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Abstract— This paper presents a new result concerning
the design of supervisors for specifications involving firing
vectors. The result shows that without loss of permissiveness,
a solution to the design problem can be found by solving
another supervisor design problem, involving only marking
specifications, in a transformed Petri net. On one hand, this
result shows that the methods for marking specifications can
be applied to specifications involving also firing vectors. On
the other hand, the specifications involving firing vectors have
been shown to be necessary in order to describe the P-
type languages of free-labeled Petri nets. Since the method
of this paper could be used without loss of permissiveness,
it is complementary to our previous work on structural and
suboptimal methods for the design of supervisors with firing
vector specifications.

I. INTRODUCTION

The constraints of the form

Lμ + Hq + Cv ≤ b (1)

have been proposed in [3], as a description of the constraints
enforced by a set of places arbitrarily connected to a set of
transitions. Thus, (1) describe the P-type languages of free-
labeled Petri nets (PNs). In (1), μ is the marking, q is the
firing vector, and v is a parameter called the Parikh vector,
representing the number of firings of each transition since
the initialization of the system. Further, L, H , C, and b are
integer matrices of appropriate dimensions. As the Parikh
vector term can be easily incorporated in the marking term
by adding a sink place to each transition [3], we will only
refer to constraints of the form

Lμ + Hq ≤ b (2)

Given a PN N = (P, T, D−, D+), where P is the set of
places, T the set of transitions, D− the input matrix, and
D+ the output matrix, a specification (2) on N is interpreted
as follows. First, a marking μ satisfies (2) if Lμ ≤ b.
Further, a transition t may fire at μ only if its corresponding
firing vector q satisfies Lμ + Hq ≤ b and the next reached
marking μ′ (that is, μ

t
−→ μ′) satisfies Lμ′ ≤ b. Moreover,

in a concurrency setting, a firing vector q is enabled only
if for all integer vectors q′, q′′ ≥ 0, q′ + q′′ ≤ q ⇒

Lμ′+Hq′′ ≤ b, where μ
q′

−→ μ′. These conditions describe
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when the firing of q is permissible under a specification (2).
In addition, the condition D−q ≤ μ is used to characterize
the firing vectors q that the plant is able to fire. Intuitively,
the concurrency interpretation of the specification requires
that (2) be satisfied at any possible intermediary stage of the
firing of q. Further, we show that this requirement can be
expressed compactly by Hdq ≤ μs, where Hd and μs can
be seen as the input matrix and the marking of a supervisor
enforcing (2).

In this paper we consider disjunctions of the form
nd∨
i=1

[Liμ + Hiq ≤ bi] (3)

requiring that there is i = 1 . . . nd such that μ and q satisfy
the specification Liμ + Hiq ≤ bi, in the sense discussed at
(2). Due to partial controllability and observability issues,
the problem of enforcing specifications (3) is difficult. The
main result of this paper is that given a specification S of
the form (3) on a PN (N , μ0), a solution to the supervisor
design problem can be found by solving first a supervision
design problem on a transformed PN (NH , μH0) for a
specification SH of the form

nd∨
i=1

[LH,iμH ≤ bi]. (4)

Note that (NH , μH0) and the matrices LH,i are obtained
from (N , μ0) and (3) by means of a PN and constraint
transformation that we call the H-transformation. Thus, our
results show that if we find a specification S′

H of the form
(4) that is at least as restrictive as SH and that satisfies
also certain feasibility and compatibility constraints, then a
specification S′ of the form (3) can be easily derived, such
that S′ is feasible and at least as restrictive as S. Further, we
show that if S′

H is optimal with respect to permissiveness, so
is S′. Note that the paper does not show how to find S ′

H ; it
only shows that without loss of permissiveness, the problem
of enforcing (3) can be reduced to a problem of enforcing
a specification (4) (in which the term Hq is missing).

The results of this paper are obtained under the con-
currency setting of the transition bag assumption [8], [7],
in which bags of transitions can fire at the same time.
This means that a firing vector q may be any nonnegative
integer vector q ∈ N

|T |, provided there are enough many
tokens to enable q. Further, note that a supervisor derived
under the transition bag assumption is valid also under other
concurrency settings, though it may be more restrictive than
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necessary. The setting of partial controllability and partial
observability considered in this paper is general. We con-
sider a class of labeled PNs in which different labeling func-
tions are used for control events and for observation events.
In this way, the settings of the (conventional) labeled Petri
nets and of the Petri nets with uncontrollable/unobservable
transitions appear as special cases.

Concerning the significance of the results, further work
is necessary in order to determine whether this reduction
method is the best way to approach constraints (3). It should
be emphasized that the reduction method in itself has very
little computational complexity: the transformation required
to go between (N , μ0) and (3) on one hand, and (NH , μH0)
and (4) on the other hand, has low polynomial complexity.
However, more work is needed in order to investigate the
benefit of working with specifications in the simplified form
(4). In any case, these results are a step forward towards
understanding the permissiveness properties of the structural
method of [3], which uses the same reduction technique.

II. PRELIMINARIES

Let D = D+ − D− denote the incidence matrix. It is
known [3] that in the fully controllable and observable case,
a least restrictive supervisor enforcing (2) can be imple-
mented by a PN supervisor of input and output matrices

D+

c = max(0,−LD, H − LD) (5)

D−
c = max(0, LD, H) (6)

and marking μs = b − Lμ. In the equations (5–6), the
operator max is taken element by element. That is, Y =
max(0, X) means Yij = max(0, Xij) and Z = max(X, Y )
means Zij = max(Xij , Yij). By definition, the constraints
Lμ + Hq ≤ b are interpreted as requiring that ∀q′, q′′ ≥ 0,

q′ + q′′ ≤ q ⇒ Lμ′ + Hq′′ ≤ b, where μ
q′

−→ μ′. It is
important to notice that this interpretation of (2) can be
simply expressed by the inequality

Hdq ≤ b − Lμ (7)

for Hd = D−
c , as proved in the following lemma.

Lemma 2.1 μ and q ≥ 0 satisfy (7) iff ∀q′, q′′ ≥ 0, q′+q′′ ≤
q ⇒ Lμ′ + Hq′′ ≤ b, where μ

q′

−→ μ′.

Proof: First, let’s note that Lμ′ + Hq′′ ≤ b can be
written as Lμ + LDq′ + Hq′′ ≤ b.
“⇒” In view of (6), the conclusion follows based on the
observation that D−

c q ≥ D−
c (q′ + q′′) ≥ (LD)q′ + Hq′′.

“⇐” Let l, h and e denote the k’th row of L, H and b. We
prove that if ∀q′, q′′ ≥ 0, q′+q′′ ≤ q ⇒ lμ+lDq′+hq′′ ≤ e,
then lμ + d−c q ≤ e, where d−c = max(0, lD, h). We prove
it by showing that the maximum of [lDq′ +hq′′] subject to
q′, q′′ ≥ 0 and q′ + q′′ ≤ q, equals d−c q.

Let q = [q1, q2, . . . qn]T , q′ = [q′
1
, q′

2
, . . . q′n]T and

q′′ = [q′′
1
, q′′

2
, . . . q′′n]T . Note that max[lDq′ + hq′′] =

max[
∑

i((lD)iq
′
i + hiq

′′
i )], where (lD)i and hi are the i’th

components of lD and h. Since max[(lD)iq
′
i + hiq

′′
i )] =

qi max(0, (lD)i, hi), we obtain max[(lD)q′ + hq′′] =∑
i qi max(0, (lD)i, hi) = d−c q, which ends the proof.
Let Q denote the set of firing vectors, Q∗ the set of firing

sequences σ = q1q2 . . ., and M the set of initial states
(initial markings). In this paper, we consider deterministic
supervisors defined as maps Ξ : M × Q∗ → Q. For all
x ∈ M×Q∗, Ξ(x) represents the set of supervisor-enabled
firing vectors, where a firing vector q is enabled when q ≤
Ξ(x). As defined, supervisors may or may not be feasible,
where a supervisor is infeasible if it cannot be implemented
due to the controllability and observability constraints of the
plant.

A specification is said to be enforced by a supervisor
Ξ of a plant (N , μ0) if the closed-loop (N , μ0, Ξ) allows
only firing sequences that satisfy the specification. A spec-
ification is said to be optimally enforced if the closed-
loop (N , μ0, Ξ) disables only the firing sequences of the
plant that do not satisfy the specification. In other words,
a supervisor Ξ that optimally enforces the specification has
the permissiveness of a least restrictive supervisor designed
in the setting of fully controllable and observable PNs.

In this paper we consider double-labeled PNs, which
are PNs enhanced with two labeling functions, as follows.
Each transition is labeled by control events and by one
observation event. A transition may fire only if one of the
control events is enabled. Further, when a transition fires,
it generates the observation event that labels it. Without
loss of generality, we will assume each transition is labeled
by a single control event. Let K and O denote the sets of
control and observation events. The events used for control
are mapped by ρ : T → K, and the events used for
observation by o : T → O. In particular, for labeled PNs
ρ(t) = o(t) ∀t ∈ T and K = O = Σ, where Σ is the set
of events. Further, for PNs with individually controllable
and observable transitions, ρ(t) = o(t) = {t} ∀t ∈ T and
K = O = T . In order to define formally the feasibility of
a specification, the following notation is introduced.

1) Let Kc ⊆ K denote the set of controllable events.
Given a firing vector q, ρ∗(q) denotes a vector z ∈
N

|Kc| indexed by the events of Kc, such that ∀e ∈ Kc,
z(e) =

∑
t∈ρ−1(e) q(t).

2) Let Oo ⊆ O denote the set of observable events.
Given a firing vector q, o∗(q) denotes a vector z ∈
N

|Oo| indexed by the events of Oo, such that ∀e ∈ Oo,
z(e) =

∑
t∈o−1(e) q(t).

3) Given a firing sequence σ = q1q2q3 . . . let
o∗(σ) denote the sequence of observation vectors
o∗(q1)o

∗(q2)o
∗(q3) . . ..

Definition 2.1 A specification on a PN (N , μ0) is feasible
if a supervisor optimally enforcing it ensures that

1) If q and q′ are two plant-enabled firing vectors and
ρ∗(q) = ρ∗(q′), then the closed-loop enables either
both q and q′ or none of them.

2) If σ1 and σ2 are two firing sequences closed-loop
enabled at the initial state, o∗(σ1) = o∗(σ2), and
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q 
= 0 is a firing vector such that both σ1q and σ2q
are plant-enabled at the initial state, then either both
σ1q and σ2q or none of them are closed-loop enabled
at the initial state.

In Definition 2.1, note that the firing vectors q and q′ are
not necessarily nonzero, and the sequences σ1 and σ2 are
not necessarily nonempty. In our convention, a firing vector
q = 0 and an empty firing sequence σ are always enabled.
Next, we define feasible supervisors. Let Ω denote the set
of observation vectors o∗(q) for q ∈ Q and Ω∗ the set
of sequences of observation vectors o∗(q1)o

∗(q2)o
∗(q3) . . ..

Let Γ denote the set of control vectors ρ∗(q) for q ∈ Q. A
feasible supervisor should be implementable by observing
only observation vectors and controlling only controllable
events. A formal definition follows.

Definition 2.2 A supervisor Ξ is feasible if there is a map
Ξ : M × Ω∗ → Γ such that ∀s ∈ M, ∀σ ∈ Q∗, γ =
Ξ(s, πo(σ)) ⇒ Ξ(s, σ) = {q ∈ Q : ρ∗(q) ≤ γ}.

Note that a feasible specification has the property that
there is a feasible supervisor that optimally enforces it.
Next, we define the PN and constraint transformations used
in this paper. The H-transformation is a modification of the
indirect method for enforcing firing vector constraints in [6].
The idea of the transformation is illustrated on the following
example. Consider the PN of Figure 1(a). Assume that we
desire to enforce

μ1 + μ2 + 2μ3 + q3 ≤ 5 (8)

Then, we can transform the PN as shown in Figure 1(b).
The transformation adds a place and a transition which
correspond to the factor q3. Then

μ1 + μ2 + 2μ3 + 4μ5 ≤ 5 (9)

is the transformed constraint, where the term 4μ5 is ob-
tained as follows. Consider firing t3 in the transformed net.
If μ

t3−→ μ′ and a is the coefficient of μ5, we desire

a + μ′
1
+ μ′

2
+ 2μ′

3
= 1 + μ1 + μ2 + 2μ3

where the factor 1 is the coefficient of q3 in (8). Thus we
obtain a = 4. The transformation is defined as follows.

The H-Transformation

Input: The PN N of structure N = (P, T, D−, D+), the
constraints Lμ+Hq ≤ b, and optionally the initial marking
μ0 and a set Ts,H ⊆ T (by default, Ts,H = ∅).

Output: The H-transformed PN NH of structure
NH = (PH , TH , D−

H , D+

H), the H-transformed constraints
LHμH ≤ b, and the initial marking μH0 of NH .

1) Let Hd = max(LD, H, 0), T 1 = Ts,H ∪ {t ∈ T :
Hd(·, t) 
= 0} and Ts = {t ∈ T : ρ(t) =
ρ(t′) for some t′ ∈ T 1}. (Thus Ts ⊇ T 1.)

2) Initialize NH to be identical to N , with the same
controllability and observability attributes. Initialize
also LH to L and μH0 to μ0.

3) For all t ∈ Ts:
a) Add a new place pk and a new transition tj to

NH as in Figure 2.
b) Set LH(·, pk) = Hd(·, ti) + LD−(·, ti) and

μH0(pk) = 0.
4) For all t ∈ Ts, the controllability and observability of

the transitions tj is defined as follows:
a) o(t • •) = o(t).
b) The set of control events is extended such that

ρ(t • •) /∈ {ρ(t) : t ∈ T }.
c) ρ(t • •) is controllable iff ρ(t) is controllable.
d) For t, t′ ∈ Ts, ρ(t••) = ρ(t′••) iff ρ(t) = ρ(t′).

The H−1-Transformation

Input: The PN N = (P, T, D−, D+), the H-transformed
net NH = (PH , TH , D−

H , D+

H), and a set of constraints
LHμH ≤ b on NH .

Output: The H−1-transformed constraints Lμ + Hq ≤ b.

1) Set L(·, p) = LH(·, p) ∀p ∈ P and H to the null
matrix.

2) For all pk ∈ PH \ P

a) Let ti be the transition such that {ti} = •pk.
b) Set H(·, ti) = LH(·, pk) − LHD−

H(·, ti).
Note several properties of the H- and H−1-transformations.
To simplify our notation, assume single constraints lμ +
hq ≤ b and lHμH ≤ b. Further, let PH = PH \ P . Thus, if
lHμH ≤ b is the H-transformation of lμ + hq ≤ b, then:

lH(p) =

{
l(p) if p ∈ P
hd(•p) + lD−(·, •p) if p ∈ PH

(10)

In addition, the relation between NH and N is such that

∀t ∈ T \ •PH :

D−
H(p, t) =

{
D−(p, t) for p ∈ P

0 for p ∈ PH
(11)

D+

H(p, t) =

{
D+(p, t) for p ∈ P

0 for p ∈ PH
(12)

∀t ∈ T ∩ •PH :

D−
H(p, t) =

{
D−(p, t) for p ∈ P

0 for p /∈ PH
(13)

D+

H(p, t) =

{
0 for p /∈ PH ∩ t•
1 for p = PH ∩ t•

(14)

∀t ∈ TH \ T :

D−
H(p, t) =

{
0 for p 
= •t
1 for p = •t

(15)

D+

H(p, t) =

{
D+(p, • • t) for p ∈ P

0 for p /∈ P
(16)

Furthermore, if lμ + hq ≤ b is the H−1-transformation of
lHμH ≤ b

l(p) = lH(p) ∀p ∈ P (17)

h(t) =

{
lH(p) − lHD−

H(·, t), if t • ∩PH = p

0, if t • ∩PH = ∅
(18)
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Fig. 1. Example for the H-transformation.
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Fig. 2. Illustration of the transition split operation.

The following relation can be easily verified based on (10–
16). The relation will prove very useful in the further
developments.

LHDH(·, t) =

⎧⎪⎪⎨
⎪⎪⎩

LD(·, t) for t ∈ T \ •PH

Hd(·, t) for t ∈ T ∩ •PH

LD(·, • • t) − Hd(·, • • t)
for t ∈ TH \ T

(19)

Let Dc, D−
c and D+

c denote the incidence, output, and input
matrices of the supervisor enforcing Lμ + Hq ≤ b. Simi-
larly, let’s define Dc,H , D−

c,H and D+

c,H for the supervisor
enforcing LHμH ≤ b in NH . Note that Dc,H = −LHDH

and D−
c,H = max(0, LHDH). Thus, based on (19), the

following is obtained:

D−
c,H(·, t) =

{
D−

c (·, t) for t ∈ T
0 for t ∈ TH \ T

(20)

Further, since D+

c,H = max(0,−LHDH)

D+

c,H(·, t) =

⎧⎨
⎩

D+

c (·, t) for t ∈ T \ •PH

0 for t ∈ T ∩ •PH

D+

c (·, • • t) for t ∈ TH \ T
(21)

III. MAIN RESULTS

First, we introduce the following notation. If a transition
ti is split in the H-transformation as in Figure 2, let σH(ti)
be the firing sequence titj . If a transition ti is not split, let
σH(ti) equal ti. Further, we also use σH for firing vectors:
σH(q) = qHq′H , where qH(ti) = q′H(tj) = q(ti) for a
transition ti split in ti and tj , qH(ti) = q(ti) for a transition
ti that is not split, q′H(ti) = 0 ∀ti ∈ T and qH(tj) = 0
∀tj ∈ TH \ T . If σ = q1q2 . . . is a firing sequence in N ,
let σH(σ) = σH(q1)σH(q2) . . .. Further, let mH map the
markings of N into markings of NH as follows:

μH = mH(μ) ⇒ μH(p) =

{
μ(p) for p ∈ P

0 for p ∈ PH
(22)

Proposition 3.1 Given (N , μ0) and (NH , mH(μ0)), let q
be a firing vector in N and σH(q) = qHq′H .

(a) At all reachable markings, qH is enabled iff σH(q) is
enabled.

(b) q is enabled at the marking μ1 iff σH(q) is enabled
at the marking mH(μ1).

Proof: (a) By (14) and (15), qH is enabled iff qHq′H
is enabled.

(b) Let μH1 = mH(μ1). Note that μ1 ≥ D−q ⇔ μH1 ≥
D−

HqH , by (11) and (13). Therefore, q is enabled iff qH is
enabled, which concludes our proof by part (a).

Given a firing sequence σ of N , we have already defined
σH(σ) to denote the equivalent firing sequence σH of
NH . In the following developments, we will need also the
converse operation σ(σH), associating a firing sequence σ
of N to each firing sequence σH of NH . Assume μ0 and
μH0 = mH(μ0) are the initial markings of N and NH .
Given a firing sequence σH of NH , let σH be the firing
count vector. Let νH(σH) be the largest integer vector vH

such that vH ≤ σH and ∀t ∈ •PH , vH(t) = vH(t • •).
Further, let χH(σH) = σH − νH(σH). Thus, if qH =
χH(σH), then ∀t ∈ TH \ •PH , qH(t) = 0. Let ν(σH)
and χ(σH) be the restrictions of νH(σH) and χH(σH) to
the transitions in T . If σH = qH1qH2 . . . qHx, let σH0

be an empty sequence, σH1 = qH1, σH2 = qH1qH2,
. . . σHx = qH1qH2 . . . qHx and qi = ν(σHi)−ν(σHi−1) for
i = 1 . . . x. We define σ(σH) as the sequence q1q2 . . . qx.

Proposition 3.2 Consider (N , μ0), the set of constraints
Lμ + Hq ≤ b, and their H-transformation (NH , μH0) and
LHμH ≤ b, where μH0 = mH(μ0).

(a) If σH(q) = qHq′H , μ1

q
−→ μ2, μH1

qH

−→ μ′
H1

q′
H−→

μH2 and μH1 = mH(μ1), then μH2 = mH(μ2) and
LHμ′

H1
= Lμ1 + Hdq.

(b) If μH0

σH−→ μH , then σ(σH) is enabled at μ0 and
firing it results in μ = μ0 + Dν(σH). Further, q =
χ(σH) is enabled at μ and LHμH = Lμ + Hdq.

(c) Given σH and qH , if σHqH is enabled at μH0 and x
is the restriction of qH to T , then σ(σH)q is enabled
at μ0, where q = χ(σH) + x.

(d) Let Ξ be a supervisor optimally enforcing Lμ+Hq ≤
b in (N , μ0) and ΞH a supervisor optimally enforcing
LHμH ≤ b in (NH , μH0). If σH is closed-loop
enabled at μH0, then σ(σH) is closed-loop enabled
at μ0.
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Proof: See Proposition 4.9 in [4].
Next, a relaxed concept of feasibility is introduced for

specifications on NH . Compared to Definition 2.1, the
second requirement is relaxed to constrain only the firing
sequences σH of NH that have the form σH = σH(σ),
where σ is a sequence of N .

Definition 3.1 A specification on (NH , μH0) is h-feasible
if a supervisor optimally enforcing it ensures that

1) If qH and q′H are two plant-enabled firing vectors
and ρ∗(qH) = ρ∗(q′H), then the closed-loop enables
either both qH and q′H or none of them.

2) Let q 
= 0 be a firing vector of N and σ1 and σ2 be
two sequences of firing vectors of N . If σH(σ1) and
σH(σ2) are enabled by the closed-loop at the initial
state, o∗(σH(σ1)) = o∗(σH(σ2)), and both σH(σ1q)
and σH(σ2q) are plant-enabled at the initial state,
then either both σH(σ1q) and σH(σ2q) or none of
them are closed-loop enabled at the initial state.

The H-transformation can be defined also for disjunctions
of constraints (3), requiring all reachable states to satisfy

nd∨
i=1

[Liμ ≤ bi] (23)

and that a firing vector q should be enabled only if μ and
q satisfy

nd∨
i=1

[Liμ + Hd,iq ≤ bi] (24)

where Hd,i = max(LiD, Hi, 0). Hd,i is the Hd matrix
defined in the H-transformation, which is also the same as
D−

c,i calculated by (6). Note that this interpretation of a dis-
junction (3) is not the most general. Recall, the constraints
(1) were defined to require the inequality Lμ + Hq ≤ b
satisfied for all possible intermediary states reached during
the firing of q, that is, for all q′, q′′ ≥ 0, if q′ + q′′ ≤ q then

Lμ′ + Hq′′ ≤ b, where μ
q′

−→ μ′. Thus, it was shown in
Lemma 2.1 that the constraints (1) enable a firing vector q
iff the inequality Lμ + Hdq ≤ b is satisfied. On the other
hand, the requirement that for all q′, q′′ ≥ 0, if q′ + q′′ ≤ q
then

∨
i Liμ

′ + Hiq
′′ ≤ bi, is weaker than the requirement

that μ and q satisfy (24). However, (24) is easier to check
online and allows us to easily extend our results from
conjunctions of constraints to disjunctions of constraints.
In the particular case of no concurrency and Hi = 0 for all
i, these two interpretations of (3) are equivalent.

The H-transformation for constraints (3)

1) Let Hd,i = max(LiD, Hi, 0) and modify Ts,H to

Ts,H = Ts,H ∪
nd⋃
i=1

{t ∈ T : Hd,i(·, t) 
= 0}.

2) For all i = 1 . . . nd, apply the H-transformation to
the constraints Liμ + Hiq ≤ bi with the argument
Ts,H calculated at step 1. Let LH,iμH ≤ bi be the
transformed constraints.

3) The result of the H-transformation consists of the
disjunction (4), the PN NH , and the initial marking
μH0, where NH and μH0 are obtained from any of
the H-transformations of step 2.

Note that the choice of the set Ts,H guarantees that the
same PN NH is obtained by all H-transformations of step 2.
The H−1-transformation of a disjunction (4) results in a
disjunction (3), obtained by taking the disjunction of the
H−1-transformations of the constraints LH,iμH ≤ bi.

The H −1-transformation for constraints (4)

1) For all i = 1 . . . nd, apply the H−1-transformation to
the constraints LH,iμH ≤ bi. Let Liμ + Hiq ≤ bi be
the transformed constraints.

2) The result of the H−1-transformation is the disjunc-
tion (3).

Proposition 3.3 Consider (N , μ0) in closed-loop with a
supervisor Ξ optimally enforcing (3), and (NH , mH(μ0))
in closed-loop with a supervisor ΞH optimally enforcing
(4). Let q be a firing vector in N and σH(q) = qHq′H .

(a) At all reachable markings, qH is closed-loop enabled
iff σH(q) is closed-loop enabled.

(b) μ is reachable and q is closed-loop enabled at μ iff
μH = mH(μ1) is reachable and σH(q) is closed-loop
enabled at μH .

Proof: See Proposition 4.11 in [4].
Part (a) of the next result shows that Proposition 3.2(c,d)

can be extended to disjunctions of constraints.

Proposition 3.4 Let Ξ be a supervisor optimally enforcing
(3) in (N , μ0) and ΞH a supervisor optimally enforcing (4)
in (NH , μH0), where μH0 = mH(μ0).

(a) If σH is closed-loop enabled at μH0, then σ(σH) is
closed-loop enabled at μ0.

(b) Assume that σH is closed-loop enabled at μH0 and
σHqH is plant-enabled at μH0. Then σHqH is closed-
loop enabled at μH0 iff q = χ(σH) + x is closed-
loop enabled at μ = μ0 + Dν(σH), where x is the
restriction of qH to T .

Proof: See Proposition 4.12 in [4].

Theorem 3.1 Let (4) denote the H-transformation of (3),
μ0 the initial marking of N and μH0 = mH(μ0) the initial
marking of NH . Then (4) is h-feasible iff (3) is feasible.

Proof: The proof shows that each of the two require-
ments of Definition 2.1 implies its corresponding require-
ment in Definition 3.1 and vice-versa. The proof for the
first requirement is by contradiction.

Case 1a: The first requirement is satisfied in Defini-
tion 3.1 but not in Definition 2.1. Thus, there is a reach-
able marking μ of N such that two plant-enabled firing
vectors q1 and q2 satisfy that ρ∗(q1) = ρ∗(q2) and that
the closed-loop enables q1 but disables q2. Since q1 is
supervisor-enabled and q2 is supervisor-disabled, there is
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k ∈ {1, 2, . . . nd} such that Lkμ+Hd,kq1 ≤ bk, and Liμ+
Hd,iq2 
≤ bi for all i = 1 . . . nd. Let σH(q1) = qH1q

′
H1

and σH(q2) = qH2q
′
H2

. By Propositions 3.3(b) and 3.1(b),
μH = mH(μ) is reachable in the closed-loop, qH1 is closed-
loop enabled and qH2 is only plant-enabled. However, this
contradicts the first requirement of Definition 3.1, since
ρ∗(q1) = ρ∗(q2) ⇒ ρ∗(qH1) = ρ∗(qH2).

Case 1b: The first requirement is satisfied in Defini-
tion 2.1 but not in Definition 3.1. Thus, there is a reachable
marking μH of NH such that two firing vectors qH1 and
qH2 satisfy that ρ∗(qH1) = ρ∗(qH2) and that qH1 is closed-
loop enabled and qH2 is only plant-enabled. For i = 1, 2, let
xHi be defined as xHi(t) = qHi(t) ∀t ∈ T and xHi(t) = 0
otherwise. By (20), xH1 is closed-loop enabled and xH2 is
only plant-enabled. Let σH be a firing sequence such that
μH0

σH−→ μH and let x1 and x2 be the restrictions of xH1

and xH2 to T , q1 = χ(σH) + x1 and q2 = χ(σH) + x2.

By Propositions 3.4 and 3.2(b–c), μ0

σ(σH )

−→ μ, q1 is closed-
loop enabled at μ and q2 is only plant-enabled at μ. This
contradicts the first requirement of Definition 2.1, since
ρ∗(qH1) = ρ∗(qH2) ⇒ ρ∗(q1) = ρ∗(q2).

Case 2: We show that the second requirement in Def-
inition 3.1 is not satisfied iff the second requirement in
Definition 2.1 is not satisfied. The second requirement of
Definition 2.1 is not satisfied iff there are two sequences σ1

and σ2 and a firing vector q such that σ1q and σ2 are closed-
loop enabled, σ2q is only plant-enabled, and o∗(σ1) =
o∗(σ2). Further, σ1q and σ2 are closed-loop enabled and
σ2q is only plant-enabled iff σH(σ1q) and σH(σ2) are
closed-loop enabled and σH(σ2q) is only plant-enabled, by
Propositions 3.3(b) and 3.1(b). Since o∗(σ1) = o∗(σ2) ⇔
o∗(σH(σ1)) = o∗(σH(σ2)), the conclusion follows.

Given (N , μ0), we say that a supervisor Ξ1 is at least as
restrictive as a supervisor Ξ2, which we write Ξ1 � Ξ2, if
any sequence σ closed-loop enabled at the initial state of
(N , μ0, Ξ1) is also closed-loop enabled at the initial state of
(N , μ0, Ξ2). Further, Ξ1 is more restrictive than Ξ2, which
we write Ξ1 ≺ Ξ2, if Ξ1 � Ξ2 and there is a sequence σ
closed-loop enabled at the initial state of (N , μ0, Ξ2) that is
not closed-loop enabled at the initial state of (N , μ0, Ξ1).
Let S denote a set of constraints

∨nd

i=1
[Liμ + Hiq ≤ bi]

and S′ denote
∨n′

d

i=1
[L′

iμ + H ′
iq ≤ bi]. Let SH denote∨nd

i=1
[LHiμH ≤ bi], the H-transformation of S, and S′

H

denote
∨n′

d

i=1
[L′

HiμH ≤ b′i], the H-transformation of S′. In
order to ensure that the H-transformations of S and S′ result
in the same PN NH , we define the joint H-transformation
of S and S′ to consist of an H-transformation of S and
an H-transformation of S′ that use the same parameter
Ts,H ⊇

⋃nd

i=1
{t ∈ T : Hd,i(·, t) 
= 0} ∪

⋃n′
d

i=1
{t ∈

T : H ′
d,i(·, t) 
= 0}, where Hd,i = max(LiD, Hi, 0) and

H ′
d,i = max(L′

iD, H ′
i, 0).

Theorem 3.2 Let S and S′ be two sets of constraints (3),
and SH and S′

H their joint H-transformation. Let Ξ, Ξ′, ΞH

and Ξ′
H be supervisors optimally enforcing S, S′, SH and

S′
H , respectively, in (N , μ0) and (NH , μH0), where μH0 =

mH(μ0). Ξ � Ξ′ (Ξ ≺ Ξ′) iff ΞH � Ξ′
H (ΞH ≺ Ξ′

H ).

Proof: The proof is by contradiction. First, we prove
ΞH � Ξ′

H ⇒ Ξ � Ξ′. Assume σ enabled at μ0 in
(N , μ0, Ξ) and not in (N , μ0, Ξ

′). Then, σH(σ) is enabled
at μH0 in (NH , μH0, ΞH) but not in (NH , μH0, Ξ

′
H), by

Proposition 3.3(b). This contradicts ΞH � Ξ′
H . Next we

prove that Ξ � Ξ′ ⇒ ΞH � Ξ′
H . Assume σH enabled

at μH0 in (NH , μH0, ΞH) and (NH , μH0, Ξ
′
H), but σHqH

enabled only in (NH , μH0, ΞH). Let q be defined as in
Proposition 3.4(b). Then, σ(σH)q is enabled at μ0 in
(N , μ0, Ξ) and not in (N , μ0, Ξ

′), by Proposition 3.4(b).
This contradicts Ξ � Ξ′. Now, we prove Ξ ≺ Ξ′ ⇒
ΞH ≺ Ξ′

H . Assume ΞH 
≺ Ξ′
H . Since Ξ ≺ Ξ′ ⇒

Ξ � Ξ′ ⇒ ΞH � Ξ′
H , it must be that ΞH and Ξ′

H are
equally permissive. Thus, ΞH � Ξ′

H . Then, Ξ � Ξ′, which
contradicts Ξ ≺ Ξ′. The proof of ΞH ≺ Ξ′

H ⇒ Ξ ≺ Ξ′ is
similar.

In the following developments, it will be useful to guar-
antee that the successive application of the H−1- and H-
transformations to a set of constraints (4) produces exactly
the same set of constraints. To this end, each component
LHμH ≤ b of a disjunction (4) will be constrained to satisfy

∀p ∈ PH :

{
LH(·, p) ≥ LHD+

H(·, p•)
LH(·, p) ≥ LHD−

H(·, •p)
(25)

∀t ∈ T \ •PH : LHDH(·, t) ≤ 0 (26)

The following result summarizes the properties of (25–26).

Theorem 3.3 (a) The H-transformation of any set of
constraints Lμ + Hq ≤ b satisfies (25–26).

(b) Given an H-transformed net NH and a set of con-
straints LHμH ≤ b, let Lμ + Hq ≤ b denote the H−1-
transformation of LHμH ≤ b and let L′

Hμ′
H ≤ b and N ′

H

denote the H-transformation of (2). If LH satisfies (25–26)
and the H-transformation generating L′

Hμ′
H ≤ b has the

parameter Ts,H = •PH , then NH and N ′
H are identical,

and L′
H = LH .

Proof: (a) By definition, Hd(·, •p) =
max(0, LD(·, •p), H(·, •p)) ∀p ∈ P H . Further, by
(13) and (16), LD(·, •p) = LHD+

H(·, p•) − LHD−
H(·, •p)

and LD−(·, •p) = LHD−
H(·, •p). Then, (25) is obtained

by substituting LD in Hd, then Hd and LD− in ∀p ∈ PH :
LH(·, p) = Hd(·, •p) + LD−(·, •p), where this expression
is true by (10). According to the H-transformation, all
transitions t for which Hd(·, t) 
= 0 are split. Therefore,
∀t ∈ T \ •PH , Hd(·, t) = 0, and so LD(·, t) ≤ 0. By (19),
this proves (26).

(b) By definition, Hd = max(LD, H, 0). For t ∈
T ∩ •PH we have Hd(·, t) = H(·, t), in view of (25),
LD(·, t) = LHD+

H(·, t • •) − LHD−
H(·, t), and H(·, t) =

LH(·, t•) − LHD−
H(·, t) (by (18)). For t ∈ T \ •PH ,

Hd(·, t) = H(·, t) = 0, in view of (18), (19), and (26).
This shows that Hd = H . Then, by (10), (13) and (18) we
get L′

H(·, p) = LH(·, p) ∀p ∈ P ′
H . Note that Hd = H ⇒

P ′
H ⊆ PH ; P ′

H = PH is guaranteed by Ts,H = •PH .
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Let S denote the specification (3) on (N , μ0). Based on
the results obtained so far, the following procedure could
be used to find a feasible specification Sa that is at least as
restrictive as S. The procedure could be used whenever S
is not feasible or its feasibility is not known.

Procedure 3.1
1) Apply the H-transformation. Let SH and (NH , μH0)

be the transformed constraints and PN.
2) Find h-feasible constraints SHa that satisfy (25–26)

such that ΞHa � ΞH , where ΞHa and ΞH are super-
visors optimally enforcing SHa and SH , respectively.
If no solution is found, declare failure and exit.

3) Apply to SHa the H−1-transformation. Let Sa be the
result. Enforce Sa in (N , μ0).

The set of constraints obtained by this procedure has
interesting properties when the H-transformation splits
all transitions. Therefore, let’s define the total H-
transformation as the H-transformation with parameter
Ts,H = T . Let X be the set of all supervisors optimally
enforcing feasible constraints of the form (3). Let XH be
the set of all supervisors optimally enforcing h-feasible
constraints of the form (3) that satisfy (25–26).

Theorem 3.4 Given the notation of Procedure 3.1, let
Ξ and Ξa be supervisors optimally enforcing S and Sa,
respectively.

(a) Sa is feasible and Ξa � Ξ.
Assume that the total H-transformation is applied at the
first step of the procedure.

(b) Ξa is least restrictive among the supervisors of X
enforcing S iff ΞHa is least restrictive among the
supervisors of XH enforcing SH .

(c) There is no supervisor Ξ∗ � Ξa of X that enforces
S if there is no supervisor Ξ∗

H � ΞHa of XH that
enforces SH .

Proof: (a) Let PH be the set of places of the
PN obtained by the H-transformation of S. In view of
Theorem 3.3(b), the same PN NH is obtained by the H-
transformation of Sa, when the transformation uses the pa-
rameter Ts,H = •PH . Further, SHa is the H-transformation
of Sa. Therefore, Sa is feasible by Theorem 3.1 and Ξa � Ξ
in view of ΞHa � ΞH and Theorem 3.2.

(b) Note that the total H-transformation of any set of
constraints (3) results in the same PN NH . By Theo-
rem 3.3(b), the total H-transformation of Sa is SHCa.
The proof is by contradiction. Assume there is another
supervisor Ξ′ ∈ X enforcing S such that Ξ′ 
� Ξa. Since
Ξ′ ∈ X , Ξ′ optimally enforces a feasible set of constraints
S′ of the form (3). By Theorems 3.1 and 3.3(a), Ξ′

H ∈ XH ,
where Ξ′

H is a supervisor optimally enforcing the S′
H , the

total H-transformation of S′. By Theorem 3.2, Ξ′
H � ΞH .

Therefore, Ξ′
H � ΞHa, since ΞHa is least restrictive. By

Theorem 3.2, Ξ′ � Ξa, which contradicts the original
assumption.

(c) The proof is similar to that of part (b).
Theorem 3.4 shows that the problem of enforcing con-

straints (3) can be solved in terms of the simpler constraints
(4) in a transformed PN, without loss of permissiveness.
Since our results were derived under the transition-bag con-
currency setting, a loss of permissiveness is possible when
the Procedure 3.1 is used for other concurrency settings.
Indeed, a feasible least restrictive supervisor enforcing (3)
may be too restrictive for other concurrency settings, though
it would still enforce (3). This suggests that for a different
concurrency setting, the second step of Procedure 3.1 should
incorporate additional constraints besides (25–26), to ensure
the design remains optimal. Finally, no specific method has
been referenced for the second step of the procedure. Under
certain assumptions, including no concurrency, a solution
for specifications (4) is available [9]. However, an optimal
solution appears to be difficult to obtain in the general case.
A structural solution is possible. The structural solution,
while applying to double-labeled PNs and the most common
concurrency settings, including the one of this paper, can
use previous methods developed for constraints Lμ ≤ b,
such as in [1], [2], [5], [8], to obtain a suboptimal solution.
The structural solution as well as additional details of
the method of this paper will appear in chapter 4 of the
monograph [4].

It should be emphasized that the results of this paper
have been obtained under general circumstances. The spec-
ifications are described by disjunctions of inequalities (3),
instead of the simpler conjunctions (2). Further, the setting
of partial controllability and partial observability used in
this paper is more general than that of labeled Petri nets,
as it involves two types of transition labels: one for control
events and another for observation events.
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2006.

[5] J. O. Moody and P. J. Antsaklis. Supervisory Control of Discrete Event
Systems Using Petri Nets. Kluwer Academic Publishers, 1998.

[6] J. O. Moody and P. J. Antsaklis. Petri net supervisors for DES with
uncontrollable and unobservable transitions. IEEE Transactions on
Automatic Control, 45(3):462–476, 2000.

[7] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice
Hall, Englewood Cliffs, NJ, 1981.

[8] G. Stremersch. Supervision of Petri Nets. Kluwer Academic Publish-
ers, 2001.

[9] G. Stremersch and R. K. Boel. Structuring acyclic Petri nets for
reachability analysis and control. Discrete Event Dynamic Systems,
12(1):7–41, 2002.

221

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 6, 2009 at 17:17 from IEEE Xplore.  Restrictions apply. 


