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Several consensus protocols have been proposed in the literature and their
convergence properties studied via a variety of methods. In all these methods,
the communication topologies play a key role in the convergence of consensus
processes. The goal of this paper is two fold. First, we explore communi-
cation topologies, as implied by the communication assumptions, that lead
to consensus among agents. For this, several important results in the liter-
ature are examined and the focus is on different classes of communication
assumptions being made, such as synchronism, connectivity, and direction of
communication. In the latter part of this paper, we show that the conflu-
ent iteration graph unifies various communication assumptions and proves to
be fundamental in understanding the convergence of consensus processes. In
particular, based on asynchronous iteration methods for nonlinear paracon-
tractions, we establish a new result which shows that consensus is reachable
under directional, time-varying and asynchronous topologies with nonlinear
protocols. This result extends the existing ones in the literature and have
many potential applications.

1 Introduction

In recent years, there has been growing interest in the coordinated control
of multi-agent systems. One of the fundamental problems is the consensus
seeking among agents, that is the convergence of the values of variables com-
mon among agents to the same constant value [2, 17, 21, 26, 28]. This need
stems from the fact that in order for agents to coordinate their behaviors, they
need to use some shared knowledge about variables such as direction, speed,
time-to-target etc. This shared variable or information is a necessary condi-
tion for cooperation in multi-agent systems, as shown in [30]. The challenge
here is for the group to have a consistent view of the coordination variable in
the presence of unreliable and dynamically changing communication topology
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without global information exchange. For an extensive body of related work,
see [2, 1, 10, 15, 19, 21, 29, 31, 35].

The aforementioned consensus protocols all operate in a synchronized fash-
ion since each agent’s decisions must be synchronized to a common clock
shared by all other agents in the group. This synchronization requirement
might not be natural in certain contexts. For example, the agreement of time-
on-target in cooperative attack among a group of UAVs depends in turn on the
timing of when to exchange and update the local information. This difficulty
entails the consideration of the asynchronous consensus problem, where each
agent updates on its own pace, and uses the most recently received (but pos-
sibly outdated) information from other agents. No assumption is made about
the relative speeds and phases of different clocks. Agents communicate solely
by sending messages; however there is no guarantee of the time of delivery or
even for a successful delivery. Under asynchronous communications, heteroge-
neous agents, time-varying communication delays and packet dropout can all
be taken into account in the same framework. Nevertheless, the asynchronism
can destroy convergence properties that the algorithm may possess when ex-
ecuted synchronously. In general, the analysis of asynchronous algorithms is
more difficult than that of their synchronous counterparts. We refer readers
to [5, 14, 18] for surveys on general theories of asynchronous systems.

Work reported on the asynchronous consensus problem is relatively sparse
compared to its synchronous counterparts. In [12], we introduced an asyn-
chronous framework to study the consensus problems for discrete-time multi-
agent systems with a fixed communication topology under the spanning tree
assumption (All the assumptions in this paragraph will be discussed in detail
later). A distributed iterative procedure under the eventual update assumption
was developed in [23] for calculating averages on asynchronous communica-
tion networks. The asynchronous consensus problem with zero time delay was
studied in [8] where the union of the communication graphs is assumed to have
a common root spanning tree. A nice overview of the asynchronous consensus
problem is given in [6] where the authors link the consensus problem con-
sidered here to earlier work [33]. For other related problems in asynchronous
multi-agent systems, see [3, 20, 22, 34].

Asynchronism provides a new dimension to consensus problems and makes
convergence harder to achieve. Under certain technical conditions, asynchro-
nism is not detrimental to consensus seeking among agents. A natural ques-
tion is what are the appropriate requirements on communication topologies
to guarantee the convergence of consensus processes? In order to answer this
question, we first discuss the various assumptions on communication topolo-
gies commonly used in the literature and classify several of the existing con-
sensus results by these communication assumptions. In Sect. 3, we prove the
convergence of asynchronous consensus with zero time delay involving pseudo-
contractive mappings. This development is a generalization of the results of
[8] and [36], and provides insight into why the choice between bidirectional
and unidirectional communication assumptions can make the difference in es-
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tablishing consensus convergence. In Sect. 4, we unify various communication
assumptions using the confluent iteration graph proposed in [27]. Further-
more, a new convergence result for nonlinear protocols is developed based
on the confluent asynchronous iteration concept. This result contains some
existing ones in [6] as special cases.

2 Preliminaries and Background

2.1 Definitions and Notations

Let G = {V, E, A} be a weighted digraph (or direct graph) of order n with
the set of nodes V = {v1, v2, . . . , vn}, set of edges E ⊆ V ×V , and a weighted
adjacency matrix A = [aij ] with nonnegative adjacency elements aij . The
node indices belong to a finite index set I = {1, 2, . . . , n}. A directed edge
of G is denoted by eij = (vi, vj). For a digraph, eij ∈ E does not imply
eji ∈ E. The adjacency elements associated with the edges of the graph are
positive, i.e., aij > 0 if and only if eji ∈ E. Moreover, we assume aii �= 0 for
all i ∈ I. The set of neighbors of node vi is the set of all nodes which point
to (communicate with) vi, denoted by Ni = {vj ∈ V : (vj , vi) ∈ E}.

A digraph G can be used to model the interaction topology among a group
of agents, where every graph node corresponds to an agent and a directed
edge eij represents a unidirectional information exchange link from vi to vj ,
that is, agent j can receive information from agent i. The interaction graph
represents the communication pattern at certain time. The interaction graph is
time-dependent since the information flow among agents may be dynamically
changing. Let Ḡ = {G1, G2, . . . , GM} denote the set of all possible interaction
graphs defined for a group of agents. Note that the cardinality of Ḡ is assumed
to be finite. The union of a collection of graphs {Gi1 , Gi2 , . . . , Gim}, each with
the vertex set V , is a graph G with the vertex set V and the edge set equal
to the union of the edge sets of Gij , j = 1, . . . , m.

A directed path in graph G is a sequence of edges ei1i2 , ei2i3 , ei3i4 , · · ·
in that graph. Graph G is called strongly connected if there is a directed
path from vi to vj and vj to vi between any pair of distinct vertices vi and
vj . Vertex vi is said to be linked to vertex vj across a time interval if there
exists a directed path from vi to vj in the union of interaction graphs in that
interval. A directed tree is a directed graph where every node except the root
has exactly one parent. A spanning tree of a directed graph is a tree formed
by graph edges that connect all the vertices of the graph. The condition that
a digraph contains a spanning tree is equivalent to the condition that there
exists a node having a directed path to all other nodes.

Let xi ∈ R, i ∈ I represent the state associated with agent i. A group
of agents is said to achieve global consensus asymptotically if for any xi(0),
i ∈ I, ‖xi(t)− xj(t)‖ → 0 as t → ∞ for each (i, j) ∈ I. Let 1 denote an n× 1
column vector with all entries equal to 1. A matrix F ∈ Rn×n is nonnegative,
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F ≥ 0, if all its entries are nonnegative, and it is irreducible if and only if
(I + |F |)n−1 > 0, where |F | denotes the matrix of absolute values of entries of
F . Furthermore, if all its row sums are +1, F is said to be a (row) stochastic
matrix.

Let X∗ be a nonempty closed convex subset of Rn, and let ‖ · ‖ be a norm
on Rn. For any vector x ∈ Rn, y∗ ∈ X∗ is a projection vector of x onto X∗

if ‖x− y∗‖ = miny∈X∗ ‖x− y‖. We use P (x) to denote an arbitrary but fixed
projection vector of x and dist(x, X∗) to denote ‖x − P (x)‖. Let T be an
operator on Rn. It is paracontractive if

‖Tx‖ ≤ ‖x‖ for all x ∈ R
n (1)

and equality holds if and only if Tx = x. An operator is nonexpansive (with
respect to ‖ · ‖ and X∗) if

‖Tx− x∗‖ ≤ ‖x − x∗‖ for all x ∈ R
n, x∗ ∈ X∗, (2)

and pseudocontractive [32] (with respect to ‖ · ‖ and X∗) if, in addition,

dist(Tx, X∗) < dist(x, X∗) for all x /∈ X∗. (3)

We use T to denote the set of all pseudocontractive operators. In the linear
case, pseudocontractive operators are generalizations of paracontractive ones.
But the converse is not true. Consider the following inequalities:

‖Tx− P (Tx)‖ ≤ ‖Tx − P (x)‖ ≤ ‖x − P (x)‖, for all x /∈ X∗. (4)

Paracontractivity requires the second inequality to be strict, while pseudo-
contractivity requires any one of these two inequalities to be strict.

Example 1. Let T ∈ R
n×n, X∗ = {c1|c ∈ R}. Then T is pseudocontractive

with respect to X∗ and the infinity norm ‖ · ‖∞ if and only if T1 = 1 and for
any x ∈ Rn such that mini xi < maxi xi, maxi(Tx)i −mini(Tx)i < maxi xi −
mini xi. 	

2.2 Synchronous and Asynchronous Consensus Protocols

We consider the following (synchronous) discrete-time consensus protocol [28,
26, 24]

xi(t + 1) =
1∑n

j=1 aij(t)

n∑
j=1

aij(t)xj(t) (5)

where t ∈ {0, 1, 2, · · ·} is the discrete-time index, (i, j) ∈ I and aij(t) > 0
if information flows from vj to vi at time t and zero otherwise, ∀j �= i. The
magnitude of aij(t) possibly represents time-varying relative confidence of
agent i in the information state of agent j at time t or the relative reliabilities
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of information exchange links between agents i and j. We can rewrite (5) in
a compact form

x(t + 1) = F (t)x(t) (6)

where x = [x1, · · · , xn]T , F (t) = [Fij(t)] with Fij(t) = aij(t)�
n
j=1 aij(t)

, (i, j) ∈ I.
An immediate observation is that the matrix F is a nonnegative stochastic
matrix, which has an eigenvalue at 1 with the corresponding eigenvector equal
to 1. The protocol (5) or (6) is synchronous in the sense that all the agents
update their states at the same time using the latest values of neighbors’
states.

The way described above to define F (t) in (6) is only one possible way
among many others. In the following we assume that F (t) satisfies Assumption
1 below.

Assumption 1 (Nontrivial interaction strength [6]) There exists a pos-
itive constant α such that

(a) Fii(t) ≥ α, for all i, t.
(b) Fij(t) ∈ {0} ∪ [α, 1], for all i, j, t.
(c)

∑n
j=1 Fij(t) = 1, for all i, t.

Now, in the asynchronous setting the order in which states of agents are
updated is not fixed and the selection of previous values of the states used
in the updates is also not fixed. Now let t0 < t1 < · · · < tn < · · · be the
time instants when the state of the multi-agent system undergoes change. Let
xi(k) denote the state of agent i at time tk. The index k is also called in the
literature the event-based discrete time index. The dynamics of asynchronous
systems can be written as

xi(k + 1) =
{∑n

j=1 Fij(k)xj(si
j(k)) if i ∈ I(k),

xi(k) if i /∈ I(k),
(7)

where si
j(k) are nonnegative integers, I(k) are nonempty subsets of {1, · · · , n}.

The initial states are specified by x(0) = x(−1) = · · ·. Henceforth, we write
the initial vector x(0) to abbreviate reference to this set of equal initial states.
We refer to di

j(k) = k − si
j(k) as iteration delays and I(k) as updating sets.

The following assumptions (called regularity assumptions) are usually made
in the study of linear asynchronous linear systems.

Assumption 2 (Partial asynchronism) (a) (Frequency of updating) The
updating sets I(k) satisfy

∃B ≥ 0,

i+B⋃
k=i

I(k) = {1, · · · , n}, for all i. (8)
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(b) (Bounded-delay asynchronism) There exists a nonnegative integer B such
that

0 ≤ k − si
j(k) ≤ B < ∞, ∀ (i, j, k). (9)

(c) si
i(k) = k, for all i.

Assumption 2(a) says that every agent should be updated at least once in any
B +1 iteration steps. Assumption 2(b) requires delays to be bounded by some
constant B. Assumption 2(c) says that an agent generally has access to its own
most recent value. Without loss of generality (but after renumbering in the
original definition), we assume that I(k) is a singleton which contains a single
element from {1, . . . , n}. Furthermore, if for all i there exists a nonnegative
integer Bi such that for all j

i ∈
j+Bi⋃
k=j

I(k), (10)

we call I(k) an indexwise-regulated sequence [27]. This condition expresses the
fact that different agents may have different updating frequencies.

2.3 Other Communication Assumptions

Let us review several important assumptions commonly used in the literature.

Assumption 3 (Connectivity) (a) (Uniform strong connectivity) There ex-
ists a nonnegative integer B such that

⋃t+B
s=t G(s) is strongly connected for

all t.
(a’) (Uniform spanning tree) There exists a nonnegative integer B such that⋃t+B

s=t G(s) contains a spanning tree for all t.
(b) (Nonuniform strong connectivity)

⋃
t≥t0

G(t) is strongly connected for all
t0 ≥ 0.

(b’) (Nonuniform spanning tree)
⋃

t≥t0
G(t) contains a spanning tree for all

t0 ≥ 0.

Assumption 4 (Direction of Communication)
(a) (Bidirectional link) If eij ∈ G(t) then eji ∈ G(t). It implies that the updat-
ing matrix F (t) or F (k) is symmetric.

(b) (Unidirectional link) eij ∈ G(t) does not imply eji ∈ G(t). In this case, the
updating matrix F (t) or F (k) is not symmetric.

Assumption 5 (Reversal link)
(a) If (vi, vj) ∈ G(t), then there exists some τ such that |t − τ | < B and
(vj , vi) ∈ G(τ) [8, 6].
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(b) There is a nonnegative integer B such that for all t and all vi, vj ∈ V we
have that if (vi, vj) ∈ G(t) then vj is linked to vi across [t, t + B] [25].

Assumptions 1-5 play different roles in proving various consensus results
and they are not necessarily independent from each other. Assumption 1 (Non-
trivial interaction strength) and one of the items in Assumption 3 (Connec-
tivity) are always necessary for the convergence of consensus protocols. They
guarantee that any update by any agent has a lasting effect on the states
of all other agents. Assumption 2 (Partial asynchronism) describes a class
of asynchronous systems. If Assumption 3(a) (Uniform strong connectivity)
is satisfied, then Assumption 2(a) (Frequency of Updating) and Assumption
5(b) (Reversal link) are satisfied automatically. Assumption 4(a) (Bidirec-
tional link) is a special case of Assumption 5 (Reversal link). Instead of re-
quiring an instantaneous reversal link (vj , vi) (T=0 for the bidirectional case)
for the link (vi, vj), we only need the reversal link (vj , vi) to appear within a
certain time window or just require vj links back to vi within a certain time
window (The edge (vj , vi) may not appear at all).

2.4 A Classification of Consensus Results

For better understanding of Assumptions 1-5, we categorize some of the ex-
isting consensus results in Table 1. Assumption 1 is omitted in the table since
it is required in all the results listed.

Table 1. A Categorization of the existing consensus results

No. Results Synchronism Connectivity Direction Reversal link

1 Th. 2 in [17] Sync. A3(a) A4(a) NA

2 Prop. 2 in [24] Sync. A3(b) A4(a) NA

3 Prop. 1 in [24] Sync. A3(a’) A4(b) NA

4 Th. 3.10 in [28] Sync. A3(a’) A4(b) NA

5 Th. 1 [25] Sync. A3(b) A4(b) A5(b)

6 Th. 2 in [12] A2(a),(b),(c) Fixed spanning tree A4(b) NA

7 Th. 4 in [8] A2(a),(c) with Spanning trees with A4(b) NA
zero time delay the common root

8 Th. 1 in [6] A2(a),(c) with A3(a) A4(b) NA
zero time delay

9 Th. 3 in [6] A2(a),(b),(c) A3(a) A4(b) NA

10 Th. 4 in [6] A2(a),(b),(c) A3(b) A4(a) NA

11 Th. 5 in [6] A2(a),(b),(c) A3(b) A4(b) A5(a)

Several comments are appropriate. First, asynchronous systems with zero
time delay can be mapped to equivalent synchronous systems following the
arguments in [12]. Therefore, Results No. 3 & 4 may be seen as a special case
of Result No. 6. Second, Table 1 reveals the fact that the uniform connectivity
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is necessary under unidirectional communication but it is not necessary under
bidirectional communication. The reason behind this fact is not at all clear
from an intuitive perspective. In Sect. 3, we give an explanation to the differ-
ence between bidirectional and unidirectional communication from contractive
operators’ point of view. Third, we utilize the iteration graph in Sect. 4.1 to
unify various communication assumptions. Fourth, Result No. 9 considers the
most general case among linear protocols; notice that all protocols in Table 1
are linear protocols. A nonlinear asynchronous protocol will be introduced in
Sect. 4.2.

3 Bidirectional vs. Unidirectional Communication

In this section, we investigate why different assumptions on connectivity need
to be imposed for bidirectional and unidirectional communication if consensus
is to be achieved. Specifically, we see the consensus problem as a matrix it-
eration problem where the notions of paracontraction and pseudocontraction
introduced in Sect. 2.1 are useful in proving convergence.

For an easy exposition, we restrict ourselves to synchronous protocols with
time-varying topologies and no time delays. That is, we consider the system
updating equation

x(t + 1) = F (t)x(t)

where the matrix F (t) satisfies Assumption 1. It is easily deduced that F (t)
is nonexpansive with respect to the vector norm ‖ · ‖∞. In the bidirectional
case, F (t) is also symmetric. From nonnegative matrix theory [16], we know
that the eigenvalues of F (t) lie in (−1, +1] for all t. It is now known that any
symmetric matrix F the eigenvalues of which are in (−1, +1] is paracontracting
with respect to Euclidian norm [7]. However, F (t) is no longer paracontracting
when its symmetry is lost.

Example 2 (partly taken from [32]) (a) For the weight matrix

F1 =

⎡
⎣ 0.5 0.5 0

0.25 0.5 0.25
0 0.5 0.5

⎤
⎦ ,

induced from the simple communication topology as shown in Fig. 1(a), the
norm and the set X∗ are the same as in Example 1. For any x, P (x) =
0.5(maxi xi+mini xi)1. For x = [2, 2, 1]T , F1x = (2, 1.75, 1.5)T , P (x) = 1.5 ·1,
and P (F1x) = 1.75·1. Thus the first inequality in (4) is strict while the second
one is an equality. So this operator is pseudocontractive, not paracontractive.

(b) For an arbitrary F (t), there is no guarantee that it is pseudocontrac-
tive, e.g., the weight matrix

F2 =

⎡
⎣ 1 0 0

0.5 0.5 0
0 0 1

⎤
⎦ ,
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which results from the communication topology in Fig. 1(b). For x = [2, 2, 1]T ,
F2x = [2, 2, 1]T . Thus equalities hold throughout (4). F2 is not pseudocontrac-
tive but it is nonexpansive. 	

1 2 3 1 2 3

(a) (b)

Fig. 1. Possible communication topologies for a three-agent system

An alternative proof for Result No. 2 was provided in [36] where the con-
vergence of the paracontracting matrix products was explored. The following
theorem in [11] is the key to this development.

Theorem 1. Suppose that a finite set of square matrices of same dimensions
{F1, · · · , Fr} are paracontracting. Let {I(t)}∞t=0, with 1 ≤ I(t) ≤ r, be a se-
quence of integers, and let J denote the set of all integers that appear infi-
nitely often in the sequence. Then for all x(0) ∈ Rn the sequence of vectors
x(t+1) = FI(t)x(t) has a limit x∗ ∈ ∩i∈J H(Fi), where H(F ) denotes the fixed
point subspace of a paracontracting matrix F , i.e., its eigenspace associated
with the eigenvalue 1,

H(F ) = {x|x ∈ R
n, Fx = x}.

Does there exist a result similar to Theorem 1 for pseudocontracting ma-
trices? The answer is, fortunately, affirmative.

Theorem 2 ([32]). Let {Tt} be a sequence of nonexpansive operators (with
respect to ‖ · ‖ and X∗), and assume there exists a subsequence {Tti} which
converges to T ∈ T . If T is pseudocontractive and uniformly Lipschitz contin-
uous, then for any initial vector x(0), the sequence of vectors x(t+1) = Ttx(t),
t ≥ 0 converges to some x∗ ∈ X∗.

Note that in our study X∗ = {c1|c ∈ R}. We are thus one step away from
proving Result No. 3 and it is exactly where Assumption A3(a) (the uniform
connectivity) comes into play. Result No. 3 is an immediate result of Theorem
2 and the following lemma.

Lemma 1. If Assumption A3(a) is satisfied, then there exists an integer B′

such that the matrix product F (t0 + B′)F (t0 + B′ − 1) · · ·F (t0) is pseudocon-
tractive, with respective to ‖ · ‖∞ and X∗ = {cl|c ∈ R}, for any t0 ≥ 0.

To prove Lemma 1, we need the following technical results.

Lemma 2 (Lemma 2 in [17]). Let m ≥ 2 be a positive integer and let
F1, F2 . . . , Fm be nonnegative n × n matrices. Suppose that the diagonal
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elements of all of the Fi are positive and let α and β denote the smallest and
largest of these, respectively. Then

FmFm−1 · · ·F1 ≥
(

α2

2β

)(m−1)

(Fm + Fm−1 + · · · + F1). (11)

Lemma 3 (Proposition 3.2 in [32]). Let x be a vector such that x < x̄ with
x = mini xi and x̄ = maxi xi, F be an irreducible matrix with Fii > 0 for 1 ≤
i ≤ n, y = Fx. Then the number of the elements in set {i|yi = x or yi = x̄}
is at least one less than the number of the elements in {i|xi = x or xi = x̄}.

Proof (of Lemma 1). Assume that there exists an infinite sequence of con-
tiguous, non-empty, bounded time-intervals [tij , tij+1 ), j ≥ 1, starting at ti1 ,
with the property that across each such interval, the union of the interaction
graphs is strongly connected (Assumption A3(a)).

Let Htj = F (tij+1−1) · · ·F (tij+1)F (tij ). By Lemma 2 and the strong con-
nectivity of the union of the interaction graphs, it follows that Htj is irre-
ducible. It is easy to prove that Htj is nonexpansive with positive diagonal
elements and Htj1 = 1.

Define H = Htn−1Htn−2 · · ·Ht1 and y = Hx. Applying Lemma 3 repeat-
edly for (n − 1) times, we have at least one set of {i|yi = x} and {i|yi = x̄}
is empty. If, say, {i|yi = x} is empty, then yi > x for all 1 ≤ i ≤ n, and
furthermore

‖y − P (y)‖ =
maxi yi − mini yi

2
≤ x̄ − mini yi

2
<

x̄ − x

2
= ‖x − P (x)‖;

therefore H is pseudocontractive. In other words, F (t0 + B′)F (t0 + B′ −
1) · · ·F (t0) is pseudocontractive for B′ = (n − 1)B. 	

Let us briefly summarize what we have presented in this section. In the
bidirectional case, the weight matrices are always paracontracting. Theorem
1 can be applied directly to infer the convergence of the consensus processes.
In the unidirectional case, the weight matrices are generally not pseudocon-
tracting. In order to use Theorem 2, the uniform connectivity condition needs
to be imposed so that the matrix products across certain time interval are
pseudocontracting.

4 Iteration Graph and Nonlinear Asynchronous
Consensus Protocols

In the framework of [27], the consensus problem is regarded as a special case of
finding common fixed points of a finite set of paracontracting multiple point
operators. That is, all the operators are defined on (different) products of
Rn. To avoid the divergent phenomena, asynchronous iterations which fulfill
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certain coupling assumptions called confluent are considered. Below we ap-
ply this theory of paracontractions and confluence to derive a more general
consensus result, which extends Result No. 9 by allowing nonlinear multiple
point operators.

For the purpose of self-containedness, we introduce several related defini-
tions below. Let I be a set of indices, m ∈ N a fixed number, and F = {F i|i ∈
I} be a pool of operators F i : Dmi ⊂ Rnmi → D, where mi ∈ {1, · · · , m},
∀i ∈ I, and D ⊂ Rn is closed. Furthermore, let XO = {x(0), · · · , x(−M)} ⊂ D
be a given set of vectors. Then, for sequences I = I(k) (k = 0, 1, . . .) of
elements in I, S = {s1(k), . . . , smi(k)(k)}, k = 0, 1, . . ., of mi-tuple from
N0 ∪ {−1, . . . ,−M} with sl(k) ≤ k for all k ∈ N0, l = 1, . . . , mi(k), we study
the asynchronous iteration given by

x(k + 1) = F I(k)
(
x(s1(k)), . . . , x(smI(k)(k))

)
, k = 0, 1, . . . (12)

An asynchronous iteration corresponding to F , starting with XO and de-
fined by I and S can be denoted by (F ,XO, I,S). A fixed point ξ of a multiple
point operator F : Rnm → R is a vector ξ ∈ Rn which satisfies F (ξ, . . . , ξ) = ξ,
and a common fixed point of a pool is a fixed point of all its operators in this
sense.

4.1 Iteration Graph

In essence, the communication assumptions define the coupling among agents
or, more generally, the coupling of an iteration process. The existing assump-
tions often rely on interaction graphs to describe the “spatial” coupling among
agents. However, ambiguity arises when asynchronism (e.g., delays) is allowed
since the “temporal” coupling cannot be described directly. In the asynchro-
nous setting, it is of importance to differentiate the same agent at different
time instants.

To this end, we associate an iteration graph with the asynchronous iteration
(F ,XO, I,S). Every iteration, including initial vectors, gets a vertex, so the
set of vertices is V = N0 ∪ {−1, . . . ,−M}. A pair (k1, k2) is an element of the
set of edges E in the iteration graph (V, E), if and only if the k1th iteration
vector is used for the computation of the k2th iteration vector.

Below we illustrate the concept of iteration graph via an example. The
interaction topologies of a three-agent system at different time instants are
shown in Fig. 2(a). It is easy to see that if the interaction pattern continues,
Assumption 3(b) is satisfied. Let y(−1) = x1(0), y(−2) = x2(0), and y(−3) =
x3(0). At time k = 0, v2 communicates with v3. By construction, we add a
vertex 0 and an edge from vertex -2 to vertex 0 in the associated iteration
graph, as shown in Fig. 2(b). Assume that v3 and v1 do not use its own past
value. Therefore, we do not add an edge from vertex -3 to vertex 0 in the
iteration graph. At time instant k = 1, v2 uses the value of v1 and its own
past value to update its state, resulting in two edges in the iteration graph.
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Remark 1. An analogy to the iteration graph is the the reachability graph in
the Petri net literature. The reachability graph is used for verification and
supervisory control and obtained sometimes via a method called unfolding
that simplifies the procedure [4].

v1

v2

v3

0 1 2 3 4 5-2 -1-3

0 1 2 3 4 5
(a)

(b)

v1

v2

v3 v1

v2

v3 v1

v2

v3 v1

v2

v3 v1

v2

v3

Fig. 2. Interaction topologies of an asynchronous system and its associated iteration
graph.

Definition 1 (Confluent asynchronous iteration [27]). Let (F ,XO, I,S)
be an synchronous iteration. The iteration graph of (F ,XO, I,S) is the digraph
(V, E), whose vertices V are N0∪{−1, . . . ,−M}, and whose edges E are given
by

(k, k0) ∈ E, iff there is an 1 ≤ l ≤ mI(k0−1), such that sl(k0 − 1) = k.

(F ,XO, I,S) is called confluent, if there are numbers n0 ∈ N, b ∈ N and a
sequence bk (k = n0, n0 + 1, . . .) in N, such that for all k ≥ n0 the following
is true:

(i) For every vertex k0 ≥ k there is a directed path from bk to k0 in (V, E),
(ii) k − bk ≤ B,
(iii) S is regulated,
(iv) for every i ∈ I there is a ci ∈ N so that for all k ≥ n0 there is a vertex wi

k

in V , which is a successor of bk and a predecessor of bk+ci , and for which
is I(wi

k − 1) = i.

It is worth mentioning that when Assumptions 2(a)(b), 3(b), 4(b) are ful-
filled, the associated asynchronous iteration is confluent. Given an arbitrary
iteration, there are simple ways to make its implementation confluent [27].

Remark 2. As opposed to the original development in [9], here the whole vector
is updated in every iteration step. Also, all components of vectors have the
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same delay. This does not impose a restriction since the vectors reduce to a
scalar in our study.

4.2 Nonlinear Asynchronous Consensus Protocols

Before introducing the main result of the paper, we need the following defi-
nition. Note that paracontracting operator in Definition 2(ii) corresponds to
pseudocontracting operator as defined in (3). (Without much confusion, the
original definitions given in [27] are followed for easy reference.)

Definition 2. Let F be a pool of operations as in Definition 1, and X =
(x1, . . . , xmi) an element of Rnmi .

(i) If for all i ∈ I, X, Y ∈ Dmi and a norm ‖ · ‖

‖Gi(X) − Gi(Y )‖ < max
j

‖xj − yj‖

or ‖Gi(X)−Gi(Y )‖ = xj − yj, ∀j ∈ {1, . . . , mi}, then F is called strictly
nonexpansive on D.

(ii) If for all i ∈ I, X ∈ Dmi and a norm ‖ · ‖, F i is continuous on Dmi , then
F is paracontracting on D, if for any fixed point ξ ∈ Rn of F i,

‖F i(X) − ξ‖ < max
j

‖xj − ξ‖

or X = (x, . . . , x) and x is a fixed point of F i.

It is easy to see that every strictly nonexpansive pool is paracontracting.
Moreover, an (e=extended)-paracontracting notion is introduced in [27]. The
(e)-paracontracting operators may be discontinuous, and have nonconvex sets
of fixed points.

A simplified version of the main result in [27] is now given.

Theorem 3. Let F be a paracontracting pool on D ⊂ Rn, and assume that F
has a common fixed point ξ ∈ D. Then any confluent asynchronous iterations
(F ,XO, I,S) converges to a common fixed point of F .

With the help of Theorem 3, Result No. 9 can be obtained by interpreting
the different rows of a stochastic matrix as multiple data operators. To see
this, let fimi(j)(k) be for all i ∈ {1, . . . , n} the jth of mi nonzero entries in
F (k)’s ith row, or let mi(j) = j, ∀j = 1, . . . , n, and mi = n, if this row is
zero. Then the pool F = {F i|i = 1, . . . , Q} (Q, the total number of operators,
is finite), defined by F i(k) : Rmi → R,

F i(k)(y1, . . . , ymi) :=
mi∑
j=1

fimi(j)(k)yj , i = 1, . . . , Q (13)

is strictly nonexpansive on all closed intervals D ⊂ R, if F i(1, . . . , 1) = 1.
We are now ready to claim a new consensus result where F i is allowed to

be nonlinear. To avoid confusion, we rewrite I(k) in (12) as pk below.
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Theorem 4. Consider the iteration

xi(k + 1) = F i
(
x1(s1(k), x2(s2(k)), . . . , xn(sn(k)

)
. (14)

(i) Assume without loss of generality that the numbering of sl(k), k = 0, 1, . . .,
is chosen in such a manner that all components xl(sl(k)) in (14) them-
selves are updated at time sl(k), i.e.,

psi(k)−1 = i, ∀k ∈ N, i ∈ {1, . . . , n} with si(k) ≥ 1, (15)

and, also w.l.o.g., that all initial vectors are multiples of 1. Define

x(−k) := xk(0)1, ∀k = 1, . . . , n,

and renumber in this way the elements of the sequences of sl(k), k =
0, 1, . . ., l = 1, . . . , n, for which sl(k) = 0. Then the asynchronous iteration
(F ,YO, I,S), given by

y(k + 1) := F pk
(
y(s̃1(k)), . . . , y(s̃mpk (k))

)
, k = 0, 1, . . . (16)

where F = {F pk |k = 0, 1, . . .} is paracontracting, I = pk, k = 0, 1, . . .,
S = {s̃i(k)|k = 0, 1, . . . ; i = 1, . . . , mpk

} is given by

s̃i(k) := smpk
(i)(k), ∀k ∈ N0, i = 1, . . . , mpk

, (17)

and YO by y(−l) := x1(−l), l = 1, . . . , n, generates

y(k + 1) = xpk
(k + 1), ∀k ∈ N0. (18)

(ii) The pool F =
{
F i : Rn → R|i ∈ {1, . . . , Q}

}
is paracontracting and has a

common fixed point. Furthermore, there exists an agent i0 which updates
its state using only a subset of the pool F . Every operator in this subset
is continuously differentiable in xi0 and ∂F i

∂xi0
�= 0. Assume that si0(k) =

max{k0 ≤ k|pk0−1 = i0} for all k > min{k0 ∈ N0|pk0 = i0} with pk = i0.
Then, under Assumptions 2(a)(b), 3(b), 4(b), the nonlinear protocol (16)
or, equivalently, (14) guarantees asymptotic consensus.

Proof. (i) follows by induction on k. Using the same argument as in the proof
of Theorem 5(v) in [27], it can be shown that the iteration (16) is confluent.
(ii) is then an immediate result of Theorem 3.

Remark 3. In Fig. 2, the iteration graph is confluent when the agent v2 always
uses its own past value for updating. Suppose that no agents use their past
values during the process (i.e., dashed edges no longer appear). After removing
the dashed edges from Fig. 2(b), the iteration graph is no longer confluent since
there is no directed path from an odd-numbered vertex to an even-numbered
vertex, and vice versa. This shows the necessity of existence of i0 in Theorem
4(ii).

Theorem 4 is exact, rather than linearized and can be used to study multi-
agent systems with nonlinear couplings. Potential applications include distrib-
uted time synchronization and rendezvous of multi-robots with nonholonomic
constraints.
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5 Conclusions

In this paper, we examined the different assumptions made in the various
consensus results in the literature so to better understand their roles in the
convergence analysis of consensus protocols. A novel nonlinear asynchronous
consensus result was also introduced using the theory of paracontracitons and
confluence. This result is more general than the existing ones and provides
a powerful tool to study a wider range of applications. Many open problems
remain; see [13] for a detailed discussion.
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