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Abstract— An introduction to the fundamental issues and limitations of communica-
tion and networking in automation is given. Digital communication fundamentals are
reviewed and networked control systems together with teleoperation are discussed.
Issues in both wired and wireless networks are presented.

1 Introduction

1.1 Why communication is necessary in automated systems

Automated systems use local control systems that utilize sensor information in feed-
back loops, process this information and send it as control commands to actuators
to be implemented. Such closed loop feedback control is necessary, because of the
uncertainties in the knowledge of the process and in the environmental conditions.
Feedback control systems rely heavily on the ability to receive sensor information
and send commands using wired or wireless communications.

In automated systems there is control supervision, and also health and safety
monitoring via SCADA (Supervisory Control and Data Acquisition) systems. Val-
ues of important quantities (which may be temperatures, pressures, voltages etc) are
sensed and transmitted to monitoring stations in control rooms. After processing the
information, decisions are made and supervisory commands are sent to change con-
ditions such as set points or to engage emergency procedures. The data from sensors
and set commands to actuators are sent via wired or wireless communication chan-
nels.

So communication mechanisms are an integral part of any complex automated
system.

1.2 Communication Modalities

In any system there are internal communication mechanisms that allow components
to interact and exhibit a collective behavior, the system behavior. For example, in
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an electronic circuit, transistors, capacitors, resistances are connected so current can
flow among them and the circuit can exhibit the behavior was designed for. Such
internal communication is an integral part of any system. At a higher level, subsys-
tems that each can be quite complex interact via external communication links that
may be wired or wireless. This is the case for example in antilock brake systems,
vehicle stability systems, and engine and exhaust control systems in a car or among
unmanned aerial vehicles that communicate among themselves to coordinate their
flight paths. Such external to subsystems communication is of prime interest in au-
tomated systems.

There are of course other types of communication for example machine to ma-
chine via mechanical links and human to machine, but here we will focus on elec-
tronic transmission of information and communication networks in automated sys-
tems.

Such systems are present in refineries, process plants, manufacturing, automo-
biles to mention but a few. Advances in computer and communication technologies
coupled with lower costs are the main driving forces of communication methods
in automated systems today. Digital communications, shared wired communication
links, and wireless communications make up the communication networks in auto-
mated systems today.

In the following, after an introduction to digital communication fundamentals,
the focus is on networked control systems that use shared communication links which
is common practice in automated systems.

2 Digital Communication Fundamentals

Fig. 1. Digital communication network with separate source and channel coding.

A digital communication system can generally be thought of as a system which
allows either a continuousx(t) or discrete random source of information to be trans-
mitted through a channel to a given (set of) sink(s) (Figure 1). The information that
arrives at a given destination can be subject to delays, signal distortion and noise.
The digital communication channel typically is treated as a physical medium through
which the information travels as an appropriately modulated analog signal,sm(t), is
subjected to a linear distortion and additive (typically Gaussian) noisen(t). As is
done in [1] we choose to use the simplified single channel network shown in Fig-
ure 1 in which the source encoder/decoder and channel encoder/decoder are separate
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entities. The design of the source encoder/decoder can usually be performed inde-
pendently of the design of the channel encoder/decoder. This is possible due to the
source-channel separation theorem(SCST) stated by Claude Shannon [2], which
states that as long as theaverageinformation rate of bits per second from the source
encoderRs is strictly below the channel capacityC then information can be reli-
ably transmitted with an appropriately designed channel encoder. Conversely, ifRs

is greater than or equal toC then it is impossible to send any information reliably.
The interested reader should also see [3] for a more recent discussion as how the
SCSTrelates for the single channel case; [4] discusses aSCSTas it applies to a sin-
gle source broadcasting to many users and [5] discusses how theSCSTrelates to
many sources transmitting to one sink.

In Section 2.1 we will restate some of Shannon’s key theorems as they relate to
digital communication systems. With a clear understanding of the limitations and
principles associated with digital communication systems we will address source
encoder and decoder design in Section 2.2 and channel encoder and decoder design
in Appendix.

2.1 Entropy, Data Rates and Channel Capacity
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Entropy is a measure of uncertainty of a data source and is typically denoted by
the symbolH . It can be seen as a measure of how manybitsare required to describe
a specific outputsymbolof the data source. Therefore, the natural unit of measure
for entropy is bits/symbol and can also be used in terms of bits/second depending on
its context. Assuming the source could haven outcomes in which each outcome has
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a probabilitypi of occurrence the entropy has the form [2, Theorem 2]:

H = −
n

∑

i=1

pi log2 pi (1)

The entropy is greatest from a source where all symbols are equally likely. For ex-
ample, given a two bit source in which each output symbol is{00, 01, 10, 11} with
respective output probabilitiespi = { po

3 , po

3 , po

3 , 1 − po}. Will have the following
entropy which is maximized when all outcomes are equally likely:

H = −po

3

3
∑

i=1

log2

po

3
− (1 − po) log2(1 − po)

= −1

4
log2(

1

4
) = log2(4) = 2 ; po =

3

4
(2)

(po = 3
4 ). Figure 2 shows a plot relating entropy as a function ofpo, note thatH = 0

bits whenpo = 0 since the source would only generate the symbol11 there is no
need to actually transmit it to the receiver. Note that our two bit representations of
our symbols is an inefficient choice, for example ifpo = 0.2 we could represent this
source with only one bit. This can be accomplished by encoding groups of symbols
as opposed to considering individual symbols. By determining the redundancy of
the source, efficient compression algorithms can be derived as discussed further in
Section 2.2.

In digital communication theory we are typically concerned with describing the
entropy of joint eventsH(x, y) in which eventsx andy have respectivelym andn
possible outcomes with a joint probability of occurrencep(x, y). The joint probabil-
ity can be computed using

H(x, y) = −
∑

i,j

p(i, j)log2p(i, j)

in which it has been shown that the following inequalities hold [2]:

H(x, y) ≤ H(x) + H(y) (3)

= H(x) + Hx(y) (4)

H(y) ≥ Hx(y) (5)

Equality for (3) holds if and only if both events are independent. The uncertainty ofy
(H(y)) is never increased by knowledge ofx (Hx(y)) as indicated by the conditional
entropy inequality in (5). These measures provide a natural way of describing chan-
nel capacity when digital information is transmitted as an analog waveform through a
channel which is subject to random noise. The effective rate of transmission,R is the
difference of the source entropyH(x) from the average rate of conditional entropy
Hy(x). Therefore, the channel capacityC is the maximum rateR achievable.

R = H(x) − Hy(x) (6)

C = max(H(x) − Hy(x)) (7)
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This naturally leads to the discrete channel capacity theorem given by Shannon [2,
Theorem 11]. The theorem states that if a discrete source with entropyH is less than
the channel capacityC their exists an encoding scheme such that data can be trans-
mitted with an arbitrarily small frequency of errors (small equivocation), otherwise,
the equivocation will approachH − C + ǫ whereǫ > 0 is arbitrarily small.

2.2 Source Encoder/Decoder Design

Source Data Compression

Shannon’s fundamental theorem for a noiseless channel is the basis for understand-
ing data compression algorithms. In [2, Theorem 9] states that for a given source with
entropyH (bits per symbol) and channel capacityC (bits per second). Then a com-
pression scheme exists such that you can transmit data at an average rateR = C

H
− ǫ

(symbols per second) in whichǫ > 0 is arbitrarily small. For example, if you had a
10 bit temperature measurement of a chamber which99% of the time is at25 C and
all other measurements are uniformly distributed for the remaining1% of the time
then you would only send a single bit to represent25 C instead of all 10 bits. Assum-
ing that the capacity of the channel is100 (bits per second), then instead of sending
data at anaveragerate of10 = 100

10 measurements per second you will actually send
data at anaveragerate of99.1 = (.99 100

1 + .01 100
10 ) measurements per second.

Note as this applies to source coding theory, we can also treat the channel capac-
ity C as the idealH for the source, and soH is the actual bit rate achieved,R, for
a given source. ThenR =

∑n

i=1 pini wherepi is the probability of occurrence for
each code word of lengthni bits. When evaluating a source coding algorithm we can
look at theefficiencyof the algorithm which equals100H/R%.

As seen in Figure 2 ifpo = .19 then H = 1.0 bits/symbol. If we used our
initial encoding for the symbols, we would transmit on average two bits per sym-
bol with an efficiencyof 50%. We will discover that by using a variable length
code and by making the following source encoder mapxk = {11, 00, 01, 10} →
ak = {0, 01, 011, 111} we can lower our average data rateR = 1.32 (bits/symbol)
which improves theefficiencyto 76%. Note that both mappings satisfy theprefix
condition which requires that a given code wordCk of length k having bit ele-
ments(b1, b2, . . . , bk), there is no other code word of lengthl < k with elements
(b1, b2, . . . , bl) for 1 ≤ l < k [6]. Therefore, both codes satisfy the Kraft inequality
[6, p. 93].

In order to get closer to the idealH = 1.0 (bit/symbol) we will use the Huffman
coding algorithm [6, p.95-99] and encode pairs of letters before transmission (which
will naturally increaseH = 2.0 (bits/symbol-pair)).

Figure 3 shows the resulting code words for transmitting pairs of symbols. We
see that the encoding results in anefficiencyof 95% in whichH = 2.0 and the av-
erage achievable transmission rate isR = 2.1. The table is generated by sorting in
descending order each code word pair and its corresponding probability of occur-
rence. Next a tree is made in which pairs are generated by matching the two least
probable events and are encoded with a corresponding0 or 1. The probability of
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either event occurring is the sum of the two least probable events as indicated. The
tree continues to grow until all events have been accounted for. The code is simply
determined by reading the corresponding0 and1 sequence from left to right.

Fig. 3. Illustration of Huffman Encoding Algorithm.

Source Quantization

Due to the finite capacity (due to noise and limited bandwidth) of a digital commu-
nication channel, it is impossible to transmit an exact representation of a continuous
signal from a sourcex(t) since it requires an infinite number of bits. The question to
be addressed is how can the source be encoded in order to guarantee some minimal
distortion of the signal when constrained by a given channel capacityC. For sim-
plicity we will investigate the case whenx(t) is measured periodically at timeT and
the continuous sampled value is denoted asx(k) and the quantized values is denoted
asx̂(k). Thesquared-error distortionis a commonly used measure of distortion and
is computed as follows:

d(xk, x̂k) = (xk − x̂k)2 (8)

UsingXn to denoten consecutive samples in a vector andX̂n to denote the corre-
sponding quantized samples the corresponding distortion for then samples is

d(Xn, X̂n) =
1

n

n
∑

k=1

d(xk, x̂k) (9)
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Assuming the source is stationary, the expected value of the distortion ofn samples
D = E[d(Xn, X̂n)] = E[d(xk, x̂k)].

Given a memoryless and continuous random sourceX with a pdf p(x) and a
corresponding quantized amplitude alphabetX̂ in which x ∈ X and x̂ ∈ X̂ we
define therate distortion functionR(D) as

R(D) = min

p(x̂|x):E[d(X,X̂)]≤D

I(X; X̂) (10)

in which I(X; X̂) is denoted as themutual informationbetweenX andX̂ [7].
It has been shown that therate distortion functionfor any memoryless source

with zero mean and finite varianceσ2
x can be bounded as follows:

H(X) − 1

2
log2 2πeD ≤ R(D) ≤ 1

2
log2(

σ2
x

D
), 0 ≤ D ≤ σ2

x (11)

H(X) =
∫ ∞

−∞ p(x) log p(x)dx is denoted as thedifferential entropy. Note that the
upper bound is therate distortion functionfor a Gaussian sourceHg(X). Similarly,
the bounds on the corresponding distortion-rate function are:

1

2πe
2−2[R−H(X)] ≤ D(R) ≤ 2−2Rσ2

x (12)

The rate distortion functionfor a band-limited Gaussian channel of widthW nor-
malized byσ2

X can be expressed in decibels as

10 log
Dg(R)

σ2
x

= −3R

W
(13)

[6, p. 104-108]. Thus, decreasing the bandwidth of the source of information results
in an exponential decrease in therate distortion functionfor a given data rateR.

Similar to the grouped Huffman Encoding Algorithm, significant gains can be
made by designing a quantizerX̂ = Q(·) for a vectorX of individual scalar compo-
nents{xk, 1 ≤ k ≤ n} which are described by the jointpdfp(x1, x2, . . . , xn). The
optimum quantizer is the one which can achieve the minimum distortionDn(R).

Dn(R) = min

Q(X)
E[d(X, X̂)] (14)

As the dimensionn → ∞ it can be shown thatD(R) = Dn(R) in the limit [6,
p. 116-117]. One method to implement such a vector quantization is theK-means
algorithm [6, p.117].

3 Networked Systems Communication Limitations

As we have seen in our review of communication theory, there is no mathematical
framework that guarantees a bounded deterministic fixed delay in transmitting in-
formation through a wireless or a wired medium. All digital representations of an
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analog waveform are transmitted with an average delay and variance, which is typi-
cally captured by its distortion measure. Clearly wired media tend to have a relative
low degree of distortion when delivering information from a certain source to desti-
nation. For example, receiving digitally encoded data from a wired analog to digital
converter, sent to a single digital controller at a fixed rate of8 kbits/second, occurs
with little data loss and distortion (i.e. only the least significant bits tend to have
errors). When sending digital information over a shared network, the problem be-
comes much more complex, in which the communication channel, medium access
control (MAC) mechanism, and the data rate of each source on the network come
into play [8]. Even to determine the average delay of a relatively simpleMACmech-
anism such as time-division multiple access (TDMA) is a fairly complex task [9]. In
practice there are wired networking protocols which attempt to achieve a relatively
constant delay profile by using a token to control access to the network such as Con-
trolNet and PROFIBUS-DP. Note that Control Area Network (CAN) offers a fixed
priority scheme in which the highest priority device will always gain access to the
network, therefore, allowing it to transmit data with the lowest average delay while
the lower priority devices will have a corresponding increase in average delay [10,
Figure 4]. Protocols such as ControlNet and PROFIBUS-DP, however, allow each
member on the network an equal opportunity to transmit data within a given slot and
can guarantee the same average delay for each node on a network for a given data
rate. Usually the main source of variance in these delays is governed by the process-
ing delays associated with the processors used on the network, and the additional
higher layer protocols which are built on top of these lower layer protocols.

Wireless networks can perform as well as a wired network if the environmental
conditions are ideal. For example, when devices have clear line of sight for transmis-
sion, and are not subject to interference (high gain microwave transmission stations).
Unfortunately, devices which are used on a factory floor, are more closely spaced
and typically have isotropic antennas, which will lead to greater interference and
variance of delays as compared to a wired network. Wireless token passing protocols
such as that described by [11] are a good choice to implement for control systems,
since they limit interference in the network, which limits variance in delays, while
providing a reasonable data throughput.

4 Networked Control Systems.

One of the main advantages of using communication networks, instead of point to
point wired connections, is the significantly reduced wiring together with the reduced
failure rates of much lower connector numbers, which have significant cost implica-
tions on automated systems. Additional advantages include easier troubleshooting,
maintenance, interoperability of devices and easy integration of new devices added
to the network [10]. Automated systems utilize digital shared communication net-
works. A number of communication protocols are used including Ethernet TCP/IP,
DeviceNet, ControlNet, WiFi, Bluetooth. Each one has different characteristics such
as data speed and delays. Data are typically transmitted in packets of bits, for exam-
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ple an Ethernet IEEE 802.3 frame has a 112- or 176- bit header and a data field that
must be at least 368-bit long.

Any automated system that uses shared digital wired or wireless communication
networks must address certain concerns including:

1. Bandwidth limitations, since any communication network can only carry a finite
amount of information per unit of time,

2. Delay jitter, since uncertainties in network access delay, or delay jitter, is com-
monly present, and

3. Packet dropouts, since transmission errors, buffer overflows due to congestion,
or long transmission delays may cause packets to be dropped by the communi-
cation system.

All these issues are currently being addressed in ongoing research on Networked
Control Systems (NCS) [12].

4.1 Networked Control Systems

Fig. 4. Typical automation network.

Figure 4 depicts a typical automation network in which two dedicated commu-
nication buses are used in order to control an overall processGp with a dedicated
controllerGc. The heavy solid line represents the control data network which pro-
vides timely sensor informationy to Gc and distributes the appropriate control com-
mandu to the distributed controllersGci

. The heavy dashed solid line represents the
monitor and configure data network which allows the various controllers and sensors
to be configured and monitored whileGp is being controlled. The control network
usually has a lower data capacity but provides a fairly constant data delay with little
variance in which field buses such as CAN, ControlNet, and PROFIBUS-DP are ap-
propriate candidates. The monitoring and configuring network should have a higher
data capacity but can tolerate more variance in its delays such that standard Ethernet
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or wireless networks using TCP/IP would be suitable. Sometimes the entire control
network is monitored by a programmable logic controller (PLC) which acts as a
gateway to the monitoring network as depicted in [10, Figure 12]. However, there
are advanced distributed controllersGci

which can both receive and deliver timely
data over a control field bus such as CAN, yet still provide an Ethernet interface
for configuration and monitoring. One such example is theπMFC, which is an ad-
vanced pressure insensitive mass flow controller that provides both communication
interfaces in which a low-cost and low-power dual processor architecture provides
dedicated real-time control with advanced monitoring and diagnostic capabilities of-
floaded to the communications processor [13]. Although, not illustrated in this figure
there is current research in establishing digital safety networks as discussed in [10].
In particular the safety networks discussed are implemented over a serial-parallel
line interface and implement the SafetyBUS p protocol.

Automated Control systems with spatially distributed components have existed
for several decades. Examples include chemical processes, refineries, power plants,
and airplanes. In the past, in such systems the components were connected via hard-
wired connections and the systems were designed to bring all the information from
the sensors to a central location where the conditions were being monitored and de-
cisions were taken on how to act. The control policies then were implemented via
the actuators, which could be valves, motors etc. Today’s technology can put low
cost processing power at remote locations via microprocessors and that information
can be transmitted reliably via shared digital networks or even wireless connections.
These technology driven changes are fueled by the high costs of wiring and the dif-
ficulty in introducing additional components into the systems as the needs change.

In 1983, Bosch GmbH began a feasibility study of using networked devices to
control different functions in passenger cars. This appears to be one of the earli-
est efforts along the lines of modern networked control. The study bore fruit, and
in February 1986 the innovative communications protocol of the Control Area Net-
work (CAN) was announced. By mid 1987, CAN hardware in the form of Intel’s
82526 chip had been introduced, and today virtually all cars manufactured in Europe
include embedded systems integrated through CAN. Networked control systems are
found in abundance in many technologies, and all levels of industrial systems are
now being integrated through various types of data networks. Although networked
control system technologies are now fairly mature in a variety of industrial applica-
tions, the recent trend toward integrating devices through wireless rather than wired
communication channels has highlighted important potential application advantages
as well as several challenging problems for current research.

These challenges involve the optimization of performance in the face of con-
straints on communication bandwidth, congestion, and contention for communica-
tion resources, delay, jitter, noise, fading, and the management of signal transmis-
sion power. While the greatest commercial impact of networked control systems to
date has undoubtedly been in industrial implementations, recent research suggests
great potential together with significant technical challenges in new applications to
distributed sensing, reconnaissance and other military operations, and a variety of
coordinated activities of groups of mobile robot agents. Taking a broad view of net-
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worked control systems, we find that in addition to the challenges of meeting real-
time demands in controlling data flow through various feedback paths in the network,
there are complexities associated with mobility and the constantly changing relative
positions of agents in the network.

Networked control systems research lies primarily at the intersection of three re-
search areas: control systems, communication networks and information theory, and
computer science. Networked control systems research can greatly benefit from theo-
retical developments in information theory and computer science. The main difficul-
ties in merging results from these different fields of study have been the differences
in emphasis in research so far. In information theory, delays in the transmitted infor-
mation are not of central concern, as it is more important to transmit the message ac-
curately even though this may involve sometimes significant delays in transmission.
In contrast, in control systems delays are of primary concern. Delays are much more
important than the accuracy of the transmitted information due to the fact that feed-
back control systems are quite robust to such inaccuracies. Similarly, in traditional
computer science research, time has not been a central issue since typical computer
systems were interacting with other computer systems or a human operator and not
directly with the physical world. Only recently, areas such as real-time systems have
started addressing the issues of hard time constraints where the computer system
must react within specific time bounds, which is essential for embedded processing
systems that deal directly with the physical world.

So far, researchers have focused primarily on a single loop and stability. Some
fundamental results have been derived that involve the minimum average bit rate
necessary to stabilize a linear, time-invariant system.

An important result relates the minimum bit rate R of feedback information
needed for stability (for a single input, linear system) to the fastest unstable mode
of the system via

R > log2 exp(
∑

R(ai)). (15)

Although progress has been made, much work remains to be done. In the case of a
digital network where information is typically sent in packets, the minimum average
rate is not the only guide to control design. A transmitted packet typically contains a
payload of tens of bytes, and so blocks of control data are typically grouped together.
This enters into the broader set of research questions on the comparative value of
sending 1 bit per second or 1000 bits every 1000 seconds-for the same average data
rate. In view of the typical actuator constraints, an unstable system may not be able
to recover after 1000 seconds.

An alternative measure is to see how infrequent feedback information is needed
to guarantee that the system remains stable. See, for example, [14] and [15], where
this scheme has been combined with model-based ideas for significant increases in
the periods where the system is operating in an open-loop fashion. Intermittent feed-
back is another way to avoid taxing the networks for sensor information. In this
case, every so often the loop is closed for a certain-fixed or time-varying period of
time [16]. This may correspond to opportunistic, bursty situations where the sensor
sends up bursts of information when the network is available. The original idea of
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intermittent feedback was motivated by human motor control considerations. There
are strong connections with cooperative control. There, researchers have used spa-
tial invariance ideas to describe results on stability and performance [17]. If spatial
invariance is not present, then one may use the mathematical machinery of graph
theory to describe the interaction of systems/units and to develop detailed models
of groups of agents flying in formation, foraging, cooperation in search of targets
or food, etc. An additional dimension in the wireless case is to consider channels
that vary with time, fade, or disappear and reappear. The problem, of course, in this
case becomes significantly more challenging. Consensus approaches have also been
used which typically assume rather simple dynamics for the agents and focus on the
topology considering fixed or time-varying links in synchronous or asynchronous
settings. Implementation issues in both hardware and software are at the center of
successful deployment of networked control systems. Data integrity and security are
also very important and may lead to special considerations in control system design
even at early stages.

Overall, single loop and stability have been emphasized and studied under quan-
tization of sensor measurements and actuator levels. Note that limits to performance
in networked control systems appear to be caused primarily by delays and dropped
packets. Other issues being addressed by current research are actuator constraints,
reliability, fault detection and isolation, graceful degradation under failure, recon-
figurable control, and ways to build increased degrees of autonomy into networked
control systems.

4.2 Teleoperation.

Fig. 5. Typical teleoperation network.

An important area of networked control is teleoperation. Teleoperation is the
process of a human performing a remote task over a network with ateleoperator
(TO). Ideally, the TO’s velocity (ftop(t)) should follow the human velocity com-
mands (fhsi(t) = ftop(t − T )) through ahuman system interface(HSI) [18]. Force
feedback from the TO (etop(t)) is sent back to the HSI (ehsi(t) = etop(t − T )) in
order for the operator to feel immersed in the remote environment. The controller
(Gtop) depicted in Figure 5 is typically a proportional derivative controller which
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maintainsftop(t) = fenv(t) over a reasonably large bandwidth. The use of force
feedback can lead to instabilities in the system due to small delaysT in data transfer
over the network. In order to recover stability the HSI velocityfhsi and TO force
etop are encoded intowave variables[19], based on the wave port impedanceb such
that

uhsi(t) =
1√
2b

(bfhsi(t) + ehsi(t)) (16)

vtop(t) =
1√
2b

(bftop(t) − etop(t)) (17)

are transmitted over the network from the corresponding HSI, and TO. As the de-
layed wave variablesare received (utop(t) = uhsi(t − T ), vhsi(t) = vtop(t −
T )), they are transformed back into the corresponding velocity and force variables
(ftop(t), ehsi(t)) as follows

ftop(t) =

√

2

b
utop(t) −

1

b
etop(t) (18)

ehsi(t) = bfhsi(t) −
√

2bvhsi(t). (19)

Such a transformation allows the communication channel to remainpassivefor fixed
time delaysT and allows the teleoperation network to remain stable. The study of
teleoperation continues to evolve for both the continuous and discrete time cases as
surveyed in [20].

5 Discussion and Future Research Directions

In summary we presented an overview of fundamental digital communication princi-
ples. In particular, we showed that communication systems are effectively designed
using a separation principle in which the source encoder and channel encoder can be
done separately. In particular, a source encoder can be designed to match theuncer-
tainty (entropy) of a data source (H). All of the encoded data can then be effectively
transmitted over a communication channel in which an appropriately designed chan-
nel encoder achieves the channels capacityC which is typically determined by the
modulation and noise introduced into the communication channel. As long as chan-
nel capacityC > H then an averageH symbols will be successfully received at the
receiver. In Section 2.2 we noted how to achieve a much higher average data rate
by only using one bit to represent the temperature measurement of25 C which oc-
curs99% of the time. In fact the average delay is roughly reduced from10

100 = .1
seconds to.01∗10+.99∗1

100 = .0109 seconds. The key to effectively designing an effi-
cient automation communication network is to understand the effective entropyH of
the system. For monitoring data, in which stability is not an issue is a fairly straight
forward task. When controlling a system the answer is not as clear; however, for
deterministic channels (15) can serve as a guide for the classic control scheme. As

Nicholas Kottenstette, Panos J. Antsaklis, “Communication in Automation, including networking and 
wireless,” Chapter 2.5 in the Springer Handbook of Automation, S. Nof (Ed.), Springer 2008.



14 Nicholas Kottenstette and Panos J. Antsaklis

the random behavior of the communication network becomes a dominating factor
in the system an accurate analysis of how the delay and data dropouts occur is nec-
essary. We have pointed the reader to texts which account for finite buffer size, and
networkingMACto characterize communication delay and data dropouts [8, 9]. It re-
mains to be shown how to effectively incorporate such models in the classic control
framework in terms of showing stability, in particular when actuator limitations are
present. It may be impossible to stabilize an unstable LTI system in any traditional
stochastic framework when actuator saturation is considered. Teleoperation systems
can cope with unknown fixed time delays in the case ofpassivenetworked control
systems, by transmitting information usingwave variables. We have extended the
teleoperation framework to support lower data rate sampling and tolerate unknown
time varying delays and data dropouts without requiring any explicit knowledge of
the communication channel model [21]. Confident that stability of these systems is
preserved allowsmuchgreater flexibility in choosing an appropriateMAC for our
networked control system in order to optimize system performance.

6 Conclusions

Networked control systems over wired and wireless channels are becoming increas-
ingly important in a wide range of applications. The area combines concepts and
ideas from control and automation theory, communications and computing. Although
progress has been made in understanding important fundamental issues much work
remains to be done [12]. Understanding the effect of time varying delays and de-
signing systems to tolerate them is high priority. Research is needed to understand
multiple interconnected systems over realistic channels that work together in a dis-
tributed fashion towards common goals with performance guarantee.

7 Appendix

7.1 Channel Encoder/Decoder Design

DenotingT (seconds) as the signal period, andW (Hz) as the bandwidth of a com-
munication channel, we will use the ideal Nyquist rate assumption that2TW sym-
bols of{an} can be transmitted with the analog wave formssm(t) over the channel
depicted in Figure 1. We further assume thatindependentnoisen(t) is added to
create the received signalr(t). Then we can state the following:

1. [2, Theorem 16] The actual rate of transmission is

R = H(s) − H(n), (20)

in which the channel capacity is the best signaling scheme which satisfies

C = max

P (sm)
H(s) − H(n). (21)
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2. [2, Theorem 17] if we further assume the noise is white with powerN and the
signals are transmitted at powerP then the channel capacityC (bits per second)
is

C = W log2

P + N

N
. (22)

Various channel coding techniques have been devised in order to transmit dig-
ital information to achieve ratesR which approach this channel capacityC with a
correspondingly low bit error rate. Among thesebit error correctingcodes are block
and convolutional codes in which theHamming Code[6, p.423-425] and theViterbi
Algorithm[6, p. 482-492] are classic examples for the respective implementations.

7.2 Digital Modulation

A linear filter can be described by its frequency responseH(f) and real impulse
responseh(t) (H∗(−f) = H(f)). It can be represented in an equivalent low-pass
form Hl(f) in which:

Hl(f − fc) =

{

H(f), f > 0

0, f < 0
(23)

H∗
l (−f − fc) =

{

0, f > 0

H∗(−f), f < 0
(24)

Therefore, withH(f) = Hl(f − fc) + H∗
l (f − fc) the impulse responseh(t) can

be written in terms of thecomplexvalued inverse transform ofHl(f) (hl(t)) [6, p.
153].

h(t) = 2Re[hl(t)e
j2πfct] (25)

Similarly the signal responser(t) of a filtered input signals(t) through a linear filter
H(f) can be represented in terms of their low-pass equivalents (26).

Rl(f) = Sl(f)Hl(f) (26)

Therefore it mathematically convenient to discuss the transmission of equivalent low-
pass signals through equivalent low-pass channels [6, p. 154].

Digital signalssm(t) consist of a set of analog waveforms which can be described
by anorthonormalset of waveformsfn(t). An orthonormalwaveform satisfies the
following:

〈fi(t), fj(t)〉T =

{

0, i 6= j

1, i = j
(27)

in which 〈f(t), g(t)〉T =
∫ T

0 f(t)g(t)dt. TheGram-Schmidt procedureis a straight
forward method to generate a set oforthonormalwave forms from a basis set of
signals [6, p. 163].

Table 1 provides the corresponding orthonormal wave forms and minimum signal
distances (d(e)

min) for pulse-amplitude-modulated(PAM), phase-shift keying(PSK),
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and quadrature amplitude modulation(QAM). Note thatQAM is a combination of
PAMandPSKin whichd

(e)
min is a special case of amplitude selection where2d is the

distance between adjacent signal amplitudes. Signaling amplitudes are in terms of
the low-pass signal pulse shapeg(t) energyEg = 〈g(t), g(t)〉T . The pulse shape is
determined by the transmitting filter which typically has araised cosinespectrum in
order to minimize inter-symbol interference at the cost of increased bandwidth [6, p.
559]. Each modulation scheme allows forM symbols in whichk = log2 M andNo

Table 1. Summary ofPAM, PSK andQAM

Modulation sm(t) f1(t) f2(t)

PAM smf1(t)
q

2
Eg

g(t) cos 2πfct

PSK sm1f1(t) + sm2f2(t)
q

2
Eg

g(t) cos 2πfct −
q

2
Eg

g(t) sin 2πfct

QAM sm1f1(t) + sm2f2(t)
q

2
Eg

g(t) cos 2πfct −
q

2
Eg

g(t) sin 2πfct

Modulation sm d
(e)
min

PAM (2m − 1 − M)d
q

Eg

2
d

p

2Eg

PSK
q

Eg

2

ˆ

cos 2π

M
(m − 1), sin 2π

M
(m − 1)

˜

q

Eg(1 − cos 2π

M
)

QAM
q

Eg

2

ˆ

(2mc − 1 − M)d, (2ms − 1 − M)d
˜

d
p

2Eg

is the average noise power per symbol transmission. DenotePM as the probability
of a symbol error, and assume we use a Gray code, then we approximate the average
bit errorPb ≈ PM

k
. The corresponding symbol errors are:

1. [6, p. 265] for M-aryPAM

PM =
2(M − 1)

M
Q(

√

d2Eg

No

), (28)

2. [6, p. 270] for M-aryPSK

PM ≈ 2Q(

√

Eg

No

sin
π

M
), (29)

3. [6, p. 279] forQAM

PM < (M − 1)Q(

√

[d
(e)
min]2

2No

). (30)
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