H2 optimal control gain for the continuous system. Note
that the expression in (52) exactly represents the dynamics of the actua-
tor/controller for the state feedback MB-NCS when the modelling errors are
zero and the feedback gain is the H2 optimal feedback gain. Finally, we present
next a result that obtains the H2 optimal sampler, hold and controller.

Lemma 2. Given the standard assumptions, when the hold device is given
by (Hu) (kh + τ) = φH (τ) uk, ∀τ ∈ [0, h] and the sample device is given by

(Sy)k =
∫ h

0
φS (τ) y (kh − τ) dτ , the H2 optimal hold, sampler, and discrete

controller for the lifted system
_

G = LGL−1 with

G =





A B1 B2

C1

C2

0 D12

D21 0





are as follows:

Hold: φH (τ) = Fe(A+B2F )τ

Sampler: φS (τ) = −e(A+LC2)τL

Controller: Kd =

[

Θ I
I 0

]

where: Θ = e(A+B2F )h +
∫ h

0
e(A+LC2)(h−τ)LC2e

(A+B2F )τdτ

(53)

Remarks: Note that the H2 optimization problem solved in [13] is related
to the Generalized H2 norm previously presented. That is, replacing the trace
norm with the Hilbert-Schmidt norm.

As it has been observed, there is a strong connection between the H2
optimal hold of a sampled system and the H2 optimal controller of the non-
sampled system. As pointed out in [13] it is clear that the H2 optimal hold

Luis Montestruque, Panos J. Antsaklis, “Performance Evaluation for Model-Based Networked Control 
Systems,” Networked Embedded Sensing and Control, Proceedings of Workshop NESC’05: University of Notre 
Dame, USA, October 17-18, 2005, Panos Antsaklis and Paulo Tabuada (Eds.), Lecture Notes in Control and 
Information Sciences (LNCIS) 331, pp. 231-250, Springer 2006.



18 Luis A. Montestruque and Panos J. Antsaklis

attempts to recreate the optimal control signal that would have been gener-
ated by the H2 optimal controller in the non-sampled case. That is, the H2
optimal hold calculated in [13] generates a control signal identical to the one
generated by the non-sampled H2 optimal controller in the absence of noise
and disturbances.

Another connection exists between the H2 optimal sampler, hold, and
discrete controller calculated in [13] and the output feedback MB-NCS. It is
clear that when the modeling errors are zero and the gain is the optimal H2
gain, the optimal hold has the same dynamics as the controller/ actuator in the
output feedback MB-NCS. The same equivalence can be shown between the
combination of optimal sampler/discrete controller dynamics and the output
feedback MB-NCS observer.

The techniques shown here can be used to solve robust optimal control
problems that consider the modeling error. This is possible due to the alter-
native representation that allows the extension of traditional optimal control
synthesis techniques to be used with the infinite dimensional parameters that
appear in the lifted domain.

6 Conclusions

The study of the performance of MB-NCS shows that a large portion of the
available literature on sampled data systems cannot be directly applied to
MB-NCS. Moreover, different definitions of performance yield different per-
formance curves. For a constant controller and observer gains it was shown
that the best transmission times are not necessarily the smallest ones. Using
an alternate representation of the lifted parameters, a connection between the
optimal hold, sampler, and discrete controller and the output feedback MB-
NCS was established. This representation opens a large new area of research
in robust MB-NCS.
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