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Abstract— Actuator constraints such as saturation can im-
pose severe constraints on networked control systems. For
instance delays in wireless control systems of unstable plants
combined with actuator constraints may make it impossible
to stabilize a system. In this paper the conditions are derived
that show when actuator saturation, a common memoryless
nonlinearity, in series with a passive system causes the loss of
passivity. However, using a non-linear controller known as a
inner-product recovery block, the overall passivity of the system
is recovered. Furthermore, we note specific sector conditions in
which strictly-input passivity and strictly-output passivity can be
recovered. Finally, it is shown how the inner-product recovery
block can be used to maintain an l

m

2 -stable wireless control
network.

I. INTRODUCTION

Wireless communication systems are subject to many

additional disturbances which traditional wired communica-

tion systems are not exposed to. Wireless systems have to

contend with random fading channels due to changes in the

environment such as interference, rain, heat, and absorbing

objects crossing their communication path. These time vary-

ing changes in the channel influence the data capacity of

the network. If a controller (sensor) is sending command

(sensing) data to the plant (controller) at rates which exceed

the capacity of the channel, then either large delays will

occur in the transmission of the data and/or data will have

to be dropped in order to not exceed the data capacity of

the channel. Markovian jump linear systems (MJLS) [1],

[2] have been used to capture the dynamics of a wireless

networked embedded control system (wnecs) [3], [4]. System

stability may be lost when the actuator used to control a

plant is subject to memoryless nonlinearities. [5, Section 3.1]

discusses a motivating example showing that a discrete mean

square stable control system of a continuous first order plant

in which the pole is strictly in the right half plane and subject

to independent Bernoulli data drop outs will be destabilized

when subject to actuator saturation. Furthermore, it shows

that if the single pole of the plant is not in the right half

plane, then stability can be maintained in spite of actuator

saturation. Such results motivated us to study the control of

a large class of Lyapunov stable systems known as passive

systems [6]. The lm2 -stable networks depicted in [6, Fig. 2]

consist of a passive plant (Gp : ep(t) 7→ fp(t)) and a

passive controller (Gc : fc[i] 7→ eoc[i]). These control
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Fig. 1. lm2 -stable digital control networks subject to memoryless nonlin-
earities in which Kp > 0, Kc > 0, Gp and Gc are passive.

networks tolerate both time varying delays and data drop

outs as long as the conditions of [6, Theorem 4] are met.

However, memoryless input nonlinearities such as actuator

saturation can eliminate the desired passivity properties of

a given plant. In [7] it is shown how to use a nonlinear

controller to compensate for a large class of memoryless

input nonlinearities σ(·) such as actuator saturation. The

nonlinear controller β(·) can then be integrated in to linear

controller-plant systems such that the net system is Lyapunov

stable if the linear controller and plant are both positive

real. Furthermore the system will be globally asymptotically

stable if the linear controller and plant are both strictly

positive real. This technique has been extended to apply to

systems consisting of either continuous time or discrete time

controller-plant pairs in which one is passive and the other

is exponentially passive [8], [9].

One of this papers fundamental results, Lemma 1 shows

that the nonlinear controller, β(u(x)), as depicted in Fig. 4

recovers the value of the inner-product typically lost due

to the memoryless nonlinearity σ(u(x)). Most importantly,

in this paper we show how the digital control network

depicted in [6, Fig. 2] is lm2 -stable when plant Gp and

controller Gc are passive (see Theorem 4). In order to do this,

we show how the nonlinear controller β(ep(i)) (which we

will refer to as the inner-product recovery block) combined

with the inner-product equivalent sample and hold recovers

the passive mapping between Hd : eop(i) 7→ fop(i) (see

Theorem 3-I and Corollary 2-I).

Section II reviews some fundamental definitions for pas-

sivity (Definition 1), the inner-product equivalent sample and

hold (Definition 2), and Theorem 1 stating the preservation

of passivity, strictly-input passivity, and strictly-output pas-
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sivity when converting from Gct to Gd using the inner-

product equivalent sample and hold. Section III presents

Theorem 2 showing the conditions on the passive plant G

(Fig. 2) when input saturation eliminates the passive input-

output mapping and conditions when the passive input-output

mapping is preserved. The interested reader is referred to

[5, Section 3.2.1] which discusses how output saturation and

other sector[0,∞) nonlinearities do not eliminate the passive

input-output mapping for certain classes of continuous LTI

passive systems. Section III-A presents the inner-product

recovery block (IPRB) which shows how it recovers the

value of the inner-product which was changed due to the

memoryless nonlinearity. Furthermore it presents Theorem 3

which shows how IPRB recovers passivity, strictly-output

passivity, and strictly-input passivity for various memoryless

input nonlinearities. Section III-B provides the necessary

new corollaries and figures which show how the IPRB is

effectively integrated with the IPESH blocks used for the

lm2 -stable digital control networks which we are studying.

Which leads to Section III-C proving that Fig. 1 is a lm2 -

stable digital control network subject to memoryless input

nonlinearities. Finally the main results are summarized in

our concluding remarks in Section IV.

II. BRIEF REVIEW OF Passivity AND THE Inner-Product

Equivalent Sample and Hold

In order to discuss our main results we state the definitions

for passivity and recall how the inner-product equivalent

sample and hold (IPESH) preserves passivity [6].

Definition 1: [10], [11] Let G : He 7→ He then for all

u ∈ He and all T ∈ T :

I. G is passive if there exists some constant β such that

(1) holds.

〈G(u), u〉T ≥ −β (1)

II. G is strictly-output passive if there exists some con-

stants β and ǫ > 0 such that (2) holds.

〈G(u), u〉T ≥ ǫ‖(G(u))T ‖
2
2 − β (2)

III. G is strictly-input passive if there exists some constants

β and δ > 0 such that (3) holds.

〈G(u), u〉T ≥ δ‖uT‖
2
2 − β (3)

Remark 1: For the discrete time case, T = {1, 2, . . . ,∞},

He ≡ lm2e(R
m) in which all x[i] satisfy

T−1
∑

i=0

xT[i]x[i] < ∞, ∀T ∈ T . (4)

Also,

〈y, u〉T
△
=

T−1
∑

i=0

yT[i]u[i] (5)

and

‖uT ‖
2
2

△
=

T−1
∑

i=0

uT[i]u[i]. (6)

For the continuous time case, T = [0,∞] (i.e. all non-

negative real numbers), He ≡ Lm
2e(R

m) in which all x(t)
satisfy

∫ T

0

xT(t)x(t)dt < ∞, ∀T ∈ T . (7)

Also,

〈y, u〉T
△
=

∫ T

0

yT(t)u(t)dt (8)

and

‖uT‖
2
2

△
=

∫ T

0

uT(t)u(t)dt. (9)

Definition 2: [12], [13] Let a continuous one-port plant

be denoted by the input-output mapping Gct : He 7→ He.

Denote the continuous input as u(t) ∈ He, the continuous

output as y(t) ∈ He, the transformed discrete input as u[i] ∈
He, and the transformed discrete output as y[i] ∈ He. With

Ts denoted as the sample and hold rate (seconds), the inner-

product equivalent sample and hold (IPESH) is implemented

as follows:

I. x(t) =
∫ t

0
y(τ)dτ

II. y[i] = x[(i + 1)Ts] − x[iTs]
III. u(t) = u[i], ∀t ∈ [iTs, i(Ts + 1))

As a result

〈y[i], u[i]〉N = 〈y(t), u(t)〉NTs
, ∀N ≥ 1 (10)

holds.

Theorem 1: Using the IPESH given in Definition 2, the

following relationships can be stated between the continuous

one-port plant, Gct : He 7→ He, and the discrete transformed

one-port plant, Gd : He 7→ He:

I. If Gct is passive then Gd is passive.

II. If Gct is strictly-input passive then Gd is strictly-input

passive.

III. If Gct is strictly-output passive then Gd is strictly-

output passive.

Remark 2: Theorem 1-III is the corrected version of [6,

Theorem 3-III]. The proof for Theorem 1-III which we

presented at the CDC 2007 is as follows:

Proof: With T = NTs, the continuous strictly-output

passive system Gct satisfies

〈y(t), u(t)〉T ≥ ǫ‖y(t)T ‖
2
2 − β, ∀τ ≥ 0 (11)

From Definition 2-II and the Schwarz’s Inequality we relate

‖y[i]N‖2
2 to ‖y(t)T ‖

2
2 as follows:

‖y[i]N‖2
2 =

m
∑

j=1

[

N−1
∑

i=0

y2
j [i]

]

=

m
∑

j=1





N−1
∑

i=0

(

∫ (i+1)Ts

iTs

yj(t)dt

)2




≤ Ts

m
∑

j=1

[

N−1
∑

i=0

(

∫ (i+1)Ts

iTs

y2
j (t)dt

)]

≤ Ts‖y(t)T ‖
2
2 (12)
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Fig. 2. Actuator saturation depicted for either continuous time (t), discrete
time (i), or Laplace domain (s).

Rewriting (12) as

‖y(t)T ‖
2
2 ≥

1

Ts

‖y[i]N‖2
2 (13)

and substituting (13) into (11) results in

〈y[i], u[i]〉N ≥
ǫ

T
‖y[i]N‖2

2 − β, ∀N ≥ 1 (14)

therefore, the transformed discrete system Gd satisfies (2).

III. Passive SYSTEMS SUBJECT TO SATURATION

The input saturation block indicated in Fig. 2 is a special

type of actuator input memoryless nonlinearity σ(u(x)) in

which u(x) ∈ R
m with components uj(x), j ∈ {1, . . . , m}

which has the following form

usj
(x) =

{

kjuj(x), if |uj(x)| ≤ kjumaxj
(x)

kjumaxj
sign(uj(x)), otherwise

(15)

in which each element can have separate linear gain kj > 0,

and saturation level kjumaxj
sign(uj(x)). For the discussion

G(us(x)) can be thought as either linear or nonlinear passive

continuous or discrete time mapping in which x ∈ {i, t},

where i is a discrete time index, t represents continuous time.

We denote 〈u(x), y(x)〉X as either the continuous time (x =
t, X = T ) inner-product or the discrete time (x = i, X =
N ) inner-product (see (8) (5) in Remark 1).

Theorem 2: For a passive system G(us(x)) which is

subject to the input saturation nonlinearity described by

(15) assume there exists an admissible u(x), y(x) waveform

(sequence) in which ∃ǫ < 0, and δ > 0, T > 0 (N > 1)

α = 1 and index j such that

αǫ =

∫ T

T−δ

uj(t)yj(t)dt (16)

where uj(t) = αkjumaxj
sign(uj(T − δ)) or

αǫ = uj[N − 1]yj[N − 1] (17)

in which uj[N − 1] = αkjumaxj
sign(uj [N − 1]). Then the

continuous (or discrete) input-output mapping H : He 7→ He

is not passive. If no such reachable waveform (sequence)

exists which satisfies (16) ((17)) the input-output mapping

H is passive.

Proof: Assume that (16) (or (17)) condition exists, and

we input a waveform (sequence) u(x) such that |uj(x)| ≤
kjumaxj

(x) is always satisfied up to time T −δ (index (N −
1) − 1), therefore,

〈u(t), y(t)〉T−δ
△
= β(T − δ) ≥ −β(0) (18)
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Fig. 3. Simulation of a first order plant G(u(s)) = 1

s+1
with input

saturation in sector[0,1].

or

〈u(i), y(i)〉N−1
△
= β(N − 1) ≥ −β(0) (19)

Noting that:

〈u(t), y(t)〉T = β(T − δ) +
∫ T

T−δ
uj(t)yj(t)dt +

∫ T

T−δ
uNj(t)

TyNj(t) (20)

= β(T − δ) + αǫ +
∫ T

T−δ
uNj(t)

TyNj(t) (21)

and

〈u[i], y[i]〉N = β(N − 1) + uj[N − 1]yj[N − 1] +

uNj [N − 1]TyNj[N − 1] (22)

= β(N − 1) + αǫ +

uNj [N − 1]TyNj[N − 1] (23)

in which uNj(x)TyNj(x) contain the remaining elements of

u and y which don’t include j. Since uj(x) is saturated then

the corresponding output y(x) will not change, therefore (16)

and (17) will hold for all α > 1. Therefore if the net system

is to remain passive the following must hold for all α > 1

β(T − δ) + αǫ +

∫ T

T−δ

uNj(t)
TyNj(t) ≥ −β(0)

α ≤ −
β(0) + β(T − δ) +

∫ T

T−δ
uNj(t)

TyNj(t)

ǫ
(24)

for the continuous time case or

β(N − 1) + αǫ + uT

sNJ
[N − 1]yNJ [N − 1]+ ≥ −β(0)

α ≤ −
β(0) + β(N − 1) + uT

Nj[N − 1]yNj[N − 1]

ǫ
(25)

for the discrete time case. However this is clearly not possible

since the expressions to the right of (24) and (25) are finite.

Likewise if no such sequence exists for α = 1 in which

ǫ < 0 then passivity is preserved.
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Fig. 4. The nonlinear controller β(u(x)) recovers the inner-product lost
due to the memoryless nonlinearity σ(u(x)).

Remark 3: In [11, Exercise VI-4.7] it was given as an

exercise to show how passivity is lost for [0, k) sector input

nonlinearities (Appendix I) when the passive plant has the

following form G(u(s)) = 1
1+qs

. Theorem 2 tells us that

the passive plant with input saturation nonlinearity in sector

[0, umaxk] will no longer be passive (Fig. 3).

Remark 4: One example of a passive system which main-

tains passivity when subject to actuator saturation is a pos-

itive semi-definite gain block, G(u(x)) = Ku(x) in which

uT(x)G(u(x))u(x) = uT(x)Ku(x) ≥ 0, ∀u(x). Hence by

Theorem 2 the net system H is passive.

A. The Inner-Product Recovery Block.

Fig. 4 depicts how we prefer to implement the nonlinear

controller β(u(x)) introduced in [7]. We choose to locate

β(u(x)) at the output of the plant G : σ(u(x)) 7→ p(x)
and explicitly analyze the map Hp : u 7→ y. As indicated

in Fig. 4, β(u(x)) recovers the inner-product such that

〈y(x), u(x)〉X = 〈p(x), σ(u(x))〉X , therefore, we shall refer

to β(u(x)) as the inner-product recovery block.

Lemma 1: Consider the inner-product recovery block

β(u(x)) as defined by Definition 3 in Appendix I, using

either an exact model or measurement of the memoryless

nonlinearity σ(u(x)). When using the inner-product recovery

block as depicted in Fig. 4, the following will always be

satisfied:

〈y(x), u(x)〉X = 〈p(x), σ(u(x))〉X (26)

Proof: The proof is straight forward using (43) to yield

(29) and (42) to yield (30).

〈y(x), u(x)〉X = 〈β(u(x))p(x), u(x)〉X (27)

= 〈p(x), β(u(x))Tu(x)〉X (28)

= 〈p(x), β(u(x))u(x)〉X (29)

= 〈p(x), σ(u(x))〉X (30)

Lemma 1 allows us to prove Theorem 3.

Theorem 3: Consider the inner-product recovery block

β(u(x)) as defined by Definition 3 in Appendix I, using

either an exact model or measurement of the memoryless

nonlinearity σ(u(x)). When using the inner-product recovery

block as depicted in Fig. 4, the following can be said about

Hr : u(x) 7→ y(x) given G : σ(u(x)) 7→ p(x).

I. If G is passive then Hr is passive.

II. If G is strictly-output passive then Hr is strictly-

output passive if σMAX(β(u))2 < ∞, ∀u ∈ R
m

(Definition 5).

III. If G is strictly-input passive then Hr is strictly-input

passive if there exists a γ > 0 such that σT(u)σ(u) ≥
γuTu, ∀u ∈ R

m.

Proof: Based on our assumptions, Lemma 1 shows that

(26) will hold. Furthermore:

I. if G is passive then 〈p(x), σ(u(x))〉X ≥ −β, substitut-

ing (26) yields

〈y(x), u(x)〉X ≥ −β (31)

which satisfies Definition 1 for passivity.

II. if G is strictly-output passive then 〈p(x), σ(u(x))〉X ≥
ǫ‖(p(x))X‖2

2 − β, substituting (26) yields

〈y(x), u(x)〉X ≥ ǫ‖(p(x))X‖2
2 − β (32)

next, we solve for ‖(y(x))X‖2
2

‖(y(x))X‖2
2 = ‖(β(u(x))p(x))X‖2

2

≤ σMAX(β(u))2‖(p(x))X‖2
2 (33)

and substitute (33) into (32) to yield

〈y(x), u(x)〉X ≥
ǫ

σMAX(β(u))2
‖(y(x))X‖2

2−β (34)

which satisfies Definition 1 for Hr to be strictly-output

passive as long as σMAX(β(u))2 < ∞.

III. if G is strictly-input passive then 〈p(x), σ(u(x))〉X ≥
δ‖(σ(u(x)))X‖2

2 − β, substituting (26) yields

〈y(x), u(x)〉X ≥ δ‖(σ(u(x)))X‖2
2 − β (35)

next, our assumption that σT(u)σ(u) ≥ γuTu, ∀u ∈
R

m implies that

‖(σ(u(x)))X‖2
2 ≥ γ‖(u(x))X‖2

2 (36)

and substitute (36) into (35) to yield

〈y(x), u(x)〉X ≥ δγ‖(u(x))X‖2
2 − β (37)

which satisfies Definition 1 for Hr to be strictly-input

passive.

Remark 5: Theorem 3 is written from the least restrictive

case to the most restrictive case in terms of the memoryless

nonlinearities σ(u) which can be tolerated. Theorem 3-I can

be applied to all types of σ(u). Whereas Theorem 3-II can

be applied to a slightly smaller class of nonlinearities within

σ(u) such as those which typically have actuator saturation.

They can not include unbounded quadratic nonlinearities,

σ(ui) = u
p
i , p ≥ 2, p ≤ −1, however, quadratic nonlineari-

ties can occur as long as σ(u) is linear or saturates as u → ∞
for p ≥ 1, or a dead-zone or linearity occurs at the origin

when p ≤ −1. Also, near the origin, relay nonlinearities can

not be tolerated.

σ(ui) =

{

sign(ui), |ui| > 0

0, ui = 0
(38)

Finally, Theorem 3-III does not include quadratic nonlinear-

ities at the origin, or saturation nonlinearities. However, all

sector[k1, k2] nonlinearities (Appendix I) in which 0 < k1 ≤
k2 or k1 ≤ k2 < 0, will preserve strictly-input passivity.
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Fig. 5. Continuous time inner-product recovery block used with IPESH.

Fig. 6. Discrete time inner-product recovery block used with IPESH.

B. Implementing the Inner-Product Recovery Block with the

Inner-Product Equivalent Sample and Hold

By implementing the continuous time inner-product recov-

ery block as depicted in Fig. 5 we can directly use Theorem 1

and Theorem 3 in order to state the following Corollary:

Corollary 1: Using the IPESH given in Definition 2 and

the continuous time inner-product recovery block as depicted

in Fig. 5, the following relationships can be stated between

the continuous one-port plant, G : σ(u(t)) 7→ p(t), and the

discrete transformed one-port plant, Hrd : u(i) 7→ y(i):

I. If G is passive then Hrd is passive for all σ(u).
II. If G is strictly-input passive then Hrd is strictly-input

passive if σMIN (β(u))2 > 0, ∀u ∈ R
m.

III. If G is strictly-output passive then Hrd is strictly-output

passive if σ(u) is a sector[k1, k2] nonlinearity such that

σMAX(β(u))2 = max(k2
1 , k

2
2) < ∞.

Remark 6: See Appendix I (Theorem 5 and Theorem 6)

in order to see why σMAX(β(u))2 = max(k2
1 , k

2
2).

Next, we note that by switching the order of the ZOH and the

memoryless nonlinearity σ(·) is mathematically equivalent

σ(ZOH(u(i))) = σ(u(t)) = ZOH(σ(u(i))) (39)

as depicted in Fig. 6.

Corollary 2: Using the IPESH given in Definition 2 and

the discrete time inner-product recovery block as depicted

in Fig. 6, the following relationships can be stated between

the continuous one-port plant, G : σ(u(t)) 7→ p(t), and the

discrete transformed one-port plant, Hdr : u(i) 7→ y(i):

I. If G is passive then Hdr is passive for all σ(u).
II. If G is strictly-input passive then Hdr is strictly-input

passive if σMIN (β(u))2 > 0, ∀u ∈ R
m.

III. If G is LTI and strictly-output passive then Hdr is

strictly-output passive if the sector[k1, k2] nonlinearity

is such that σMAX(β(u))2 = max(k2
1 , k2

2) < ∞.

C. lm2 -stable Digital Control Networks Subject to Memory-

less Nonlinearities.

Theorem 4: The digital control network depicted in Fig. 1

in which Kp > 0, Kc > 0, Gc are passive and the passive

plant Gp is subject to memoryless nonlinearities σ(·), is

strictly-output passive which is sufficient for lm2 -stability if

〈fop, edoc〉N ≥ 〈eoc, fopd〉N (40)

holds for all N ≥ 1.

Proof: Corollary 2-I shows that the mapping from ep(i)
to fop(i) is passive for any memoryless actuator nonlinearity

associated with the plant. Since the mapping is now passive,

the strictly-output passivity and lm2 -stability follows from [6,

Theorem 4].

IV. CONCLUSIONS

Theorem 2 shows that actuator saturation typically elimi-

nates the passive mapping. To address this issue this paper

provides: i) Lemma 1 which states that the IPRB depicted

in Fig. 4 recovers the inner-product mapping of either a

continuous or discrete time system subject to a memoryless

nonlinearity, ii) Theorem 3 notes that passivity is always

recovered with an IPRB, however only certain classes of

memoryless nonlinearities will allow a strictly-output passive

or strictly-input passive mapping to be preserved, iii) Corol-

lary 1 states that the IPESH can be used with a continuous

time IPRB to preserve passivity, and conditions to also pre-

serve either a strictly-input passive or strictly-output passive

mapping. iv) Corollary 2 is similar to Corollary 1, except that

it relates to implementing the IPRB in discrete time, the key

to such a realization is (39) and the carefully chosen system

depicted in Fig. 6. Furthermore some important connections

between sector[k1, k2] nonlinearities (see Definition 4) and

the equivalent constraints stated by Corollary 1 are given in

the Appendix (see Theorem 5 and Theorem 6). v) Theorem 4,

completes our discussion, stating how a IPRB and IPESH can

be used in discrete time to implement a lm2 -stable digital

control network as depicted in Fig. 1.
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APPENDIX I

MEMORYLESS NONLINEARITIES

[11, Definition I-1.1] provides a scalar definition for

sector nonlinearities (σ : R → R, σ(0) = 0) which

leads to numerous equivalent statements to describe a sector

nonlinearity as provided in [11, Theorem I-1.2]. When the

input u is a vector and (σ : R
m → R

m, σ(0) = 0), such a

set of equivalent statements are difficult to make. However

[14, Definition 10.1] is fairly general and applies to a large

class of sector nonlinearities and can be typically treated as

time varying if desired. In [7]–[9] the following nonlinear

control block β(u(x)) has been shown to effectively create

stable control systems which are subject to an even broader

class of memoryless nonlinearities, σ(u(x)), as depicted in

Fig. 7. The controller has been studied when e(x) = r(x)−
y(x), x = t in which G and Gc are (strictly)-positive real [7].

Later it was shown when e(x) = r(x), x = t (x = i) that G

and Gc form a passive-exponentially (geometrically) passive

pair [8], [9]. The only constraints on these memoryless

nonlinearities is that σ : R
m → R

m and ∀i ∈ {1, 2, . . . , m},

if ui(x) = 0 then σi(u(x)) = 0.

Definition 3: The inner-product recovery block

(IPRB) β(u(x)) has the following form: β(u(x)) =
diag(β1(u(x)), . . . , βm(u(x))), where

βi(u(x)) =

{

σi(u(x))
ui(x) , if ui(x) 6= 0

1, if ui(x) = 0
(41)

Remark 7: In [8], [9] when ui(x) = 0, βi(u(x)) has

been defined as being arbitrary, however, we chose to use

βi(u(x)) = 1, if ui(x) = 0 because when ui(x) = 0 then

σi(u(x)) = ui(x) by assumption, hence,
σi(u(x))

ui(x) = ui(x)
ui(x) =

1 when ui(x) = 0. Therefore for x ∈ {i, t},

β(u(x))u(x) = σ(u(x)) and (42)

βT(u(x)) = β(u(x)). (43)

Therefore we propose the following definition:

Definition 4: A memoryless nonlinearity σ : R
m → R

m

is said to satisfy a global sector condition belonging to sector

[k1, k2] if

k1u
Tu ≤ uTσ(u) ≤ k2u

Tu, ∀u ∈ R
m (44)

holds any k1, k2 ∈ R. If (44) holds with strict inequality,

then σ(·) is said to belong to a sector (k1, k2).

Theorem 5: Let k1, k2 ∈ R with k1 ≤ k2. Let σ : R
m →

R
m with σi(ui = 0) = 0, i ∈ {1, . . . , m} and β(u)

as defined by Definition 3 in Appendix I. Such that the

following statements are equivalent:

i) (k1I − β(u)) ≤ 0 and (β(u) − k2I) ≤ 0, ∀u ∈ R
m

ii) k1u
Tu ≤ uTσ(u) ≤ k2u

Tu, ∀u ∈ R
m

Proof:

i) → ii) first we prove the left half of the inequality holds

for both definitions.

uT(k1I − β(u))u ≤ 0, ∀u ∈ R
m

k1u
Tu ≤ uT(β(u)u), ∀u ∈ R

m (45)

k1u
Tu ≤ uTσ(u), ∀u ∈ R

m (46)

Note that the simplification from (45) to (46) is a direct

result of application of the definition for β(u). The proof

for the right half of the inequality is as follows:

uT(β(u) − k2I)u ≤ 0, ∀u ∈ R
m

uT(β(u)u) ≤ k2u
Tu, ∀u ∈ R

m (47)

uTσ(u) ≤ k2u
Tu, ∀u ∈ R

m. (48)

ii) → i) is fairly obvious when we substitute σ(u) = β(u)u
and uTu = uTIu in to (44) which yields

k1u
TIu ≤ uTβ(u)u ≤ k2u

TIu, ∀u ∈ R
m, in which

uT(k1I − β(u))u ≤ 0, ∀u ∈ R
m (49)

(k1I − β(u)) ≤ 0, ∀u ∈ R
m similarly, (50)

uT(β(u) − k2I)u ≤ 0, ∀u ∈ R
m (51)

(β(u) − k2I) ≤ 0, ∀u ∈ R
m. (52)

Next we relate the maximum and minimum singular values

for β(u) to the sector [k1, k2] bounds.

Definition 5: The maximum achievable singular value

squared is σMAX(β(u))2
△
= max(σM (β(u))2), ∀u ∈ R

m

in which σM (β(u)) denotes the maximum singular value of

the resulting matrix β(u) for a given u.

Definition 6: The minimum achievable singular value

squared is σMIN (β(u))2
△
= min(σm(β(u))2), ∀u ∈ R

m

in which σm(β(u)) denotes the minimum singular value of

the resulting matrix β(u) for a given u.

Theorem 6: For a given sector [k1, k2] nonlinearity:

i) If either k1 = 0, or k2 = 0 then σMIN (β(u))2 = 0.

ii) σMAX(β(u))2 = max(k2
1 , k2

2).
Proof: Since β(u) is a diagonal matrix, then

σM (β(u)) = max(|λM (β(u))|, |λm(β(u))|) in which λM (·)
denotes the maximum eigenvalue and λm(·) denotes the

minimum eigenvalue of β(u).

i) If k1 ≥ 0 then σMIN (β(u))2 = k2
1 , therefore k1 =

0 implies that σMIN (β(u))2 = 0. If k2 ≤ 0 then

σMIN (β(u))2 = k2
2 , therefore k2 = 0 implies that

σMIN (β(u))2 = 0.

ii) From Theorem 5-i, we see that min(λm(β(u))) =
k1, ∀u ∈ R

m and max(λM (β(u))) = k2, ∀u ∈ R
m,

therefore σMAX(β(u))2 = max(k2
1 , k

2
2).
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