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Abstract— In this paper, the co-design of continuous-variable
controllers and discrete-event switching logics, both in state
feedback form, for discrete-time switched linear control systems
is investigated. Sufficient synthesis conditions for this co-design
problem are proposed here in the form of bilinear matrix
inequalities, which is based on the argument of multiple
Lyapunov functions. The closed-loop switched system forms a
special class of piecewise linear hybrid systems, and is shown
to be exponentially stable with a finite l2 induced gain.

Index Terms— Switched systems, controller synthesis, l2 in-
duced gain, Lyapunov methods.

I. INTRODUCTION

A remarkable feature of a switched system is that even
when all its subsystems are unstable it may still be possible
to stabilize it by properly designed switching laws [12],
[6], [15]. The synthesis of stabilizing switching signals for
a given collection of dynamical systems, especially linear
systems, has attracted a lot of attention recently; see for
example the survey papers [12], [16], [6], [13], the recent
books [11], [23] and the references cited therein.

Early efforts along this direction were focused on
quadratic stabilization for certain classes of systems. For
example, a quadratic stabilization switching law between
two linear time invariant (LTI) systems was considered in
[25], and it was shown that the existence of a stable convex
combination of the two subsystem matrices implies the exis-
tence of a quadratic Lyapunov function and a state-dependent
switching rule that (quadratically) stabilizes the switched
system. A generalization to more than two LTI subsystems
was suggested in [20] by using a “min-projection strategy”.
In [8], it was shown that the stable convex combination
condition is also necessary for the quadratic stabilizability of
two mode switched LTI system. However, it is only sufficient
for switched LTI systems with more than two modes. A
necessary and sufficient condition for quadratic stabilizability
of switched controller systems was derived in [22]. There
are extensions of [25] to the output-dependent switching
and discrete-time cases [12], [27]. For robust stabilization, a
quadratic stabilizing switching law was designed for poly-
topic uncertain switched linear systems based on linear
matrix inequality (LMI) techniques in [27]. All of these
methods guarantee stability by using a common quadratic
Lyapunov function, which is conservative in the sense that
there are switched systems that can be asymptotically (or
exponentially) stabilized without using a common quadratic
Lyapunov function.
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There have been some results in the literature that pro-
pose constructive synthesis methods to switched systems
using multiple Lyapunov functions. For example, in [24],
piecewise quadratic Lyapunov functions was employed for
two mode switched LTI systems. Exponential stabilization
for continuous-time switched LTI systems was considered in
[18] also based on piecewise quadratic Lyapunov functions,
and the synthesis problem was formulated as a bilinear
matrix inequality (BMI) problem. In [10], a probabilistic al-
gorithm was proposed for the synthesis of an asymptotically
stabilizing switching law for switched LTI systems along
with a piecewise quadratic Lyapunov function. A necessary
and sufficient condition for asymptotically stabilizability of
continuous-time switched linear systems was proposed in
[15]. There are also some interesting work on designing
the state-feedback or output feedback gains for each sub-
system so as to stabilize the switched system under arbitrary
switching [5], [7], under given switching signals (e.g. slow
switching [4]), or under autonomous switchings due to the
partition of the state space [17], [21]. However, it is rare
to design the continuous controllers and switching logics
together, which is so-called co-design problem. The main
challenge is due to the coupling between the continuous
controllers and switching logics.

The co-design problem for a class of continuous-time
switched LTI systems was considered in [19], where BMI
synthesis condition is developed for exponential stabilization.
The first part of this current paper can be seen as an
extension of [19] to the discrete-time counterpart. However,
the extension is nontrivial since the switching instants for
the discrete-time case cannot be simply captured as the
time instants when the state trajectories cross the switching
surfaces. In the second part of the paper, we studied the
switching controller synthesis problem to guarantee that the
l2 induced gain is below certain bound. Most of the existing
results on the robust performances of switched systems are
primarily on the performance analysis [26], [9] or on the
continuous feedback controllers design [17], while switching
controller synthesis and co-design are still lacking.

Our focus here is the co-design of switching signals and
state feedback gains. Some preliminary results of this paper
appeared in [14], where stabilizing switching signals are
synthesized. The rest of the paper is organized as follows.
After formulating the co-design problem in Section II, Sec-
tion III characterizes the stabilizing switching signals based
on the MLF theorem. The stabilization co-design problem is
investigated in Section IV, while the co-design problem to
achieve finite l2 induced gain is studied in Section V, which
is based on an extension of the MLF theorem. Sufficient
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conditions for controller synthesis areproposed in the form
of BMIs. Finally, concluding remarks are presented.

Notation: The relation A > B (A < B) means that the
matrix A−B is positive (negative) definite. The superscript
T stands for matrix transposition and the matrix I stands for
identity matrix of proper dimension. l2 is the Lebesgue space
consisting of all discrete-time vector-valued function that are
square-summable over Z+. ‖z‖2 denotes the l2 norm of z,
which is defined as ‖z‖22 =

∑+∞
0 zT (t)z(t).

II. PROBLEM FORMULATION

In this paper, we consider a collection of discrete-time
linear control systems described by the difference equations

{
x(t + 1) = Aix(t) + Biu(t) + Bw

i w(t)
z(t) = Cix(t) + Diu(t) + Dw

i w(t), (1)

where t ∈ Z+, the state x ∈ Rn, control u(t) ∈ Rm,
disturbance w ∈ Rr, and output z ∈ Rp. It is assumed
that the disturbance w(t) is with finite l2 norm. Denote the
finite set I = {1, · · · , N}, which stands for the collection
of finite discrete modes. For any subsystem i ∈ I, the state
matrices Ai, Bi, Bw

i , Ci, Di and Dw
i are constant matrices

of appropriate dimensions.
The problem being investigated here is to design not only

the static state feedback gains Ki for each subsystem but
also the switching signals, also in static state feedback form,
i.e., σ(x) : x 7→ i, such that the closed-loop switched system
{

x(t + 1) = (Aσ(x) + Bσ(x)Kσ(x))x(t) + Bw
σ(x)w(t)

z(t) = (Cσ(x) + Dσ(x)Kσ(x))x(t) + Dw
σ(x)w(t)

is exponentially stable with a bounded l2 induced gain from
w to z. To make the problem nontrivial, it is assumed that
none of the subsystems (1) is stabilizable. In general, the
design of continuous-variable control laws and switching
signals are coupled together, and the co-design of Ki and
σ(x) as formulated above is a challenging task.

III. SWITCHING STABILIZATION

This section aims to characterize switching signals in static
state feedback form, i.e., σ(x) : x 7→ i, such that the
following autonomous switched system

x(t + 1) = Aσ(x)x(t) (2)

is exponentially stable to the origin. Notice that for all the
subsystems in the form of (2), the origin is the common
equilibrium.

To be precise, the exponential stability of the switched
system (2) is defined as follows, e.g. [1]

Definition 1: The origin of the system (2) is exponentially
stable if all trajectories satisfy

‖x(t)‖ ≤ κξt‖x0‖ (3)

for some κ > 0 and 0 < ξ < 1. Here ‖·‖ stands for standard
Euclidian norm in Rn. 2

First, we recall a well-known approach in switched sys-
tems literature to guarantee exponentially stability using
multiple Lyapunov functions.

A. Multiple Lyapunov Function Theorem
Since we assume that none of the subsystems is stabi-

lizable, there does not exist a Lyapunov function for the
subsystems, x(t+1) = Aix(t), in a classical sense. However,
it is still possible to restrict ourselves in a certain region of
the state space, say Ωi ⊂ Rn, so that the abstracted energy
of the i-th subsystem is decreasing along the trajectories
inside this region (there is no requirement on the trajectories
outside the region Ωi). This idea is captured by the concept
of Lyapunov-like function.

Definition 2 (Lyapunov-like function): By saying that a
subsystem has an associated Lyapunov-like function Vi :
Rn → R in a region Ωi, we mean that

1) There exist constant scalars βi ≥ αi > 0 such that

αi‖x(t)‖2 ≤ Vi(x(t)) ≤ βi‖x(t)‖2

hold for any x(t) ∈ Ωi;
2) For all x(t) ∈ Ωi and x(t) 6= 0,

∆Vi(x(t)) = Vi(x(t + 1))− Vi(x(t)) < 0.

2

The first condition implies positiveness and radial un-
boundedness for Vi(x) when x ∈ Ωi, while the second
condition guarantees the decreasing of the value of Vi(x)
along trajectories of the i-th subsystem inside Ωi. Notice
that it is possible that x(t) ∈ Ωi while x(t + 1) /∈ Ωi.

Suppose that the union of all these regions Ωi cover
the whole state space. Then we obtain a set of Lyapunov-
like functions. To study the global stability of the switched
systems, one needs to concatenate these Lyapunov-like func-
tions together and form a non-traditional Lyapunov function,
called multiple Lyapunov function (MLF). MLF is proved
to be a powerful tool for studying the stability of switched
systems, see e.g. [3], [16], [12], [6].

Theorem 1: Suppose that each subsystem has an associ-
ated Lyapunov-like function Vi in its active region Ωi, and
that

⋃
i Ωi = Rn. Let S be a class of switching sequences

such that σ can take value i only if x(t) ∈ Ωi, and in addition

Vj(x(ti,j)) ≤ Vi(x(ti,j)),

where ti,j denotes the time point that the switching from
subsystem i to subsystem j occurs, i.e., x(ti,j − 1) ∈ Ωi

while x(ti,j) ∈ Ωj . Then, the switched linear system (2) is
exponentially stable under the switching signals σ ∈ S. 2

B. Partition of the state space
In the above MLF theorem, it is critical to select Ωi

to divide the whole state space Rn, so as to facilitate the
identification of the Lyapunov-like functions Vi(x) for each
subsystem within a certain region. For this purpose, it is
necessary to require that the union of all these regions Ωi

cover the whole state space, i.e., Ω1

⋃
Ω2 · · ·

⋃
ΩN = Rn,

which is called the covering property.
Since we will restrict our attention to quadratic Lyapunov-

like functions, we consider regions given (or approximated)
by quadratic forms

Ωi = {x ∈ Rn : xT Qix ≥ 0},
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where Qi ∈ Rn×n are symmetric matrices, and i ∈
{1, · · · , N}. The following lemma gives a sufficient condi-
tion for the covering property for regions given by quadratic
forms [18].

Lemma 1: [18] If for every x ∈ Rn

N∑

i=1

θix
T Qix ≥ 0, (4)

where θi ≥ 0, i ∈ I, then
⋃N

i=1 Ωi = Rn. 2

Consider the largest region function strategy, i.e.,

σ(x) = arg
(

max
i∈I

xT Qix

)
. (5)

This is due to the selection of subsystems (at state x)
corresponding to the largest value of the region function
xT Qix. This switching strategy was previously introduced
in [18] for continuous-time switched linear systems.

C. Quadratic Lyapunov-like Functions

In this subsection, we derive conditions expressed as
matrix inequalities for the existence of a quadratic Lyapunov-
like function, Vi(x) = xT Pix, assigned to each region Ωi.
By definition, the Lyapunov-like function Vi(x) = xT Pix
needs to satisfy the following two conditions:

1) Condition 1: There exist constant scalars βi ≥ αi > 0
such that

αi‖x(t)‖2 ≤ Vi(x(t)) ≤ βi‖x(t)‖2

holds for any x(t) ∈ Ωi.
For a quadratic Lyapunov-like function candidate

Vi(x(t)) = x(t)T Pix(t), this means

αix(t)T Ix(t) ≤ x(t)T Pix(t) ≤ βix(t)T Ix(t)

holds for x(t)T Qix(t) ≥ 0. That is
{

x(t)T (αiI − Pi)x(t) ≤ 0
x(t)T (Pi − βiI)x(t) ≤ 0

holds for x(t)T Qix(t) ≥ 0. Applying the S-procedure [2],
the above constrained inequalities follow from the LMIs

{
αiI − Pi + ηiQi ≤ 0
Pi − βiI + ρiQi ≤ 0,

(6)

where ηi ≥ 0 and ρi ≥ 0 are unknown scalars. Define two
scalars, α = mini∈I{αi} and β = maxi∈I{βi}. Notice that
0 < α ≤ β. While normalizing β = 1 by resetting α as α

β ,
ηi as ηi

β , and ρi as ρi

β , we obtain

αI + ηiQi ≤ Pi ≤ I − ρiQi. (7)

2) Condition 2: For all x(t) ∈ Ωi, x(t) 6= 0,

∆Vi(x(t)) = Vi(x(t + 1))− Vi(x(t)) < 0,

where x(t + 1) = Aix(t).
This is equivalent to

x(t)T [AT
i PiAi − Pi]x(t) < 0 (8)

for x(t) ∈ Ωi.

In order to transform the above constrained matrix in-
equality into equivalent unconstrained form, let’s recall the
Finsler’s Lemma [2], which has been used previously in the
control literature mainly for eliminating design variables in
matrix inequalities.

Lemma 2 (Finsler’s Lemma): Let ζ ∈ Rn, P = PT ∈
Rn×n, and H ∈ Rm×n such that rank(H) = r < n. The
following statements are equivalent:

1) ζT Pζ < 0, for all ζ 6= 0, Hζ = 0;
2) ∃X ∈ Rn×m such that P + XH + HT XT < 0. 2

Applying the Finsler’s Lemma to (8), with

P =
[ −Pi 0

0 Pi

]
, ζ =

[
x(t)

x(t + 1)

]
,

X =
[

Fi

Gi

]
, and H =

[
Ai −I

]
, then (8) is equivalent

to

ζT

[
AT

i FT
i + FiAi − Pi AT

i GT
i − Fi

GiAi − FT
i Pi −Gi −GT

i

]
ζ < 0

for ζT

[
Qi 0
0 0

]
ζ ≥ 0. Here Fi, Gi ∈ Rn×n are unknown

matrices.
Applying the S-procedure, the above constrained stability

condition is implied by the following unconstrained con-
dition for unknown matrices Pi = PT

i , Qi = QT
i , Fi,

Gi ∈ Rn×n, and scalars µi ≥ 0,
[

AT
i FT

i + FiAi − Pi + µiQi AT
i GT

i − Fi

GiAi − FT
i Pi −Gi −GT

i

]
< 0.

Combining Condition 1 and 2, we introduce methods to
find quadratic Lyapunov-like functions for each subsystem
within certain regions in the state space, which guarantee
that the abstract energy of the subsystem is decreasing while
staying within these regions. The next step is to properly
patch these quadratic Lyapunov-like functions together, so
as to obtain a global piecewise quadratic Lyapunov function
to guarantee the decreasing of the abstract energy for the
whole switched system. This is done in the next subsection
based on the MLF theorem.

D. Switching Condition

Following Theorem 1, in order to guarantee exponential
stability we also need to make sure that

1) Subsystem i is active only when x(t) ∈ Ωi,
2) When switching occurs, it is required to guarantee that

the Lyapunov function value is not increasing.
To verify the first condition, suppose that the covering

condition (4) holds, i.e.,
∑N

i=1 θix
T Qix ≥ 0 for some θi ≥

0, i ∈ I. Then, based on the largest region function strategy,
namely,

σ(x) = arg
(

max
i∈I

xT Qix

)
,

the state x with current active mode i satisfies xT Qix ≥ 0.
This implies x ∈ Ωi. So the first condition holds for the
largest region function strategy.
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Secondly, assume that a switching, i → j, occurs at time
instant t, i.e., x(t) ∈ Ωj while x(t− 1) ∈ Ωi for i 6= j ∈ I,
it is required that Vj(x(t)) ≤ Vi(x(t)).

This means that

x(t)T [Pj − Pi]x(t) ≤ 0 (9)

and x(t− 1) ∈ Ωi, x(t) = Aix(t− 1) ∈ Ωj .
Because the above inequality is non-strict, the Finsler’s

Lemma can not be directly applied. However, it is possible
to obtain a similar relation for the non-strict case. In fact,

∃X : P + XH + HT XT ≤ 0

implies that ζT Pζ ≤ 0, for all ζ 6= 0, Hζ = 0. This can
be seen by left multiplying ζT and right multiplying ζ to
P + XH + HT XT ≤ 0 and using Hζ = 0.

Therefore, with

P =
[

0 0
0 Pj − Pi

]
, ζ =

[
x(t− 1)

x(t)

]
,

X =
[

Fij

Gij

]
, and H =

[
Ai −I

]
, (9) is implied by

ζT

[
AT

i FT
ij + FijAi AT

i GT
ij − Fij

GijAi − FT
ij Pj − Pi −Gij −GT

ij

]
ζ ≤ 0

for ζT

[
Qi 0
0 Qj

]
ζ ≥ 0. Here Fij , Gij ∈ Rn×n are

unknown matrices.
Applying the S-procedure, the above constrained stability

condition is implied by the following: there exist unknown
matrices Pi = PT

i , Qi = QT
i , Fij , Gij ∈ Rn×n, and scalars

µij ≥ 0, such that the matrix
[

AT
i FT

ij + FijAi + µijQi AT
i GT

ij − Fij

GijAi − FT
ij Pj − Pi −Gij −GT

ij + µijQj

]

is negative semi-definite.

E. Synthesis Condition

In summary, the above discussion can be presented as
the following sufficient condition for the discrete-time linear
system (2) to be exponentially stabilized.

Theorem 2: If there exist matrices Pi (Pi = PT
i ), Qi

(Qi = QT
i ), Fi, Gi, Fij , and scalars ν > 0, α > 0, ηi ≥ 0,

ρi ≥ 0, µi ≥ 0, µij ≥ 0, θi ≥ 0, solving the optimization
problem (10) for all i, j ∈ {1, · · · , N}, i 6= j, then the
largest region function strategy implies that the origin of the
switched linear system (2) is exponentially stable with decay
rate ξ =

√
1− ν. 2

Some remarks are in order. First, the optimization problem
above is a Bilinear Matrix Inequality (BMI) problem, due to
the product of unknown scalars and matrices. BMI problems
are NP-hard, and not computationally efficient. However,
practical algorithms for optimization problems over BMIs ex-
ist and typically involve approximations, heuristics, branch-
and-bound, or local search. As suggested in [18] for the
continuous-time case, one possible way to compute the BMI
problem is to grid up the unknown scalars, and then solve a
set of LMIs for fixed values of these parameters. It is argued

that the gridding of the unknown scalars can be made quite
sparsely [18].

It can be shown that the introduction of multiplier matri-
ces, like Fi, Gi etc., gives a lot of flexibility, and several
known stability conditions in the literature can be reduced
to a special selection of these multiplier matrices, see e.g.
[7]. In addition, these multiplier matrices would make the
co-design of continuous feedback controllers and switching
laws trackable. This is explored in the next section.

IV. SWITCHED STATE FEEDBACK

This section focuses on the co-design of static state
feedback gains Ki, and switching laws σ(x) so that the
closed-loop switched linear system

x(t + 1) = (Aσ(x) + Bσ(x)Kσ(x))x(t) (11)

is exponentially stable to the origin. An important aspect of
the matrix inequality conditions in Theorem 2 is that there
is no cross product between two unknown matrices, which
makes it possible to represent a sufficient condition for this
co-design problem as follows.

Theorem 3: If there exist matrices Pi (Pi = PT
i ), Qi

(Qi = QT
i ), Ri, Gi, and scalars ν > 0, α > 0, ηi ≥ 0,

ρi ≥ 0, µi ≥ 0, µij ≥ 0, θi ≥ 0 that solve the optimization
problem

max ν

s.t.





αI + ηiQi ≤ Pi ≤ I − ρiQi[ −Pi + µiQi + νI AT
i GT

i + RT
i BT

i

GiAi + BiRi Pi −Gi −GT
i

]
≤ 0,

[
µijQi AT

i GT
i + RT

i BT
i

GiAi + BiRi Pj − Pi −Gi −GT
i + µijQj

]
≤ 0

θ1Q1 + · · ·+ θNQN ≥ 0

for all i, j ∈ I, i 6= j, then the state feedback gains given
by the solution of

GiKi = Ri, i ∈ I (12)

along with the switching strategy

σ(x) = arg max
i∈I

xT Qix (13)

exponentially stabilize the switched system (11) with decay
rate ξ =

√
1− ν. 2

Proof: The above conditions lead to




αiI + ηiQi ≤ Pi ≤ βiI − ρiQi[ −Pi + µiQi + νI (Ai + BiKi)T GT
i

Gi(Ai + BiKi) Pi −Gi −GT
i

]
≤ 0,

[
µijQi (Ai + BiKi)T GT

i

Gi(Ai + BiKi) Pj − Pi −Gi −GT
i + µijQj

]
≤ 0

θ1Q1 + · · ·+ θNQN ≥ 0

which implies conditions in Theorem 2 with Fi = 0, Fij =
0, and Gij = Gi. Hence, the exponential stability of the
switched control system (11) follows.
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max ν

s.t.





αI + ηiQi ≤ Pi ≤ I − ρiQi[
AT

i FT
i + FiAi − Pi + µiQi + νI AT

i GT
i − Fi

GiAi − FT
i Pi −Gi −GT

i

]
≤ 0,

[
AT

i FT
ij + FijAi + µijQi AT

i GT
ij − Fij

GijAi − FT
ij Pj − Pi −Gij −GT

ij + µijQj

]
≤ 0

θ1Q1 + · · ·+ θNQN ≥ 0

(10)

V. PERFORMANCE

Consider the discrete-time systems (1) with l2-norm
bounded disturbance w. The goal of this section is to
guarantee that the l2 induced gain from the disturbance w to
the output z is below certain desirable bound.

A. MLF Theorem for Performance

To consider the l2 gain performance, we first consider the
switched autonomous systems

{
x(t + 1) = Aσ(x)x(t) + Bw

σ(x)w(t)
z(t) = Cσ(x)x(t) + Dw

σ(x)w(t) (14)

and extend Theorem 1.
Proposition 1: Suppose each subsystem has an associated

Lyapunov-like function Vi in its active region Ωi with finite
l2 gain performance, each with equilibrium point x = 0. This
means that

1) There exist constant scalars βi ≥ αi > 0 such that

αi‖x(t)‖2 ≤ Vi(x(t)) ≤ βi‖x(t)‖2

hold for any x(t) ∈ Ωi;
2) For all x(t) ∈ Ωi and x(t) 6= 0,

∆Vi(x(t)) + z(t)T z(t)− γ2
i w(t)T w(t) < 0.

Also, suppose that
⋃

i Ωi = Rn. Let S be a class of
piecewise-constant switching sequences such that σ can take
value i only if x(t) ∈ Ωi, and in addition

Vj(x(ti,j)) ≤ Vi(x(ti,j))

where ti,j denotes the time point that the switching from
subsystem i to subsystem j occurs, i.e., x(ti,j − 1) ∈ Ωi

while x(ti,j) ∈ Ωj . Then, the switched linear system (1) is
exponentially stable under the switching signals σ ∈ S, and
its l2 induced gain is less than γ, where γ = maxi γi. 2

B. Synthesis Condition for Performance

In a parallel development to Section III, we consider piece-
wise quadratic Lyapunov functions and derive corresponding
matrix inequalities.

The condition that for all x(t) ∈ Ωi and x(t) 6= 0,

∆Vi(x(t)) + z(t)T z(t)− γ2
i w(t)T w(t) < 0,

means that

xT (t)[AT
i PiAi − Pi]x(t) + z(t)T z(t)− γ2

i w(t)T w(t) < 0,

for x(t) ∈ Ωi, and z(t) = Cix(t) + Dw
i w(t), x(t + 1) =

Aix(t) + Bw
i w(t). This can be transformed into a matrix

inequality based on the Finsler’s Lemma, with

P =




−Pi 0 0 0
0 Pi 0 0
0 0 I 0
0 0 0 −γ2I


 , ζ =




x(t)
x(t + 1)

z(t)
w(t)


 ,

X =




F1i F2i

G1i G2i

H1i H2i

J1i J2i


 , H =

[
Ai −I 0 Bw

i

Ci 0 −I Dw
i

]
.

Analogously, we can obtain the following sufficient con-
ditions for the discrete-time switched linear system (1) to be
stabilized exponentially with l2 gain less than γ.

Theorem 4: If there exist matrices Pi (Pi = PT
i ), Qi

(Qi = QT
i ), F1i, G1i, H1i, J1i, F2i, G2i, H2i, J2i, Fij , Gij ,

and scalars α > 0, ηi ≥ 0, ρi ≥ 0, γ > 0, µi ≥ 0, µij ≥ 0,
θi ≥ 0 that solve the optimization problem (17), then the
switched system (14) can be exponentially stabilized with l2
gain less than γ by the largest region function strategy. 2

Next, consider the following switched control system (1)
and the aim is to find switching signal σ(x) and static
state feedback gains Ki, such that the closed-loop switched
system is exponentially stable with finite l2 induced gain.
A sufficient condition can be expressed in the following
theorem.

Theorem 5: If there exist matrices Pi (Pi = PT
i ), Qi

(Qi = QT
i ), F1i, G1i, H1i, J1i, F2i, G2i, H2i, J2i, Fij ,

Gij , and scalars αi > 0, βi > 0, ηi ≥ 0, ρi ≥ 0, γ > 0,
µi ≥ 0, µij ≥ 0, θi ≥ 0 that solve the optimization problem

min γ



αiI + ηiQi ≤ Pi ≤ βiI − ρiQi

Λi + Ui + UT
i < 0[

µijQi AT
i GT

1i + RT
i BT

i

G1iAi + BiRi Pj − Pi −G1i −GT
1i + µijQj

]
≤ 0

θ1Q1 + · · ·+ θNQN ≥ 0

where

Λi =




−Pi + µiQi 0 0 0
0 Pi 0 0
0 0 I 0
0 0 0 −γ2I


 ,

MoB06.6

116



min γ

s.t.





αI + ηiQi ≤ Pi ≤ I − ρiQi

Λi + Ui + UT
i < 0[

AT
i FT

ij + FijAi + µijQi AT
i GT

ij − Fij

GijAi − FT
ij Pj − Pi −Gij −GT

ij + µijQj

]
≤ 0

θ1Q1 + · · ·+ θNQN ≥ 0

(17)

where

Λi =




−Pi + µiQi 0 0 0
0 Pi 0 0
0 0 I 0
0 0 0 −γ2I


 , Ui =




F1iAi + F2iCi −F1i −F2i F1iB
w
i + F2iD

w
i

G1iAi + G2iCi −G1i −G2i G1iB
w
i + G2iD

w
i

H1iAi + H2iCi −H1i −H2i H1iB
w
i + H2iD

w
i

J1iAi + J2iCi −J1i −J2i J1iB
w
i + J2iD

w
i


 ,

for all i, j ∈ {1, · · · , N} i 6= j.

Ui =


Bw
i F2i AiG1i + BiRi + Bw

i G2i Bw
i H2i Bw

i J2i

0 −G1i 0 0
−F2i −G2i −H2i −J2i

Dw
i F2i CiG1i + DiRi + Dw

i G2i Dw
i H2i Dw

i J2i




for all i, j ∈ {1, · · · , N} i 6= j, then the linear system (1)
can be exponentially stabilized with l2 gain less than γ by
the state feedback gains

G1iKi = Ri, i ∈ I

along with the largest region function strategy. 2

To show this, use a transposed version of Theorem 4 with
F1i = 0, H1i = 0 and J1i = 0, Gij = G1i and Ri = KiG1i.

VI. CONCLUDING REMARKS

In this paper, the co-design of continuous-variable con-
trollers and discrete-event switching logics, both in the
state feedback form, is constructively shown for a class
of discrete-time switched linear systems. The exponential
stability and l2 induced gain performance are investigated
based on multiple quadratic Lyapunov-like functions. Suffi-
cient synthesis conditions are proposed as an optimization
problem with bilinear matrix inequality constraints.
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