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Abstract— In this paper, the uniformly ultimately bounded
(UUB) switching control problem is investigated for a class
of continuous-time switched linear systems with parametric
uncertainties and exterior disturbances. It is assumed that each
subsystem is UUB. First, a class of switching signals, which may
contains infinite number of switching and preserves the UUB of
the switched systems, is characterized. Then, a switching law is
synthesized to improve the disturbance attenuation properties
in the sense that all state trajectories can converge into a smaller
region than any single subsystem acts alone. The switching law
is given as a static state feedback form, and provides a conic
partition of the state space. To avoid unstable sliding motions,
some modifications are introduced later. The techniques are
based on multiple polyhedral Lyapunov functions.

I. INTRODUCTION

A switched system is a dynamical system that consists

of a finite number of subsystems described by differential

or difference equations and a logical rule that orchestrates

switching between these subsystems. Properties of this type

of model have been studied for the past fifty years to consider

engineering systems that contain relays and/or hysteresis.

Due to its success in application and importance in theory,

the last decade has seen increasing research activities in

stability [15], [18], [7], controllability [24], [23], observ-

ability [1], [9], [12], stabilization [13], [20], [22], [17], and

switching optimal control [2], [25] of switched systems.

However, the literature on robust performance of switched

systems is still relatively sparse, and most existing results

assume that the disturbances are constrained to have finite

energy, i.e., bounded L2 norm, see e.g. [10], [29]. In practice,

there are disturbances that do not satisfy this condition and

act more or less continuously over time. Such disturbances

are called persistent, and cannot be treated in the above

framework [6]. In this paper, the disturbance attenuation

property is in the signal’s magnitude sense, i.e., time domain

specifications. Moreover, we explicitly consider dynamic

uncertainty in the switched system model. Dynamics uncer-

tainty in the plant model is one of the main challenges in

control theory, and it is of practical importance to deal with

dynamical uncertainties explicitly.

This paper aims to investigate the persistent disturbance

attenuation properties in the sense of uniformly ultimate

boundedness for a class of switched linear systems with para-

metric uncertainties and exterior disturbances. It is known
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that even when all subsystems are exponential stable, the

switched system may still exhibit unbounded behaviors under

some switching signals [15], [7]. Therefore, the first task

here is to characterize a class of switching signals, which

is called admissible switching, such that the boundedness

of the switched systems is preserved. To make the problem

nontrivial, the class of admissible switching signals should

be large enough to include some interesting cases, such as

infinite number of switching and arbitrarily fast switching

etc. Next, as one of main motivations to study switched

systems, switching among multiple controllers can achieve

better performance than each single controller does. Hence,

the second task here is to identify a subclass of admissible

switching signals such that the switched system has a better

disturbance attenuation property. The improvement is in the

sense that all trajectories of the switched system would

converge into a smaller neighborhood region of the origin

than any single subsystem acts alone. The arguments here

are mainly based on multiple polyhedral Lyapunov func-

tions. Similar techniques have been used in [14] to design

stabilizing switching signals for switched LTI systems. Some

preliminary results for the UUB control of discrete-time

uncertain switched linear systems appeared in [16].

The rest of the paper is organized as follows. In Section II,

the uncertain switched linear system and its persistent dis-

turbance attenuation problems are formulated. In Section III,

some preliminary results on polyhedral Lyapunov functions

and notations are reviewed. In Section IV, the class of

admissible switching signals is characterized. In Section V,

the improved performance switching signals are synthesized.

The switching law is given as a static state feedback form,

and provides a conic partition of the state space. The possible

occurrence of sling motions could cost stability, therefore

sliding motions are explicitly dealt with in Section VI. It

is shown that a simple modification can be made to avoid

undesirable sliding motions while guarantee UUB. Finally,

conclusions are given.

Notation: The letters D,P,S · · · denote sets, int(P) the

interior of set P , and ∂P its boundary. For any real λ ≥ 0,

the set λS is defined as {x = λy, y ∈ S}. A polytope

(bounded polyhedral set) P will be presented either by a set

of linear inequalities P = {x : fix ≤ gi, i = 1, · · · , s}, or

by the dual representation in terms of the convex hull of its

vertex set {vj}, denoted by Conv{vj}.

II. PROBLEM FORMULATION

Consider a collection of continuous-time linear systems

described by the perturbed differential equations with para-
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metric uncertainties

ẋ(t) = Aq(w)x(t) + Eqd(t), t ∈ R
+, (1)

where q ∈ Q = {q1, q2, · · · , qN}, the state variable x ∈ R
n,

and the disturbance input d ∈ D ⊂ R
r. Assume that D is a

C-set. The term C-set stands for a convex and compact set

containing the origin in its interior. The entries of the state

matrix Aq(w) : W → R
n×n are assumed to be continuous

functions of w ∈ W , where W is a given compact set in

R
v . The parametric uncertainty w is time-variant, and with

unknown dependence on time t. Without loss of generality,

the matrix Eq ∈ R
n×r is assumed to be a constant matrix.

Combine the family of continuous-time uncertain linear

systems (1) with a class of maps, σ : R
+ → Q. Then we can

define the following time-varying system as a continuous-

time switched linear system

ẋ(t) = Aσ(t)(w)x(t) + Eσ(t)d(t), t ∈ R
+, (2)

where σ is called a switching signal.

Because of parameter variations and exterior disturbances,

it is only reasonable to expect that the trajectories of the

switched system (2) converge into a neighborhood region of

the equilibrium (the origin here), as defined below.

Definition 1: The uncertain switched system (2) under

switching signal σ(t) is Uniformly Ultimately Bounded

(UUB) if there exists a C-set S such that for every initial

condition x(0) = x0, there exists a finite T (x0), and x(t) ∈
S for t ≥ T (x0).

The above UUB definition is also called practical stability

or uniformly ultimate boundedness in the literature. For

example, practical stability and stabilization for switched

systems were extensively investigated recently in [26], [27].

This paper will mainly focus on the disturbance attenuation

properties of switched systems in the sense of the uni-

formly ultimate boundedness. Given a collection of switching

signals, if the switched system (2) is UUB for all these

switching signals, then the switched system (2) is said to

have finite disturbance attenuation level under this class of

switching signals. Throughout the paper, it is assumed that

each subsystem (1) is UUB and converges to a C-set Sq re-

spectively, i.e., σ(t) = q (for all t) in Definition 1. It is known

that even when all the subsystems are UUB, the switched

system (2) could have infinite disturbance attenuation level

under certain classes of switching signals. Hence, the first

problem being addressed here is to characterize a useful

subclass of switching signals under which the switched

system (2) remains UUB:

Problem 1: Given the switched system (2), characterize

a nontrivial class of switching signals under which the

switched system remains UUB.

Here the non-trivialness means that we would like to

include the cases that there may be infinite number of switch-

ing in σ(t) and that arbitrarily fast switching is also possible.

An answer for this question is proposed in Section IV based

on multiple polyhedral Lyapunov functions. Hence, we first

give a short review of some basics for polyhedral Lyapunov

functions.

III. POLYHEDRAL LYAPUNOV FUNCTION

Following [3], we call a function Ψ : R
n → R a gauge

function if Ψ(x) ≥ 0, Ψ(x) = 0 ⇔ x = 0; for µ > 0,

Ψ(µx) = µΨ(x); and Ψ(x+y) ≤ Ψ(x)+Ψ(y), ∀x, y ∈ R
n.

A gauge function is convex and it defines a distance of x
from the origin which is linear in any direction. If Ψ is a

gauge function, we define the closed set (possibly empty)

N̄ [Ψ, ξ] = {x ∈ R
n : Ψ(x) ≤ ξ}. It is easy to show

that the set N̄ [Ψ, ξ] is a C-set for all ξ > 0. On the

other hand, any C-set S induces a gauge function ΨS(x)
(Known as the Minkowski function of S), which is defined

as Ψ(x)=̇ inf{µ > 0 : x ∈ µS}. Therefore a C-set S can be

thought of as the unit ball, S = N̄ [Ψ, 1], of a gauge function

Ψ, and x ∈ S ⇔ Ψ(x) ≤ 1.

Due to the assumption that each subsystem

ẋ(t) = Aq(w)x(t) + Eqd(t)

is UUB with respect to Sq, let us define a Lyapunov function

outside Sq for (1) in the following sense [4].

Definition 2: Given a C-set Sq, a Lyapunov function out-

side Sq for the continuous-time system (1) is defined as a

continuous function Ψq : R
n → R

+ such that N̄ [Ψq, κ] ⊆
Sq for some positive scalar κ, for which the following

condition holds: if x /∈ N̄ [Ψq, κ] then ∃βq > 0 such that

D+Ψq(x(t)) ≤ −βqΨq(x(t)). 2

Here D+Ψq(x(t)) stands for the upper right Dini deriva-

tive of Ψq(x(t)) along the trajectories of system (1), which

is defined as

D+Ψq(x(t)) = lim sup
τ→0+

Ψq(x(t + τ)) − Ψq(x(t))

τ
.

Under the assumption that d(t) and w(t) are continuous, then

the value of the Dini derivative of the point x(t) = x equals

D+Ψq(x(t)) = lim sup
τ→0+

Ψq(x + τ [Aq(w)x + Eqd]) − Ψq(x)

τ
,

where x(t) = x, d(t) = d and w(t) = w [4].

Based on differential inequality theory, it can be derived

from the above Lyapunov function definition that

Ψq(x(t)) ≤ max{e−βq(t−t0)Ψq(x(t0)), κ}, ∀t > t0

for a trajectory x(t) of (1) starting from x(t0) at time t0.

This further implies the following result.

Lemma 1: [4] If there exists a Lyapunov function outside

S for the subsystem (1), then it is uniformly ultimately

bounded (UUB) in S. 2

On the other hand, it can be shown that there always exists

a polyhedral Lyapunov function for a UUB subsystem (1) in

the sense of Definition 2. Therefore, without loss of gener-

ality, we assume that each subsystem (1) has a polyhedral

Lyapunov function Ψq outside Sq, and that N̄ [Ψq, 1] ⊆ Sq.

One advantages of polyhedral Lyapunov functions is that

they can be computed numerically. Several methods for

automated construction of the polyhedral Lyapunov function

have been proposed in the literature. Early results include [8],

where the Lyapunov function construction was reduced to

the design of a balanced polytope satisfying some invariance
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properties. An alternative approach was given by Molchanov

and Pyatnitskiy in [19], where algebraic stability conditions

based on weighted infinity norms were proposed. A linear

programming based method for solving these conditions was

given by Polański in [21]. Recently, in [28], Yfoulis and

Shorten proposed a numerical approach, called ray-griding,

to calculate polyhedral Lyapunov functions based on uniform

partitions of the state-space in terms of ray directions. In

addition, the polyhedral Lyapunov functions is suitable for

control design, which will be explored in the following

sections.

IV. ADMISSIBLE SWITCHING SIGNALS

Without loss of generality, it is assumed that each sub-

system is UUB with decay rate βq along with a polyhedral

Lyapunov function, Ψq(x). Denote Pq = N̄ [Ψq, 1] ⊆ Sq,

which is a polyhedral C-set and can be described as

Pq = {x ∈ R
n : F qx ≤ 1̄}, (3)

where F q ∈ R
mq×n, 1̄ = [1, · · · , 1]T ∈ R

mq and “≤” is

with respect to componentwise. Then, it holds that

Ψq(x) = max
1≤i≤mq

{fq
i x}, (4)

where fq
i ∈ R

1×n is the i-th row of the matrix F q for i =
1, · · · ,mq.

First, we briefly describe some necessary notations from

convex analysis. Given a polyhedral C-set P , let vert(Pq) =
{v1, v2, · · · , vN} denote its vertices, and face(Pq) =
{F q

1 , F q
2 , · · · , F q

Mq
} its facets. The hyperplane that corre-

sponds to the k-th facet F q
k is defined by Hq

k = {x ∈ R
n :

fq
kx = 1}, where fq

k ∈ R
1×n is the corresponding normal

vector of facet F q
k . The set of vertices of F q

k can be found

as vert(F q
k ) = vert(Pq) ∩ F q

k . Finally, we denote the cone

generated by the vertices of F q
k by cone(F q

k ) = {x ∈ R
n :∑

i αiv
q
ki

, αi ≥ 0, vq
ki

∈ vert(F q
k )}. The cone(F q

k ) has the

property that ∀x ∈ cone(F q
k ), Ψ(x) = fq

kx.

Next, we characterize a conic partition of the state space

based on these polyhedral Lyapunov functions Ψq(x). Con-

sider any pair of subsystems with modes q1 and q2, with

q1 6= q2 ∈ Q, we want to compute the region

Ωq2

q1
= {x ∈ Rn : Ψq1

(x) ≤ Ψq2
(x)} (5)

For this purpose, we first consider a pair of faces F q1

i1
and

F q2

i2
of the polyhedral C-sets Pq1

and Pq2
respectively and

consider

Cq2,i2
q1,i1

= cone(F q1

i1
) ∩ cone(F q2

i2
) (6)

The set Cq2,i2
q1,i1

is either empty or a polyhedral cone. If

Cq2,i2
q1,i1

6= ∅, then all the state x ∈ Cq2,i2
q1,i1

has the property

that, Ψq1
(x) = fq1

i1
x and Ψq2

(x) = fq2

i2
x. Next, we intersect

the set Cq2,i2
q1,i1

with the half-space defined by

HF q2,i2
q1,i1

= {x ∈ Rn : (fq1

i1
− fq2

i2
)x ≤ 0} (7)

and get the set Ωq2,i2
q1,i1

= Cq2,i2
q1,i1

∩ HF q2,i2
q1,i1

. The reason for

specifying the region Ωq2,i2
q1,i1

can be clarified by the following

lemma [14].

2 2

1 1

,

,

q i

q iHF

2 2

1 1

,

,

q i

q i
Ω

2

2

q

iF 1

1

q

iF

2qP

1qP

2 2

1 1

,

,

q i

q iC

o

Fig. 1. Illustrations for two polyhedral C-sets Pq1 and Pq2 , their two face

F
q1
i1

and F
q2
i2

respectively, the corresponding polyhedral cone C
q2,i2
q1,i1

=

cone(F q1
i1

) ∩ cone(F q2
i2

), the hyperplane H
(q2,i2)
(q1,i1)

, and the conic region

of Ωq2,i2
q1,i1

.

Lemma 2: For every x ∈ Ωq2,i2
q1,i1

, we have that Ψq1
(x) ≤

Ψq2
(x).
Proof: By definition, Ωq2,i2

q1,i1
= Cq2,i2

q1,i1
∩ HF q2,i2

q1,i1
,

where Cq2,i2
q1,i1

= cone(F q1

i1
) ∩ cone(F q2

i2
). The cone(F q1

i1
)

and cone(F q2

i2
) have the property that ∀x ∈ cone(F q1

i1
),

Ψq1
(x) = fq1

i1
x, and ∀x ∈ cone(F q2

i2
), Ψq2

(x) = fq2

i2
x.

Note that ∀x ∈ HF q2,i2
q1,i1

, fq1

i1
(x) ≤ fq2

i2
(x). Therefore, for

all x ∈ Ωq2,i2
q1,i1

, we have that Ψq1
(x) ≤ Ψq2

(x).

The above notations and the conic region Ωq2,i2
q1,i1

are

illustrated in Figure 1. Notice that the hyperplane H
(q2,i2)
(q1,i1)

=

{x ∈ Rn : (fq2

i2
− fq1

i1
)x = 0} goes through the origin

and the intersection of the faces F q1

i1
and F q2

i2
. This comes

from the fact that Ψq1
(0) = Ψq2

(0) = 0, and for x ∈
F q1

i1

⋂
F q2

i2
⇒ Ψq1

(x) = Ψq2
(x) = 1. We will show later

that this observation simplifies the design procedure for conic

partition based switching law.

Based on the above lemma, we have

Ωq2

q1
=

⋃

i1,i2

Ωq2,i2
q1,i1

(8)

where i1 and i2 go through all the faces’ index of Pq1
and

Pq2
respectively. The following corollary holds.

Corollary 1: For every x ∈ Ωq2
q1

=
⋃

i1,i2
Ωq2,i2

q1,i1
, we have

that Ψq1
(x) ≤ Ψq2

(x).
Because Ωq2,i2

q1,i1
is an intersection of a polyhedral cone with

a half-space, so it is either an empty set or a polyhedral cone.

Hence Ωq2
q1

is finite union of polyhedral cones. And due to

the fact that
⋃

i2
cone(F q1

i1
) =

⋃
i2

cone(F q2

i2
) = R

n, it is

obvious that for x /∈ Ωq2
q1

, we have that Ψq1
(x) ≥ Ψq2

(x).
Therefore, Ωq2

q1

⋃
Ωq1

q2
= R

n.

Now define the following class of switching signals, Σ,

such that for any switching signal σ(t) ∈ Σ
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1) σ(t) only contains finite number of discontinuities

within any finite time interval;

2) If σ(t) = qi and σ(t+) = qj , then x(t) ∈ Ωqi
qj

.

The first condition excludes the occurrence of sliding

motions, while the second requirement says that a switching

from qi to qj could occur at time t only if x(t) ∈ Ωqi
qj

. Notice

that arbitrarily fast switching is not excluded. For example,

it is possible that “qi to qj then to qk” occurs instantly at t if

x(t) ∈ Ωqi
qj

⋂
Ω

qj
qk . It is also clear there are possibly infinite

number of switching in a σ(t) ∈ Σ (Next section provides

an example). The following theorem shows that Σ defines a

class of admissible switching signals and provides an answer

for Problem 1.

Theorem 1: The switched system (2) remains UUB under

any switching signal σ(t) ∈ Σ.

Proof: Define V (x(t)) = Ψσ(t)(x(t)). For any non-

switching time instant t, D+V (x(t)) < 0 by assumption of

each subsystem is UUB. At switching instant, V (x(t)) is

decreasing due to Corollary 1. The UUB of the switched

system (2) follows from Multiple Lyapunov Theorem [7].

Remark 1: In order to calculate the region Ω
qj
qi , we simply

draw the radii that start from the origin and go through

the intersection points of faces of Pqi
and Pqj

. These radii

partition the state space into a finite union of conic regions.

Notice that along any such radii, Ψqi
(x) = Ψqj

(x), and

that within each conic region generated by these radii either

Ψqi
(x) ≥ Ψqj

(x) or Ψqi
(x) ≤ Ψqj

(x) holds. Therefore, Ω
qj
qi

is just the union of some of these conic regions. To determine

whether one of these polyhedral cones is contained in Ω
qj
qi ,

one simply checks whether there exists one point in this cone

which is on the edge of Pqi
but not contained in int(Pqj

).
If such points exist in the cone, then this cone is included

into the region Ω
qj
qi (from the geometric interpretation of

Minkowski function). The region Ω
qj
qi is just the union of

such cones.

V. IMPROVED DISTURBANCE ATTENUATION PROPERTY

As one of the main motivations to study switched systems,

a multi-modal controller can achieve better performance than

a single-modal controller [11], an interesting question is

whether one can characterize a subclass of admissible switch-

ing signals under which (2) achieves an improved disturbance

attenuation level. The improvement is in the sense that all

possible state trajectories of (2) under the designed switching

signals would finally converge to a smaller neighborhood

region (S in Definition 1) of the origin than any single

subsystem acts alone. This will be the focus for the rest

of the paper.

Problem 2: Given the switched system (2), synthesize

switching signals σ(·) to assure that the state x(t) is uni-

formly ultimately bounded into a C-set, which is a subset of

all Sq.

For this, define a new cone for each q ∈ Q as

Ωq =
⋂

qi∈Q, qi 6=q

Ωq
qi

, (9)

which has the property as follows.

2qP

1qP

o

1qΩ

1q
Ω

Fig. 2. Illustration for the conic region of Ωq1 .

Lemma 3: For every x ∈ Ωq, we have that Ψq(x) ≥
Ψqi

(x), ∀qi ∈ Q and qi 6= q.

Proof: By definition, Ωq =
⋂

qi∈Q, qi 6=q Ωq
qi

. Therefore,

∀x ∈ Ωq =
⋂

qi∈Q, qi 6=q Ωq
qi

, then x ∈ Ωq
qi

, for all qi ∈ Q,

qi 6= q. Note that ∀x ∈ Ωq
qi

, Ψqi
(x) ≤ Ψq(x), which is

from the definition of Ωq
qi

and Corollary 1. Hence, for every

x ∈ Ωq, Ψq(x) ≥ Ψqi
(x), ∀qi ∈ Q and qi 6= q.

Some observations about Ωq are important for the fol-

lowing design procedure. First, in the region of Ωq, q ∈
arg maxq∈Q Ψq(x). Secondly, Ωq is finite union of polyhe-

dral cones. Finally, for x ∈ Ωq ∩ Ωq′

, Ψq(x) = Ψq′(x), and
⋃

q∈Q

Ωq = R
n.

Therefore, Ωq, q ∈ Q, provides a conic partition of the

state space, based on which a switching law can be defined

as

x(t) ∈ Ωq ⇒ σ(t) = q (10)

An illustration of Ωq is given in Figure 2.

It can be shown that the switching law defined in (10)

can guarantee the UUB for the uncertain switched system in⋂
q∈Q Pq.

Theorem 2: Assume that there is no sliding motion gen-

erated by the switching law (10). Then, the uncertain

continuous-time switched system (2) is UUB under (10)

and state trajectories converge into the polyhedral C-set⋂
q∈Q Pq, which is a subset of any Sq.

Proof: Define the function V (x(t)) =
maxq∈Q Ψq(x(t)). For all x(t) /∈

⋂
q∈Q Pq,

V (x(t)) = maxq∈Q Ψq(x(t)) > 1. Assume that

x(t) ∈ Ωq and current mode q(t) = q. If no

switching occurs at t, then there exists τ̄ > 0 such

that ∀0 < τ ≤ τ̄ , x(t + τ) ∈ Ωq and x(t + τ) /∈ int(Pq).
Then V (x(t)) = maxq∈Q Ψq(x(t)) = Ψq(x(t)) and

V (x(t + τ)) = Ψq(x(t + τ)). Then we derive that

D+V (x(t)) = D+Ψq(x(t)) ≤ −βq
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Else, if switching occurs at time t, then there exists τ̄ > 0
(due to no-sliding motion assumption) such that ∀0 < τ ≤ τ̄ ,

x(t + τ) ∈ Ωq′ and x(t + τ) /∈ int(Pq′). Then V (x(t)) =
maxq∈Q Ψq(x(t)) = Ψq(x(t)) = Ψq′(x(t)) and V (x(t +
τ)) = Ψq′(x(t + τ)). Therefore,

D+V (x(t)) = lim sup
τ→0+

Ψq′(x(t + τ)) − Ψq′(x(t))

τ
≤ −βq′ .

Therefore, the uncertain switched system (2) is UUB with

respect to the region
⋂

q∈Q Pq. Since Pq ⊆ Sq, so
⋂

q∈Q Pq

is a subset of any Sq.

It is interesting to notice that the switching law defined by

(10) (when there is no sliding motion occurring) is contained

in Σ characterized in Section IV, and that the discrete mode

is determined by a form of static state feedback.

VI. HANDLING SLIDING MOTION

So far, our arguments are under the assumption that

no sliding motion is generated by the switching law (10).

However, sliding motions may occur through the proposed

conic partition based switching laws. It is also possible that

the generated sliding motion causes instability in the closed-

loop switched systems. Therefore, it is important to explicitly

consider sliding motions, especially those sliding motions

that may generate divergent trajectories. In this section,

we propose an approach to deal with possible unstable

sliding motions. In the sequel, it is assumed that an unstable

sliding motion occurs between modes qi and qj , and the

sliding surface lies in the region Ωqi ∩ Ωqj . Actually, it is

straightforward to detect the existence of a sliding motion via

checking the directions of the vector fields around a given

switching surface.

In the following, we will show that it is always possible to

get rid of the unstable sliding motions via requesting certain

amount of minimum dwell time at the mode qi and qj before

the switching. In other words, when switching into the mode

qi (or qj), the switched system has to remain in the mode qi

(or qj) for a time interval with length no less than τi (or τj)

before the next switching. It is interesting to mention that

one may always to pick proper value of τi (or τj) such that

the UUB preserves under the modified switching law.

To illustrate the idea, consider the following scenario as

shown in Figure 3. A state trajectory starts from the region

Ωqi , hits the switching surface Ωqi ∩ Ωqj at time t0 and

triggers the switching to the mode qj at t+0 . Then, the mode

qj will drive the state back to the region Ωqi immediately

(due to the sliding motion assumption between modes qi and

qj). According to the minimum dwell time requirement, the

system remains at the mode qj for at least certain amount

of time period, say τj . If the mode qi is activated again at

time t1, i.e., x(t1) ∈ Ωqi and t1− t0 ≥ τj , which is assumed

to drive the state towards region Ωqj again 1. Furthermore,

the system switches to mode qj again at t2 when x(t2)
reach Ωqj and t2 − t1 ≥ τi. As this process continuous, the

switched system generates zig-zag kind of behavior around

1This is the worst case for stability consideration.
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Fig. 3. Hysteresis like switching policy is employed when unstable sliding
motions occur between modes qi and qj .

the switching surface as shown in Figure 3. Denote the time

instants that the switching qi → qj occurs as t2k, while t2k+1

as the time instants when qj switches to qj .

Several useful properties about the piecewise linear Lya-

punov functions Ψqi
(x) and Ψqj

(x) are:

Lemma 4: For x ∈ Ωqi ∩ Ωqj , it holds that Ψqi
(x) =

Ψqj
(x). 2

Lemma 5: For x ∈ Ωqi , Ψqi
(x) ≥ Ψqj

(x), but there exists

a constant scalar µij ≥ 1 such that Ψqi
(x) ≤ µijΨqj

(x). 2

A possible choice for µij is the largest value among

Ψqi
(vm), ∀vm ∈ vert{N̄ [Ψqj

, 1]∩Ωqi}. This can be verified

by exploring the geometric property of the level sets of

Ψqi
(x) and Ψqj

(x).
With this, we turn to derive conditions on the determina-

tion of τi and τj .

Ψj(x(t2)) ≤ e−βj(t2−t1)Ψj(x(t1))

≤ e−βjτj Ψj(x(t1)) ≤ e−βjτj µjiΨi(x(t1))

≤ e−βjτj µjie
−βiτiΨi(x(t0))

= e−βjτj µjie
−βiτiΨj(x(t0))

If e−βjτj µjie
−βiτi ≤ 1, then Ψj(x(t2)) ≤ Ψj(x(t0)).

Ψi(x(t3)) ≤ µijΨj(x(t3)) ≤ µije
−βj(t3−t2)Ψj(x(t2))

≤ µije
−βjτj Ψj(x(t2))

≤ µije
−βjτj µjiΨi(x(t2))

≤ µije
−βjτj µjie

−βiτiΨi(x(t1))

If µije
−βjτj µjie

−βiτi ≤ 1, then Ψi(x(t3)) ≤ Ψi(x(t1)).
Since µij ≥ 1, so µije

−βjτj µjie
−βiτi ≤ 1 implies

e−βjτj µjie
−βiτi ≤ 1. Therefore, if

µije
−βjτj µjie

−βiτi ≤ 1,

then Ψi(x(t2)) ≤ Ψi(x(t0)) and Ψi(x(t3)) ≤ Ψi(x(t1)).
Similarly, it can be shown that if

µije
−βjτj µjie

−βiτi ≤ 1,
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then Ψj(x(t2k)) ≤ Ψj(x(t2k−2)) and Ψi(x(t2k+1)) ≤
Ψi(x(t2k−1)), for k = 1, 2, · · · . This means that at every

time the switched system enters (switches into) a certain

subsystem, its corresponding Lyapunov function value is

smaller than the value at the previous entering time. By

the multiple Lyapunov function (MLF) theory [5], [7], it is

known that the above condition, together with the condition

that the Lyapunov function decreasing its value within each

active region, implies the UUB of the switched systems.

Hence, what remains is to pick proper value of τi and τj

such that the inequality

µije
−βjτj µjie

−βiτi ≤ 1 (11)

holds.

Notice that µij and µij are finite constants, and that βi and

βj are all positive scalars, so one may always pick τi ≥ 0
and τj ≥ 0 to make (11) holds. One possible choice is

τi ≥
lnµji

βi

, τj ≥
lnµij

βj

, (12)

which implies µije
−βjτj ≤ 1 and µjie

−βiτi ≤ 1.

Remark 2: If all the subsystems are LTI systems, then the

introduced delayed switching strategy is actually equivalent

to hysteresis switching. If sliding motion occur, one may

always transfer it into a stable hysteresis switching.

VII. CONCLUDING REMARKS

In this paper, we investigated the asymptotic disturbance

attenuation properties for a class of switched linear systems

with parametric uncertainties and exterior disturbances under

various switching signals. The main contribution here is the

characterization of a class of admissible switching signals

under which the switched systems remains UUB. In addition,

a subclass of the admissible switching signals is synthesized

such that the disturbance attenuation property of the switched

system is improved. The improvement is in the sense that

state trajectories finally converge into a smaller neighborhood

region of the origin than any single subsystem acts alone.

The switching law is given as a static state feedback form,

and provides a conic partition of the state space. To avoid

unstable sliding motions, a modified switching scheme via

requesting minimum dwell time is proposed, and a lower

bound for the dwell time is estimated. The techniques are

based on multiple polyhedral Lyapunov functions.
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