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Abstract

An examination of the literature results on timed and untimed discrete event system (DES) models

reveals clearly that the supervisory control problem is more tractable on untimed models. Thus it is

interesting to consider the extent to which untimed DES models can be used to design controllers for

dynamical systems. In order to approach a larger class of systems appropriate abstraction methods are

necessary as well as some extensions of the untimed supervisory control methods. This paper proposes

an abstraction procedure that can be used to extract untimed DES models from hybrid automata models

with control inputs and continuous disturbances. The abstractions obtained using this procedure are state

machines in which every state corresponds to a region of the state space of the hybrid automaton and

transitions between states correspond to transitions between the regions. Results describing properties

of the abstraction procedure are obtained, including a semidecidability result. The procedure is useful

not only for sequential problems but also in the context of concurrency.

1 Introduction

Numerous methods have been proposed for the supervisory control of discrete event systems (DESs). Since

a DES model is usually not a complete model of a plant, it is important to ensure that it is obtained in such

a way that any controller designed based on the DES model will be able to satisfy the specifications when

in closed-loop with the actual plant. Plants modeled by DESs are often more accurately modeled by hybrid

systems, since they involve not only discrete but also continuous variables.

In this paper we consider the problem of extracting DES models from hybrid system models. We call

such DES models abstractions. For the hybrid system models we use hybrid automata with control inputs.

Note that using the underlying automaton of a hybrid automaton as the DES abstraction is in general an

inappropriate choice. This is due to the interaction between the continuous and discrete variables of a hybrid

system. Rather, DES abstractions should contain enough detail to allow the design of DES controllers that

operate correctly when in closed-loop with the actual plant.
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Note that we consider a hierarchical control architecture in which the control of the system is separated

in two levels: the higher level performs the supervisory control, while the lower level executes the commands

issued by the DES controller. Compared to the usual setting of [8, 15], here the lower level could involve a

more complex controller, not just selecting an input from a set of predetermined inputs.

The abstractions generated by the procedure described in this paper can be described as follows. Given

a hybrid automaton, let Q be the set of discrete states (or modes) and X the set of continuous states. Given

q ∈ Q and R ⊆ X , let (q,R) denote the set of hybrid automaton states z ∈ {q} × R. The abstraction

is a state machine in which every state s corresponds to a region (q,R) of the hybrid automaton. The

abstraction is such that when a transition exists from s1 to s2, the corresponding regions (q1, R1) and

(q2, R2) of the hybrid automaton have the property that there is a control law leading any state z of (q1, R1)

to (q2, R2), regardless of the (bounded) disturbances, and such that the state stays in (q1, R1) until (q2, R2)

is reached. In general, several discrete states si may correspond to the same mode q, though the regions Ri

will be distinct. Compared to the concept of quasideterminism [7], note that the regions produced by the

abstraction procedure satisfy a stronger requirement. Thus, here we can ensure that if a switching sequence

(s1, s2), (s2, s3), . . . (sn−1, sn) can be induced in the abstraction, the corresponding switching sequence

(q1, q2), (q2, q3), . . . (qn−1, qn) can also be induced in the hybrid automaton, regardless of disturbances, from

any (q1, x) with x ∈ R1. Further, the converse statement is shown to be also true on a certain version of the

abstraction procedure. Moreover, note that if there is a transition from s1 to s2, then it is labeled by the

same discrete event as the transition from q1 to q2 of the hybrid automaton. Thus, specifications in terms

of the events of the hybrid system can be enforced by the DES controller. Note also that the abstraction

procedure gradually builds the abstraction by iteratively adding new states and arcs. Each intermediary

result is a valid abstraction. Such intermediary abstractions may be of interest when the procedure does not

converge or when it is attempted to reduce the complexity of the supervisory control problem by using a

smaller DES abstraction.

In order to make the method more applicable, the abstraction procedure has been formulated in a general

setting, without assuming very specific classes of systems. Thus, while the procedure relies on computations

of controlled invariant sets and controlled predecessor sets, it does not propose any specific methods for these

computations. Rather, any of the methods developed in the literature could be applied, depending on the

specific context.

The contribution of this paper is as follows. In our previous work, we have discussed extensions of

the supervisory control of DES to the control of hybrid systems and formulated an abstraction procedure

(chapters 9 and 10 of [6]). However, a theoretical analysis of the abstraction procedure has not been

published before and is presented here. Here we define the properties satisfied by the abstractions and

provide a sufficient condition for the termination of the abstraction procedure. Further, a new version of the
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abstraction procedure is introduced for which semidecidability is proved.

Related work includes papers on the supervisory control of hybrid systems, such as [8, 15]. The setting

of our paper is also related to that of [13, 12, 16], in which supervision can be applied to abstractions of

continuous systems. Note that abstractions have been used also in the context of hybrid system verification,

such as in [1, 3, 9]. Since our abstraction method can be applied to concurrent systems, the results on hybrid

and continuous Petri nets are also related [10, 2, 4], as well as other approaches that use Petri nets for the

modeling of continuous systems [11].

The paper is organized as follows. First, section 2 describes the role of controlled invariants for the

feasibility and permissiveness of the DES control problem. Then, the abstraction procedure is presented and

characterized in section 3. Examples are given in section 4 and final remarks in the conclusion.

2 Significance of Invariants to DES Control

Supervisory control methods can be applied to the design of controllers for hybrid systems in a hierarchical

setting involving a high level DES controller and a low level controller. In this approach the control speci-

fication is divided into a specification for the DES controller and a specification for the low level controller.

The DES controller restricts the control inputs that can be applied at the lower level. The function of the

lower level controller is to generate control inputs based on the input from the DES controller, such that the

state of the hybrid system is in the specified region of the state space.

The design of the low and high level controllers relies also on a hierarchical model of the plant. At the

low level the plant is represented as a hybrid system. At the high level the plant is represented by a DES

model (abstraction) of the hybrid system. Each state s of the DES model corresponds to a region R of the

state space of the hybrid system.

Of special interest to the design of DES controllers are the controlled invariants of a hybrid system. Note

that a region Z of the state space of the hybrid system is a controlled invariant if there is a control law

able to keep the state in Z regardless of disturbances. In the context of concurrency, the ability of a DES

controller to wait for the occurrence of certain events is linked to the presence of controlled invariants at

the low level. If the DES controller can wait at any state s, then virtually any DES control methods can be

used to design the controller. However, such a requirement would eliminate many interesting problems in

which not all regions of interest are controlled invariants. As it turns out, this ability to wait for events is

not always necessary, or not for all discrete states s, as illustrated in the following example.

Figure 1 represents the abstraction of a hybrid system consisting of three subsystems, denoted as A, B,

and C. The hybrid subsystems A, B, and C have the modes a1 and a2, b1 . . . b4, and c1 and c2, respectively.

This is a simple example in which the modes of the subsystems appear explicitly in the abstraction. Of
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Figure 1: A DES illustrating the significance of invariants to DES control.

course, in general abstractions are much more complex, as more than one place may correspond to the same

mode. The abstraction associates with each of the modes a1, a2, . . . c2 the sets A1, A2, . . .C2. Whenever

subsystem A is in the mode a1 of the abstraction, the continuous state of A satisfies xa ∈ A1 and whenever it

is in the mode a2, xa ∈ A2. The sets B1. . .C2 have the similar meaning. The transitions drawn in the figure

can always be taken (they are controllable) when their associated event is enabled by the DES controller.

For instance, when the subsystem B is in the mode b4, any of the transitions β5 and β6 can be induced.

Further, the self-loop transitions α1, β1, and κ1 correspond to modes that have a controlled invariant set.

For instance, as long as the event β1 is selected, the subsystem B stays in the mode b1, that is, the continuous

state xb is maintained in the set B1.

Assume the following specification. The subsystems A and B should not be at the same time in the

modes a2 and b2, respectively, and the subsystems B and C should not be at the same time in the modes b3

and c2, respectively. That is, the forbidden states of the system are (a2, b2, c1), (a2, b2, c2), (a1, b3, c2), and

(a2, b3, c2).

The difference between the classical DES setting [14] and the DES setting of the hybrid system ab-

stractions can be illustrated if we assume the system in the state (a2, b4, c2). To ensure the specification is

satisfied, both β5 and β6 are to be disabled until one of κ3 or α3 occurs. Thus, the DES controller should

be able to keep the subsystem B in the mode b4 as long as needed. This ability would be taken for granted

in the classical DES setting. However, here b4 does not have a self-loop, that is, B4 is not a controlled

invariant. This indicates that the controller does not have the option to keep the state in b4. In fact, it has

only two choices, to enable β5 or β6. Otherwise, if neither β5 nor β6 is enabled, the subsystem B will operate

according to unmodeled dynamics, which is clearly an undesirable situation.

Based on this example we can conclude the following.

1. Assuming that all places of the abstractions have self-loops (that is, all associated sets of the hybrid
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system are controlled invariants) the methods of the classical DES setting (such as in [14, 5]) can be

applied without change.

2. This assumption is not necessary in order to apply untimed supervisory control. Indeed, in our example

it is not hard to see that there is a solution if (a2, b4, c2) is added to the set of forbidden states.

However, apart from this assumption, some enhancements of the supervisory control methods are

required. Enhancements are discussed in chapter 9 of [6].

3. If the mode b4 had a self-loop, a more permissive controller would be possible, since the state (a2, b4, c2)

would be permissible. On the other hand, if b1 did not have a self-loop, the problem would have no

solution. We conclude that the computation of controlled invariants is essential for the permissiveness

of the DES controller and for the feasibility of the supervisory control problem.

3 The DES Abstraction

The hybrid automata considered in this paper are defined as follows. A controlled hybrid automaton is

H = (Q,X, V, Init, f, Inv, Edg,G,Res, φ) where

1. Q is the set of modes (discrete states).

2. X ⊆ R
n is the domain of the continuous state variable, denoted by x.

3. V = U × D × ΣC is the domain of the input, where U is the domain of the control input, D is the

domain of the disturbances and ΣC is the set of events (or discrete inputs). The events are assumed

to be controllable, that is, discrete disturbances are not incorporated in our model.

4. Init is the set of initial states (modes).

5. f : Q ×X × U ×D → R
n is the right-hand side of the state equation. Thus, in the continuous-time

case: ẋ(t) = f(q, x(t), u(t), d(t)), and in the discrete-time case: x(t+ 1) = f(q, x(t), u(t), d(t)).

6. Inv : Q → 2X maps to each q the invariant of the mode q, that is the set in which x must be when

the system is in the mode q.

7. Edg ⊆ Q×Q is the set of transitions (edges) between modes; (Q,Edg) is a state machine.

8. G : Edg → 2X×U×ΣC maps to each transition a guard, meaning that a transition e ∈ Edg may occur

only if (x, u, α) ∈ G(e). In particular, when G(e) does not depend on u and α, the transition e is

uncontrollable. It will be assumed that a transition e occurs if (x, u, α) ∈ G(e) (where (u, α) is the

input applied to the system). We will assume determinism, that is G(q, q1) ∩ G(q, q2) 6= ∅ ⇒ q1 = q2.

Future work may remove this assumption.
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Figure 2: Illustration of a desirable situation in the controlled behavior of a hybrid system. (a) A hy-

brid system mode with “input” set I and “output” sets O1, O2 and O3 corresponding to the thick lines,

controlled invariant set J and Pre(O1), Pre(O2), Pre(O3) and Pre(J) represented through the shaded ar-

eas. (b) Equivalent DES abstraction, where the self-loop corresponds to J and the other transitions to the

transitions exiting O1, O2 and O3.

9. Res : Edg ×X × U → 2X is the reset map, mapping (e, x, u) with (x, u) ∈ G(e), to the set in which x

may be after the transition e occurs.

10. φ : Q×X → 2U×D identifies the admissible inputs at every state.

A set I is a controlled invariant if for all states x(0) ∈ I there is some feedback control law ensuring that

x(t) ∈ I for all t > 0, regardless of the disturbances. Preq(M) is the controlled predecessor of M if it

contains all values x(0) ∈ Inv(q) for which there is an admissible control law u leading the state x to M

regardless of disturbances. Note that the predecessor was defined with respect to a hybrid system mode q.

Since it is obvious from the context what mode is referred, we will denote Preq by Pre.

The process of DES abstraction has a favorable situation which we consider below. First we define for

every mode q ∈ Q the following sets:

(i) Jq ⊆ Inv(q).

(ii) For every (q, p) ∈ Edg, let Oq→p ⊆ Inv(q) denote the continuous states of Inv(q) from which it is

always possible to switch from mode q to p, regardless of disturbances.

(iii) Let Iq be the set of continuous states in which the mode q may be entered from the modes qc such

that (qc, q) ∈ Edg.

Note that the set Iq could be reduced by an appropriate control law. An ideal situation for the DES

abstraction is when for all q ∈ Q there is Jq such that:
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Figure 3: Illustration of the situation in which no controlled invariant set exists. Note that the abstraction

has no self-loop.

(a) Jq is a controlled invariant set.

(b) Iq ⊆ Pre(Jq).

(c) Jq ⊆
⋂

p∈q→

Pre(Oq→p).

where we write p ∈ q → for (q, p) ∈ Edg. This situation is illustrated in Figure 2, together with the DES

abstraction of the mode. Thus, once we have the sets Iq and Oq→p, we are interested to compute the maximal

controlled invariant set Jq satisfying (i) and (c). Indeed, if the maximal controlled invariant set does not

satisfy (b), there is no controlled invariant set Jq satisfying (a-c). However, even when (b) is not satisfied,

we may still be able to reduce the set Iq (through a control law) such that (b) is satisfied.

In the cases, when we find no invariant set Jq satisfying (a-c), we could obtain DES abstractions by

simple considerations, such as considering the inclusion relations between Iq on one side and Pre(Oq→p) on

the other, or among Iq, Pre(Jq), Jq and Pre(Oq→p). A situation in which a mode has no controlled invariant

sets is illustrated in Figure 3.

The abstraction procedure we propose will be defined next. The procedure assumes a hybrid automaton

H = (Q,X, V, Init, f, Inv,Edg,G,Res, φ) to be given. The result of the procedure is a state machine (S,→),

where S is the set of states and →⊆ S × S is the transition relation. Here is the notation.

• Similar to Inv(q) in the hybrid automaton, we define also Inv : S → X for the states s of the

abstraction. Further, the map C : S → Q is defined, to associate a mode q ∈ Q to each s ∈ S. Thus,

each s ∈ S corresponds to a region (C(s), Inv(s)) of the hybrid system, where Inv(s) ⊆ Inv(C(s)).

• Let Resq′→q denote the area in which the state is reset when switching from q′ to q for q′, q ∈ Q.

Technically, let φu be the restriction of φ to 2U (that is, φu(p, x) is the set of inputs that can be applied
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when the mode is p and the state x.) Then Resq′→q =
⋃

(x,u)∈V Res((q
′, q), x, u) for V = {(x, u)| (∃α ∈

ΣC : (x, u, α) ∈ G(q′, q)) ∧ x ∈ Inv(q′) ∧ u ∈ φu(q′, x)}.

• Given I ⊆ Inv(q), the set G−1
q′→q(I), q

′, q ∈ Q, denotes the set of states x in mode q′ from which

there is an input leading to the mode q with the state x reset within I. Formally, G−1
q′→q(I) = {x ∈

Inv(q′)| ∃u ∈ φu(q′, x), ∃α ∈ ΣC : Res((q′, q), x, u) ⊆ I ∧ (x, u, α) ∈ G(q′, q)}.

• The predecessor is defined with respect to each mode q ∈ Q. As the mode q is clear from the context,

we use the notation Pre instead of Preq. Note that for any set M , Preq(M) is by definition a subset of

Inv(q). Formally, let ψ(t) denote the solution to ẋ = f(q, x, u, d) or x(t+1) = f(q, x(t), u, d), assuming

it exists. Then, Preq(M) = Inv(q) ∩ {z ∈ X : ∃t > 0, ∃u : [0, t] ×X → R
m, ∀d : [0, t] → R

p : [∀τ ∈

[0, t], u(τ, ψ(τ)) ∈ φu(q, ψ(τ))]∧ [(∀τ ∈ [0, t], d(τ) ∈ φd(q, ψ(τ))) ⇒ (∃τ ∈ [0, t], ψ(τ) ∈M)]∧ψ(0) = z}.

Similarly to φu, φd is the restriction of φ to 2D.

The procedure starts with a number of sets of interest (qi, Ji) specified by the user, where qi ∈ Q and

Ji ⊆ Inv(qi). These could represent portions of the state space that should be reached during the operation

of the plant. The abstraction procedure will be called the AB-procedure. It is defined next.

Input: The hybrid automaton and the sets of interest (qi, Ji).

Output: A state machine (S,→) and the maps C and Inv.

Procedure:

1. Initialize S = ∅ and →= ∅.

2. For all sets of interest (q, J), create a state s ∈ S with C(s) = q and Inv(s) = Pre(J). If J is a

controlled invariant, add (s, s) to →.

3. Initialize StateList := S.

4. While StateList 6= ∅ do

(a) For all s ∈ StateList

i. Compute Iq→s = Inv(s) ∩Resq→C(s) for all q ∈ Q such that (q, C(s)) ∈ Edg.

ii. For all Iq→s computed above find Oq→s = G−1
q→C(s)(Iq→s).

iii. For all Oq→s computed above, if Oq→s 6= ∅, add Oq→s to the list L(q).

(b) Set StateList = ∅.

(c) For all q ∈ Q with L(q) 6= ∅ do:

i. For all Oq→s ∈ L(q) and s′ ∈ S, if C(s′) = q and Inv(s′) ⊆ Pre(Oq→s), add (s′, s) to →.
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ii. Distribute the states s with Oq→s ∈ L(q) into k disjoint groups Γ1. . . Γk, such that Invi 6= ∅

for i = 1 . . . k and Invi 6= Invj for i 6= j, where Invi :=
⋂

s∈Γi
Pre(Oq→s).

iii. Let s1. . . s2k /∈ S be new discrete states.

iv. Let cinv(Invi) denote the maximal controlled invariant set included in Invi.

v. For all i = 1 . . . k, let Inv(si) = cinv(Invi) and Inv(si+k) = Invi. If cinv(Invi) = Invi, then

si+k will denote si: si+k ≡ si.

vi. For all i = 1 . . . 2k, if Inv(si) = Inv(s′) and C(s′) = q for some s′ ∈ S, then si will denote s′:

si ≡ s′.

vii. Let Γ = {i : Inv(si) 6= ∅}. For all i ∈ Γ, if si /∈ S then add si to S and StateList, and set

C(si) = q.

viii. For all i ∈ Γ with i ≤ k, add (si, si) to → and (si, s) to → for all s ∈ Γi.

ix. For all i ∈ Γ with i > k, for all s ∈ Γi−k, add (si, s) to →.

(d) Set L(q) = ∅ for all q ∈ Q.

The procedure is graphically illustrated in Figure 4. Note that the procedure does not assume a set of initial

states for the hybrid automaton. Rather, the abstraction could be used to determine the states in which the

system could be initialized.

Given P1 ⊆ Inv(q1) and P2 ⊆ Inv(q2), q1, q2 ∈ Q, we write (q1, P1) → (q2, P2) if it is always possible to

reach (q2, P2) from any (q, x) with x ∈ P1. That is, we write (q1, P1) → (q2, P2) if Pre(G−1
q1→q2

(P2)) ⊇ P1.

On the other hand, we will also write (q, P ) → (q, P ) if P is a controlled invariant.

Definition 3.1 A collection of sets C = {(q,Qi) : q ∈ Q and Qi ⊆ Inv(q)} is said to satisfy the abstraction

property (AP), if

1. For all sets of interest (q, J) given as input to the AB-procedure, ∃(p,Qi) ∈ C such that p = q and

Qi = Pre(J).

2. For all p ∈ Q and P ⊆ Inv(p) satisfying (p, P ) → (qi, Qi) for some (qi, Qi) ∈ C with p 6= qi,

∃Qj ∈ Inv(p), (p,Qj) ∈ C, such that

(a) P ⊆ Qj

(b) ∀(q,Qk) ∈ C, [(p, P ) → (q,Qk)] ⇒ [(p,Qj) → (q,Qk)].

(c) [(p, P ) → (p, P )] ⇒ [(p,Qj) → (p,Qj)].

Proposition 3.1 Let C be a collection of sets satisfying the AP. Then, the abstraction produced by the

AB-procedure satisfies that for all s ∈ S, (C(s), Inv(s)) ∈ C.
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Figure 4: Illustration of the AB-procedure.
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Proof: The proof is by induction: assuming that all states s added to S before the iteration k of step 4 satisfy

(C(s), Inv(s)) ∈ C, we show that the states s added to S in the iteration k satisfy also (C(s), Inv(s)) ∈ C.

Note that the step 2 of the AB-procedure ensures that initially all s ∈ S satisfy (C(s), Inv(s)) ∈ C, by

part 1 of Definition 3.1. At the iteration k, new discrete states s are added to S in the step 4.c.vii. They

have Inv(s) = Invi or Inv(s) = cinv(Invi) and C(s) = q for some q ∈ Q, where Invi =
⋂

s∈Γi
Pre(Oq→s)

is computed at the step 4.c.ii. There are two cases.

Case 1, Inv(s) = Invi 6= cinv(Invi): Let P = Invi. By the definition of Invi, (q, P ) → (C(s), Inv(s))

∀s ∈ Γi. Further, (q, P ) 6→ (q, P ). By the induction assumption, χ = {(C(s), Inv(s)) : s ∈ Γi} ⊆ C. By

Definition 3.1, there is Qj such that (q,Qj) ∈ C, Qj ⊇ P , and (q,Qj) → (ql, Ql) for all (ql, Ql) ∈ χ. Hence,

∀(ql, Ql) ∈ χ: Pre(G−1
q→ql

(Ql)) ⊇ Qj . Therefore, Qj ⊆ Invi, and so Qj = P , as we already know that

Qj ⊇ P and P = Invi.

Case 2, Inv(s) = cinv(Invi): Let P = cinv(Invi). As in Case 1, we get Qj ⊆ Invi. Then, by part 2.c of

Definition 3.1, (q,Qj) → (q,Qj), that is, Qj is a controlled invariant. By definition, cinv(Invi) is the largest

controlled invariant contained in Invi, and so Qj ⊆ cinv(Invi). It follows P = Qj , since we already know

that P = cinv(Invi) and Qj ⊇ P .

In both case 1 and 2 we have proved Qj = P . This ends the proof, since (q,Qj) ∈ C, C(s) = q and P

was selected such that Inv(s) = P . 2

The previous result can be used to give a sufficient condition for the termination of the AB-procedure.

However, note that in principle we could terminate the procedure as soon as the abstraction is fine enough

for our purposes, without waiting for a possible convergence. For instance, a termination condition could be

that the abstraction has a directed circuit including all s ∈ S associated with the sets of interest.

Proposition 3.2 The AB-procedure terminates if there is a finite collection C with the AP property.

Proof: This is an immediate consequence of Proposition 3.1, as every state s of S corresponds to an element

(q,Qj) ∈ C such that C(s) = q and Inv(s) = Qj. 2

Note that the AB-procedure may not produce an abstraction that satisfies the AP. The AB-procedure was

constructed such that if a sequence (s0, s1), (s1, s2), . . . (sn−1, sn) can be induced in (S,→), then the sequence

(q0, q1), (q1, q2), . . . (qn−1, qn) can also be induced in the hybrid automaton, regardless of disturbances, for

qi = C(si) and any initial value of x in Inv(s0). Moreover, the AB-procedure guarantees that during the

switching sequence the state will satisfy x ∈ Inv(si) in the mode qi. However, all these are not sufficient to

guarantee the AP is satisfied.

It is possible to modify the AB-procedure such that the AP is satisfied. This modified version of the

procedure will be called the AB-L procedure. The AB-L procedure is identical to the AB-procedure,
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except for the following two changes. First, the step 4.d is removed. That is, L(q) will contain all the sets

Oq→s computed up to the current iteration. Second, the step 4.c.ii, is changed as follows: Find all sets

Γi ⊆ S, i = 1, 2, . . . such that Invi 6= ∅, Invi 6= Invj for i 6= j, and Invi 6=
⋂

s∈Z Pre(Oq→s) for all Z ⊃ Γi,

where Invi :=
⋂

s∈Γi
Pre(Oq→s). Note that the condition Invi 6=

⋂
s∈Z Pre(Oq→s) for all Z ⊃ Γi requires

that the sets Γi be maximal.

From a practical viewpoint, the AB-L procedure may not be as attractive as the AB-procedure, as it has

less likely convergence. However, from a theoretical viewpoint, its study reveals properties of interest to this

abstraction approach. We show next that the AB-L procedure produces sets C satisfying the AP.

Lemma 3.1 If the AB-L procedure terminates, the set C = {(C(s), Inv(s)) : s ∈ S} satisfies the AP.

Proof: Part 1 of Definition 3.1 is satisfied because of the step 2 of the AB-L procedure. So we prove part 2 of

the Definition 3.1. For convenience, let’s denote Inv(sk) by Qk, for all sk ∈ S. Let q ∈ Q and P ⊆ Inv(q) be

chosen arbitrarily, such that (q, P ) → (qi, Qi) for some (qi, Qi) ∈ C. Let L = {sk ∈ S : (q, P ) → (C(sk), Qk)}.

Note that each time a state sk is added to S in the AB-L procedure (see step 4.c.vii), Oq→sk
is computed at

the next iteration for all q ∈ Q (see step 4.a.iii). Therefore, for each sk ∈ L, there is a step 4.c.ii at which all

Oq→sk
are included in L(q). At that step, P ⊆ Invi for some Γi ⊇ L. If P is not a controlled invariant, then

sj ∈ S with C(sj) = q and Qj = Invi satisfies the requirement 2 of Definition 3.1. Else, if P is a controlled

invariant, then sj ∈ S with C(sj) = q and Qj = cinv(Invi) satisfies the requirement 2 of Definition 3.1. 2

Lemma 3.2 Let C be a collection of sets satisfying the AP. Then, the abstraction produced by the AB-L

procedure satisfies that for all s ∈ S, (C(s), Inv(s)) ∈ C.

Proof: The proof is similar to that for the AB-procedure in Proposition 3.1. 2

Assuming that all operations involved in the AB-L procedure are computable (i.e. Pre, set comparison,

set intersection, complement, and notably, the computation of the maximal controlled invariants), we have

the following result.

Theorem 3.1 The AB-L procedure is semidecidable.

Proof: By Lemma 3.1, the AB-L procedure computes a set C satisfying the AP. By Lemma 3.2, given C

satisfying the AP, s ∈ S ⇒ (C(s), Inv(s)) ∈ C. Therefore, if a finite set C satisfying the AP exists, the AB-L

procedure must terminate. 2

The next result shows that the AB-L procedure generates an abstraction that captures all switching

sequences that can be robustly enforced and lead to the sets of interest.

12

M.V. Iordache, P.J. Antsaklis, “DES Abstractions for the Supervisory Control of Hybrid Systems," special 
issue on Hybrid Systems of the Transactions of the Institute of Measurement and Control.



Theorem 3.2 Assume that the AB-L procedure terminates. Let (S,→) be the state machine it produces.

Let (qn, J) be one of the sets of interest used in the AB-L procedure, and let q0 ∈ Q. Assume that from

(q0, x0), with x0 ∈ Inv(q0), it is possible to reach (qn, J) with the control law u = g(q, x) and the switching

sequence (q0, q1), (q1, q2), . . . (qn−1, qn), qi−1 6= qi, regardless of the disturbances that may occur. Then there

are s0, s1, . . . sn ∈ S such that C(si) = qi ∀i = 0 . . . n, Inv(sn) = Pre(J) ∩ Inv(qn), x0 ∈ Inv(s0), and the

sequence (s0, s1), (s1, s2), . . . (sn−1, sn) can be induced in (S,→).

Proof: Consider the trajectories leading (q0, x0) to (qn, J) through the given control law and switching

sequence. Let Z0 = {x}. Let Z1 ⊆ Inv(q1) be the set of states x in which the mode q1 is entered. (Z1

depends on x0, the control law, the disturbances, and the reset map). Similarly, let Zi ⊆ Inv(qi) be the

set of states x in which the mode qi is entered. Then Zn ⊆ Pre(J) ∩ Inv(qn). Let sn ∈ S be such that

Inv(sn) = Pre(J)∩ Inv(qn). Note that sn exists by Lemma 3.1 and part 1 of Definition 3.1. Note also that

since (qn−1, Zn−1) → (qn, Inv(sn)), there is sn−1 ∈ S such that C(sn−1) = qn−1 and Zn−1 ⊆ Inv(sn−1), by

Lemma 3.1 and part 2(a-b) of Definition 3.1. Further, (sn−1, sn) ∈→. Continuing the same way, we find

si ∈ S with C(si) = qi, Zi ⊆ Inv(si), and (si, si+1) ∈→, for i = n− 2, n− 3, . . . 1, 0. 2

Note that both the AB-procedure and the AB-L procedure were defined such that the converse of the

Theorem 3.2 is satisfied. Thus, if the sequence (s0, s1), (s1, s2), . . . (sn−1, sn) can be induced in (S,→), the

sequence (q0, q1), (q1, q2), . . . (qn−1, qn), can also be induced in the hybrid system from q0 and any x ∈ Inv(s0),

where qi = C(si) for all i. However, unlike to the AB-L procedure, the AB-procedure does not satisfy

Theorem 3.2. The AB-procedure does not produce an abstraction describing all possible sequences of events

that can be controlled in the hybrid automaton. However, this may not be necessary. In fact, the two

procedures could be stopped before convergence if the abstraction contains sufficient information to solve

the specification of the DES controller.

4 Examples

In this section the abstraction procedures are illustrated on three examples. We begin with an example in

which the abstraction procedures do not terminate. Consider the hybrid system shown in Figure 5. There are

no continuous control inputs and no disturbances. The state variable x has dimension 1 and the invariants

are Inv(q1) = Inv(q2) = R. The state equations in the two modes are defined as follows.

(Mode q1) ẋ = −2(x− 2k) for x ∈ [2k − 1, 2k + 1) and k ∈ Z (1)

(Mode q2) ẋ = −x+ 2k + 1 for x ∈ [2k, 2k + 2) and k ∈ Z (2)

The transition (q1, q2) occurs when x ∈
⋃

k∈Z
[2k − 0.25, 2k + 0.25) and the controllable event α occurs.

Similarly, the transition (q2, q1) occurs when x ∈
⋃

k∈Z
[2k + 0.75, 2k + 1.25) and the controllable event β
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Figure 5: Structure of hybrid system (left) and infinite abstraction (right).
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q5

q3

γ
ζ

η
θ

Figure 6: Hybrid system structure in the second example (left) and possible outcome of the AB-procedure

(right).

occurs. Further, the reset map is defined as follows.

Res((q1, q2), x) = [2k − 2, 2k) for x ∈ [2k − 0.25, 2k + 0.25) and k ∈ Z

Res((q2, q1), x) = [2k − 1, 2k + 1) for x ∈ [2k + 0.75, 2k + 1.25) and k ∈ Z

Now, assume that the AB-procedure is started with the set of interest (q2, J), where J = [0.9, 1.1]. Given

an integer n, let In = [n, n + 2). Then, Pre(J) = I0. Therefore, the second step of the procedure creates

the state s0 with C(s0) = q2 and Inv(s0) = I0. At step 4 it is found that a transition to s0 is possible

from the mode q1 and the set Oq1→s0
= [1.75, 2.25). Since Pre(Oq1→s0

) = I1, we obtain a new state s1

with C(s1) = q1 and Inv(s1) = I1. The state s1 has a self-loop, since I1 is an invariant set. The following

iterations of the procedure are similar. The abstraction shown in Figure 5 is obtained. Note that the

abstraction is infinite. Therefore, the abstraction procedure cannot terminate.

In view of Theorem 3.1, the AB-L procedure terminates iff there is a finite abstraction satisfying the AP

(the property introduced in Definition 3.1). Since the abstractions produced by the AB-procedure may not

satisfy the AP, it may be possible for the AB-procedure to terminate when the AB-L procedure does not
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Figure 7: Abstraction of the AB-L procedure.

terminate. The following example illustrates this point.

Consider the hybrid system structure shown in Figure 6. The hybrid system consists of the hybrid

system of the first example (Figure 5) and four additional modes, q3. . . q6. The modes q1 and q2 have the

same properties as in the first example. This time, however, the system has also a bounded continuous

control input u ∈ I−1. Note that we continue to use the notation In = [n, n + 2), where n is an integer.

The additional modes have Inv(q3) = . . . = Inv(q6) = [−9, 9] and the same reset map Res(e, x, u) = I1,

for all edges e directed towards one of the modes q3. . . q6. Moreover, the guards are defined as follows.

G((q2, q3)) = I0 × I−1 × {γ}, meaning that the transition from q2 to q3 takes place when x ∈ I0, u ∈ I−1,

and the controllable event γ occurs. Further, G((q3, q4)) = I−3 × I−1 × {δ}, G((q3, q5)) = I1 × I−1 × {ζ},

G((q4, q6)) = I4 × I−1 × {θ}, and G((q5, q6)) = I4 × I−1 × {η}. Note that the transitions between q1 and

q2 are defined the same way as in the first example and they are not affected by the control input u. The

state equations are defined as follows. In mode q3, ẋ = x + u. In mode q4, ẋ = 4x. In mode q5, ẋ = 5x. In

mode q6, ẋ = 6x. Assume that the abstraction procedure is started with the set of interest (q6, J), where

J = [7, 8).

The iterations of the AB-procedure and the AB-L procedure are summarized in Tables 1 and 2, re-

spectively, where an iteration consists of one execution the steps (a)–(d) of the step 4 of the procedures.

The corresponding abstractions are shown in Figures 6 and 7. Note that excepting the final iteration, each

iteration adds at least one new state s to the abstraction. Edges outgoing from s are added in the same

iteration and possibly also in the next iterations. Edges incoming to s are added in the following iteration

and possibly also in the remaining iterations.

In this example the AB-procedure terminates in three iterations, while the AB-L procedure does not

terminate. The example could be easily modified so that the abstraction of Figure 7 has only N states

associated with the modes q1 and q2, where N is an arbitrary positive integer. Then, the total number of

states of the abstraction produced by the AB-procedure would be 4, and the total number of states in the

case of the AB-L procedure would be N + 6. This illustrates the fact that in general there is no relationship
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Table 1: In summary, the AB-procedure creates the abstraction of Figure 6 as follows.

Initialization Add s0 with C(s0) = q6 and Inv(s0) = Pre(J) = (0, 8).

Iteration 1 Oq4→s0
= [4, 6), add sa with C(sa) = q4 and Inv(sa) = Pre(Oq4→s0

) = (0, 6).

Oq5→s0
= [4, 6), add sb with C(sb) = q5 and Inv(sb) = Pre(Oq5→s0

) = (0, 6).

Iteration 2 Oq3→sa
= [−3, −1), Pre(Oq3→sa

) = [−3, 1), Oq3→sb
= [1, 3), Pre(Oq3→sb

) = (−1, 3),

add sc with C(sc) = q3 and Inv(sc) = Pre(Oq3→sa
) ∩ Pre(Oq3→sb

) = (−1, 1).

Iteration 3 Oq2→sc
= ∅, so no new state s is added.

Table 2: In summary, the AB-L procedure creates the abstraction of Figure 7 as follows.

...
...

...
...

Iteration 2 Oq3→sa
= [−3, −1), Pre(Oq3→sa

) = [−3, 1), Oq3→sb
= [1, 3), and Pre(Oq3→sb

) = (−1, 3).

Add sc with C(sc) = q3 and Inv(sc) = Pre(Oq3→sa
) ∩ Pre(Oq3→sb

) = (−1, 1).

Add sd with C(sd) = q3 and Inv(sd) = Pre(Oq3→sa
) = [−3, 1).

Add se with C(se) = q3 and Inv(se) = Pre(Oq3→sb
) = (−1, 3).

Iteration 3 Oq2→se
= [0, 2), add sf with C(sf ) = q2 and Inv(sf ) = Pre(Oq2→se

) = [0, 2).

Iteration 4 Oq1→sf
= [1.75, 2.25), add sg with C(sg) = q1 and Inv(sg) = Pre(Oq1→sf

) = [1, 3).

...
...

...
...

between the convergence velocities of the two procedures. However, it is clear that the AB-procedure is

faster, since the operations it performs are a subset of the operations of the AB-L procedure.

Finally, this example could be used to illustrate that the behavior of the AB-procedure can be very

sensitive to the way the step 4.c.ii is performed. Referring to Table 1 and the iteration 2, the step 4.c.ii was

performed by taking k = 1 and Γ1 = {sa, sb}. If instead the choice k = 2, Γ1 = {sa}, and Γ2 = {sb} were

made, the procedure would have not terminated and it would have generated an abstraction similar to that

of the AB-L procedure.

The abstraction procedures are further illustrated on a third example. Consider a hybrid system having

the structure shown in Figure 8. This time we will avoid the details related to continuous dynamics and

assume that each mode can be abstracted as shown in Figure 9. Each directed arc denotes a controllable

transition. Given the set of interest (q, J) = (q2, {a}), the abstractions produced by the AB-procedure and

the AB-L procedure are shown in Figures 10 and 11, respectively. The operations of the procedures are

summarized in Tables 3 and 4. Note that the abstraction procedures do not generate unnecessary edges, but

only edges required by the abstraction property (Definition 3.1). In particular, two states si and sj having

(C(si), Inv(si)) = (q, Ai), (C(sj), Inv(sj)) = (q, Aj), and Ai ⊂ Aj , could be joined by a directed arc from
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Figure 8: Hybrid system structure in the third example.

si to sj . Such directed arcs are represented with dashed lines in Figures 10 and 11.

Table 3: In summary, the AB-procedure creates the abstraction of Figure 10 as follows.

Initialization Add s0 with C(s0) = q2 and Inv(s0) = Pre(J) = {a, b, c}.

Iteration 1 Oq1→s0
= {i}, add s11 with C(s11) = q1 and Inv(s11) = Pre(Oq1→s0

) = {h, i}.

Oq3→s0
= {k}, add s12 with C(s12) = q3 and Inv(s12) = Pre(Oq3→s0

) = {j, k}.

Iteration 2 Oq2→s1

1
= {e}, Pre(Oq2→s1

1
) = {e, f}, Oq2→s1

2
= {g}, Pre(Oq2→s1

2
) = {f, g},

add s23 with C(s23) = q2 and Inv(s23) = Pre(Oq2→s1

1
) ∩ Pre(Oq2→s1

2
) = {f}.

Oq4→s1

2
= {n}, add s24 with C(s24) = q4 and Inv(s24) = Pre(Oq4→s1

2
) = {m,n}.

Iteration 3 Oq2→s2

4
= {d}, add s35 with C(s35) = q2 and Inv(s35) = Pre(Oq2→s2

4
) = {a, b, c, d}.

Iteration 4 Pre(Oq1→s3

5

) = Inv(s11) and Pre(Oq3→s3

5

) = Inv(s12), so no new state s is added.

5 Conclusions

The paper has presented an abstraction procedure that obtains DES models from hybrid automata. The

obtained DES models are appropriate not only for sequential control but also in the context of concurrency.

They allow the application of DES control methods for the enforcement of specifications expressed in terms

of the events of the hybrid system and of the regions of the state space that should be visited. An ex-

ample has been used to illustrate the fact that the presence of controlled invariants is important for the

permissiveness and feasibility of the DES control problem. Properties of the procedure were characterized

and a sufficient condition for termination was given. Further, one version of the procedure was shown to

be semidecidable. The procedure assumes that controlled predecessor sets and controlled invariant sets are

computable. Depending on the context, various methods from the literature could be used to calculate the

controlled predecessors and invariants, including suboptimal methods.

17

M.V. Iordache, P.J. Antsaklis, “DES Abstractions for the Supervisory Control of Hybrid Systems," special 
issue on Hybrid Systems of the Transactions of the Institute of Measurement and Control.



n

α21α12

α23

q2

q1

j

b

a

c

e

f

l

q3

q4

β32 α34 α43

α24

α42

d
g

h

i k

m

α32

β12

Figure 9: The four modes of the hybrid system.

References

[1] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete abstractions of hybrid systems. Proceedings

of the IEEE, 88(7):971–984, 2000.

[2] R. David and H. Alla. Continuous Petri nets. In 8th European Workshop on Application and Theory of Petri

Nets, 1987.

[3] T. Henzinger. Hybrid automata with finite bisimulations. In Z. Füllöp and G. Gécgeg, editors, ICALP’95:
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Figure 11: Abstraction produced by the AB-L procedure.

Table 4: In summary, the AB-procedure creates the abstraction of Figure 11 as follows.

Initialization Add s0 with C(s0) = q2 and Inv(s0) = Pre(J) = {a, b, c}.

Iteration 1 Oq1→s0
= {i}, add s11 with C(s11) = q1 and Inv(s11) = Pre(Oq1→s0

) = {h, i}.

Oq3→s0
= {k}, add s12 with C(s12) = q3 and Inv(s12) = Pre(Oq3→s0

) = {j, k}.

Iteration 2 Oq2→s1

1
= {e}, Pre(Oq2→s1

1
) = {e, f}, Oq2→s1

2
= {g}, and Pre(Oq2→s1

2
) = {f, g}.

Add s23 with C(s23) = q2 and Inv(s23) = Pre(Oq2→s1

1
) = {e, f}.

Add s24 with C(s24) = q2 and Inv(s24) = Pre(Oq2→s1

2

) = {f, g}.

Add s25 with C(s25) = q2 and Inv(s25) = Pre(Oq2→s1

1
) ∩ Pre(Oq2→s1

2
) = {f}.

Oq4→s1

2
= {n}, add s26 with C(s26) = q4 and Inv(s26) = Pre(Oq4→s1

2
) = {m,n}.

Iteration 3 Oq2→s2

6
= {d}, add s37 with C(s37) = q2 and Inv(s37) = Pre(Oq2→s2

6
) = {a, b, c, d}.

Oq4→s2

4

= {l}, add s38 with C(s38) = q4 and Inv(s38) = Pre(Oq4→s2

4

) = {l,m}.

Add s39 with C(s39) = q4 and Inv(s39) = Pre(Oq4→s2

4
) ∩ Pre(Oq4→s1

2
) = {m}.

Iteration 4 Pre(Oq1→s3

7
) = Inv(s11), Pre(Oq3→s3

7
) = Inv(s12), Oq4→s3

7
= ∅, Oq2→s3

8
= ∅,

Pre(Oq3→s3

8
) = Inv(s12), Oq2→s3

9
= ∅, and Oq3→s3

9
= ∅, so no new state s is added.
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