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Abstract

We present a framework to synthesizel
m

2 -stablecontrol networks which are subject to delays and data dropouts. This framework
can be applied to control systems which use “soft-real-time” cooperative schedulers and wired or wireless network feedback. The
approach applies topassiveplants and controllers that can be either linear, nonlinear, and (or) time-varying. This framework is
based on fundamental results presented here related topassivecontrol, and scattering theory. It loosens the requirements for the
passivesystems to possess specialized storage functions and statespace descriptions as is typically done in showing Lyapunov
stability for passiveforce-feedback telemanipulation systems, of which we provide a short review. The benefits of loosening these
requirements will become quite obvious to the reader as we make connections between the general input-output definitions of
passivityand the more specificpassive dissipativesystem definitions.

Theorem 4 states how a (non)linear (strictly input or strictly output) passiveplant can be transformed to a discrete (strictly
input) passiveplant using a particular digital sampling and hold scheme. Furthermore, Theorem 5(6) provide new sufficient
conditions forlm2 (and L

m

2 )-stability in which a strictly-output passivecontroller and plant are interconnected with onlywave-
variables. Lemma 2 shows it is sufficient to use discretewave-variableswhen data is subject to fixed time delays and dropouts in
order to maintainpassivity. Lemma 3 shows how to safely handle time varying discretewave-variabledata in order to maintain
passivity. Proposition 1 shows how to synthesize a discretepassive LTIsystem from a continuouspassive LTIsystem, which
leads to Corollary 1 that shows how to synthesize a discretestrictly-output passive LTIsystem from a continuouspassive LTI
system. Corollary 2 provides a suitable method to appropriately scale the synthesized discretestrictly-output passive LTIsystem.
Corollaries 3 and 4 show how to integrate the discretestrictly-output passive LTIsystem withwave variables. Proposition 2 shows
how a LTI strictly-output passiveobserver can be implemented for astrictly-output passive LTIcontinuous plant. Corollaries 5
and 6 result from Proposition 2 as they relate to an observer using wave variables. We then present a new cooperative scheduler
algorithm to implement alm2 -stablecontrol network. We also provide an illustrative simulatedexample followed by a discussion
of future research.

Index Terms

passivity theory, scattering theory,wave variables, telemanipulation, (wireless) networked control systems, digital control
systems, control synthesis, observers, non-linear control theory, linear control theory,strictly-positive realsystems,passivesystems,
strictly-output passivesystems,positive realsystems, control with cooperative schedulers,LTI systems,lm2 -stability theory,LMI’s,
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Note: All proofs in Appendix B and the corresponding Theorems arein the following paper:
N. Kottenstette, P. Antsaklis, “Stable Digital Control Networks for Continuous Passive Plants Subject to Delays and Data
Dropouts”. (in the Proceedings of the46th IEEE Conference on Decision and Control, December 2007)
The result in regards to preservation of passivity using theIPESHwill appear in:
N. Kottenstette, J. Hall, X. Koutsoukos, P. Antsaklis, and J. Sztipanovits, “Digital control of multiple discrete passive plants over
networks,” International Journal of Systems, Control and Communications (IJSCC), Special Issue on Progress in Networked
Control Systems, 2009.
, however, the more general case in regards to theIPESH preservingstrictly-input passiveand strictly-output passiveare
presented here in Theorem 4.
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Design of Digital Control Networks for Continuous
Passive Plants Subject To Delays and Data Dropouts

I. INTRODUCTION

This work has been motivated by the urgent need to
develop reliable wireless control networks. These networks
typically consist of distributed-wireless sensors, actuators and
controllers which communicate with low cost devices such
as the MICA2 and MICAz motes [1]. The operating systems
for these devices, typically consist of a very simple sched-
uler, known as a cooperative scheduler [2]. The cooperative
scheduler provides a common time-base to schedule tasks to
be executed, however, it does not provide a context-switch
mechanism to interrupt tasks. Thus, tasks have to cooperate
in order not to delay other pending tasks which is difficult to
satisfy without careful testing and auditing of the software
being run. The analysis can be quite complex if some of
the tasks are event driven and take a moderately long time
to run to completion. Even deterministic schedulers can run
into significant difficulties dealing with issues such as priority
inversion of tasks, for example. As a result, a controller
needs to be designed to tolerate time-varying delays caused
by disruptive tasks which share the cooperative scheduler.
Although, other operating systems can be designed to provide
a tighter real-time scheduling performance, the time varying
delays which will ultimately be encountered with wireless
sensing and actuation will be comparable, if not more sig-
nificant. The reason for these time varying delays arises from
the fundamental fact that digital communication systems are
subject to noise which limits their average capacity and deter-
mines the average time varying delays in which information is
transmitted. Furthermore, as information is transmitted over a
network and stored in queues while waiting to be routed, the
variance in the delays continues to increase. If the network
becomes congested and the queues fill up data will have to be
dropped and random drop outs will occur.

The primary aim of this paper is to provide a theoretical
framework to buildlm2 -stablecontrollers which can be subject
to time-varying scheduling delays and data dropouts. Such
results are also of importance as they will eventually allow
the plant-controller network depicted in Fig. 5 to run entirely
isolated from the plant as is done with telemanipulation sys-
tems. Telemanipulation systems have had to address wireless
control problems [3] and the corresponding literature provides
results to address how to design stable control systems subject
to transmission delays in such systems. Much of the theory
presented in this paper is inspired and related to work on
telemanipulation systems. Thus, Section II provides a brief
review of telemanipulation, and how it relates topassive
control and scattering theory in order to provide the reader
with some physical insight related to the framework presented
in Section III.

Telemanipulation systems are distributed control systems
where a human operator uses a local manipulator to control a
remotely located robot in order to modify a remote environ-
ment. The position tracking between the human operator and
the robot is typically maintained by apassiveproportional-
derivative controller. In fact, a telemanipulation systemtypi-
cally consists of a series network of interconnected two-port
passivesystems in which the human operator and environment
terminate each end of the network [4]. Thesepassivenetworks
can remain stable in-spite of system uncertainty; however,de-
lays as small as a few milliseconds may cause force feedback
telemanipulation systems to become unstable. Fixed delayed
power variables, force (effort) and velocity (flow), make the
communication channel nonpassivewhich typically results
in instabilities except for special cases. For example, global
stability can be guaranteed if there exists zero-state detectable
plants and controllers with positive definite storage functions
in C1 in which the product of theirLm

2 -gains is less than or
equal to one [5, Theorem 3.1].

It was shown In [3], [6] that by using the scattering
transformation, power variables can be transformed intowave
variables [7] and the communication channel will remain
passivein spite of arbitrary, fixed delays. In [5] additional
passivity conditions are provided for stability results when us-
ing continuous-time plants and controllers in conjunctionwith
wave variables. For continuous-time systems, if additional
information is transmitted along with the continuouswave
variables, the communication channel will also remainpassive
in the presence of time varying delays [8]. However, only
recently has it been shown how discretewave variablescan
remainpassivein spite of time varying delays and dropouts
[9], [10]. We verify this to be true for fixed time delays
and data dropouts (Lemma 2). However, we provide a simple
counter example showing that this is not the case for all time-
varying delays. We then provide a lemma which states how
to properly handle time varying discrete wave variable data
and maintainpassivity(Lemma 3). [11], [12] build upon the
novel digital sample and hold scheme introduced in [9] which
allows the resulting discrete-time inner-product to be equal to
the continuous-time inner-product.

We will build on the results in [11] to show in general how
to transform a (non)linear (strictly input) or (strictly output)
passive system into a discrete (strictly input) or (strictly
output) passivesystem (Theorem 4). We then formally present
lm2 -stability results related tostrictly-output passivenetworks.
In particular Theorem 3 shows how to make a discretepassive
plant strictly-output passiveand lm2 -stable. Theorem 3 also
makes it possible to synthesize discretestrictly-output passive
systems from discretepassive LTI systems such as those
consisting ofpassivewave digital filters [13]. We will then use
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the scattering transform to interconnect the controller tothe
plant with wave variables. We use Lemma 3 to show that the
cooperative scheduler can allow time varying data transmission
delays and maintain passivity between the plant and controller.
As a result our digital control system implemented with a
cooperative scheduler will remainlm2 -stable.

Section II provides a brief discussion of telemanipulation
systems includingpassivity and scattering theory from a
continuous time and classic control framework. Section III
provides definitions and theorems necessary to present our
main results in Section IV. Some of the initial theorems and
lemmas were given in [14], therefore the corresponding proofs
have been moved to the appendix and may be omitted. New
passivediscreteLTI system synthesis results are provided in
Section IV-A which includes Proposition 2 that shows how
to implement astrictly-output passiveobserver. In Section V
presents results from a simulation of apassivemotor being
digitally-controlled over a network subject to various fixed
time-delays in which a novel observer is used to recover
passivity in the discrete time domain. Section VI summarizes
our key findings and discusses future research directions.

II. TELEMANIPULATIONSYSTEMS.

Telemanipulation systems typically consist of a network
of interconnectedpassivesystems. In particular [3] showed
how to design telemanipulation which can tolerate arbitrary
fixed time delays. We review these results and introducewave
variables in order to lead the reader into our main results.
Passive systems are an important class of systems for which
Lyapunov like functions exist [15]–[18]. The Lyapunov like
function arises from the definition of passivity (1). Inpassive
systems (1), the rate of change in stored energyEstore is equal
to the amount of power put in to the systemPin minus the
amount of power dissipatedPdiss (≥ 0).

Ėstore = Pin − Pdiss (1)

As long as all internal statesx of the system are associated
with stored energy in the system, it can be shown that apassive
system is stable when no input power is present, simply by
setting Pin = 0. Pdiss ≥ 0 implies that Ėstore ≤ 0 which
shows that the system is Lyapunov stable. By using either the
invariant set theorem or Barbalat’s Lemma [16] asymptotic
stability can be shown [4]. Thesepassivesystems, which
can be interconnected in parallel and feedback configurations
which result in additionalpassivesystems, are fundamental
components of telemanipulation systems [4]. Instabilities can
occur when a telemanipulation system incurs communication
delays between the master controller and slave manipulator;
note that delays as small as a few milliseconds can cause
instability. Instabilities may occur when the communication
channel becomes a non-passive element in the telemanipula-
tion system [7].Wave variablesare used here to communicate
commands and provide feedback in telemanipulation systems,
because they allow the communication channel to remain
passivefor arbitrary fixed delays. The variables, the values of
which were most commonly communicated in the past over a
telemanipulation channel werepower variables, such as force

Fig. 1. Telemanipulation system depicted in the s-Domain, subject to
communication delays.

and velocity (F ,ẋ). Power variables, generally denoted by
an effort and flow pair (e∗,f∗) whose product is power, are
typically used to show the exchange of energy between two
systems usingbond graphs[19], [20]. Some other examples
of effort and flow pairs of power variablesare voltage and
current (V ,q̇), and magnetomotive force and flux rate (F ,ϕ̇).
In this paperwave variablesare used and described by the
pair of variables (u∗,v∗) and determined by the transmission
wave impedanceb (> 0) [7]. The fixed channel communication
time delay isT seconds. The transmission between the master
and slave controller (as depicted in Fig. 1 in the s-Domain)
are governed by the following delay equations for the wave
variables:

us(t) = um(t − T ) (2)

vm(t) = vs(t − T ) (3)

in which the inputwave variablesare computed using

um(t) =
1√
2b

(bfm(t) + em(t)) (4)

vs(t) =
1√
2b

(bfsd(t) − ec(t)) (5)

These simple wave variable transformations, which can be
applied to vectors, allow us to show that the wave commu-
nication channel is bothpassiveand lossless assuming zero
initial conditions.

Estore(t) =

t
∫

0

Pindτ =

∫ t

t−T

(

1

2
uT

mum +
1

2
vT

s vs

)

dτ ≥ 0

(6)
In Fig. 1, the transfer function associated with the master
manipulator is denoted byGm(s) and is typically apassive
mass. Furthermore, the slave manipulator is denoted by the
transfer function,Gs(s) and is typically apassivemass. The
passive“proportional-derivative” plant controllerKPD(s) has
the following form:

KPD(s) =
Bs + K

s
(7)

The plant controller is “proportional-derivative” in the sense
that the integral of the flow variablef∗ yields a displacement
variable q∗ which is then multiplied by a proportional gain
K and derivative termB. With rs(s) = ed(s) = 0 the
system ispassiveand Lyapunov stable in regards to the plant’s
velocity and the velocity equilibrium point equals0 (note that
the final position of the plant is dependent on the systems
initial condition). This velocity equilibrium holds in spite of
arbitrary fixed delays sincepassivityis preserved. See [21] and
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Fig. 2. Block diagrams depicting the wave variable transformation (simplified
version of Fig. 3 in [23]).

Fig. 3. A delay-insensitive system in which apassivecontroller commands
a passiveplant.

[22, Theorem 2] for tests which can be applied to determine
an appropriate value forb to satisfy either stability orLm

2

stability in whiched(s) = 0. We will show that it is sufficient
for KPD(s) and GP (s) to be modified to bestrictly-output
passivein order to satisfyLm

2 stability for ∀b > 0 and both
ed(t) andrs(t) can be signals inLm

2 . The sufficient proof for
both Lm

2 and lm2 stability is given in Section IV. Although
the wave variables(u∗,v∗) do not need to be associated
with a particular direction as do the power variables, when
interconnected with a pair of effort and flow variables an
effective direction is implied. Fig. 2 shows how to implement
the wave transform for both cases. Fig. 1 can be modified
to yield the following system depicted in Fig. 3 in which a
passivecontrollerKPD(s) is able to command apassiveplant
Gp(s). The plant will follow the flow set-pointrs(s). If we
preceders(s) with a causal derivative filterGd(s) = s

τs+1
such thatrs(s) = Gd(s)qs(s) then the plant will track a
desired fixed displacement set-pointqs(s) at steady state.

Simulations offers some insights into this system’s behavior:
for example when using velocity feedback of apassivemass
(Gp(s) = 1

Ms
), then the plant displacement

∫

fp(t)dt will
equal the displacement set-pointqs(t) =

∫

rs(t)dt at steady
state. If the plant ispassiveand stable such as a mass-spring-
damper system (Gp(s) =

sω2

n

s2+2ζωns+ω2
n

), then steady state
error will occur (

∫

fp(t)dt 6=
∫

rs(t)dt). So far the discussion
has taken place with respect to the continuous time domain and
has been pointed out that even under fixed delayed data to and
from the controllerKPD(s), with the use ofwave variables,
a passivecontrol system can be designed which is Lyapunov
stable.

III. PASSIVE CONTROL THEORY

Passive systems (1) are a special class ofdissipativedy-
namical systems which have storage functionw(u, y) = uTy
[24]–[26]. Passive control theory is general and broad in that
it applies to a large class of linear, non-linear, continuous
and discrete control systems. In [15] results for continuous
and discretepassivesystems are presented. Passive control
theory has been used in digitaladaptive control to show

stability of various parameter adaptation algorithms[27].
Additional texts which discusspassivecontrol theory for non-
linear continuous systems are [16]–[18]. In [28] a compre-
hensive treatment is dedicated to thepassivecontrol of a
class of non-linear systems, known asEuler-Lagrange systems.
Euler-Lagrange systemscan be represented by aHamiltonian
which has a Dirac structure that allows dissipative and energy
storage elements to be interconnected to ports without causal
specification [29, p. 124]. In [29] an extensive treatment of
intrinsically passivecontrol using Generalized Port-Controlled
Hamiltonian Systems is presented, in particular as it relates
to telemanipulation and scattering theory. Our presentation
of passivecontrol theory focuses on laying the groundwork
for discretepassivecontrol theorems, mirrors the continuous
counterpart results presented in [17], and extends the contin-
uous and discrete results in [15].

A. lm2 STABILITY THEORY FOR PASSIVE NETWORKS

This section covers some basic results related to discrete
time passivitytheory some of which are novel. In particular
how strictly-output passivityrelates tolm2 -stability, how to
transform apassivesystem to astrictly-output passivesystem
with negative feedback, and how anIPESH (Definition 5)
converts a continuouspassivesystem to a discrete timepassive
system.

Mathematical Preliminaries: Thelm2 space, is the real space
of all bounded, infinitely summable functionsf(i) ∈ R

n. We
assumef(i) = 0 for all i < 0. The inner productis denoted
〈·, ·〉 in which for example〈u, y〉 = uTy is a valid inner
product [30, p.68]. More generally theinner productwill apply
to functions in thelm2 space, which is the set of all functions
f(i) which satisfy the inequality given by (8).

〈f(i), f(i)〉 △
= ‖f(i)‖2

2 =
∞
∑

i=0

fT(i)f(i) < ∞ (8)

A truncation operator will be defined as follows:

fN (i) =

{

f(i), if 0 ≤ i < N

0, otherwise
(9)

Likewise the extendedlm2 space,lm2e
, is the set of all functions

f(i) which satisfy the following inequality (10).

〈f(i), f(i)〉N =

N−1
∑

i=0

fT(i)f(i) < ∞, N ≥ 1 (10)

Note thatlm2 ⊂ lm2e
. Typically lm2e

is defined with the summa-
tion to N and the truncation includesN [27, p. 75] and [15,
p. 172], however, these definitions are equivalent. Finallywe
can define ourlm2 norms (11) and truncation of thelm2 norm
(12) as follows:

‖f(i)‖2
△
= 〈f(i), f(i)〉 1

2 (11)

‖f(i)N‖2
2

△
= 〈f(i), f(i)〉N =

N−1
∑

i=0

fT(i)f(i) (12)

The following definition for lm2 -stability is similar to the
one given in [31] which refers to [17] in regards to stating that
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finite lm2 -gain is sufficient forlm2 -stability, for the continuous
time case only. We provide a short proof for the discrete time
case and we note for completeness where the developments
parallel each other [17].

Definition 1: Let the set of all functionsu(i) ∈ R
n, y(i) ∈

R
p, which are either in thelm2 space orlm2e

space, be denoted
by lm2 (U)/lm2e

(U) and lm2 (Y )/lm2e
(Y ) respectively. Define now

G as an input-output mappingG : lm2e
(U) → lm2e

(Y ), such that
it is lm2 -stable if

u ∈ lm2 (U) ⇒ G(u) ∈ lm2 (Y ) (13)

The mapG hasfinite lm2 -gain if there exist finite constantsγ
andb such that for allN ≥ 1

‖(G(u))N‖2 ≤ γ‖uN‖2 + b, ∀u ∈ lm2e
(U) (14)

holds. EquivalentlyG has finite lm2 -gain if there exist finite
constantŝγ > γ and b̂ such that for allN ≥ 1 [17, (2.21)]

‖(G(u))N‖2
2 ≤ γ̂2‖uN‖2

2 + b̂, ∀u ∈ lm2e
(U) (15)

holds.
Remark 1: If G hasfinite lm2 -gain then it is sufficient for

lm2 -stability. Letu ∈ lm2 (U) andN → ∞ which leads (14) to

‖(G(u))‖2 ≤ γ‖u‖2 + b, ∀u ∈ lm2 (U) (16)

which implies (13) (see [17, p. 4] for the continuous time
case).

Lemma 1: [17, Lemma 2.2.13] Thelm2 -gain γ(G) is given
as

γ(G) = inf{γ̂ | ∃ b̂ s.t. (15) holds} (17)

Next we will present definitions for various types of passivity
for discrete time systems.

Definition 2: [15], [17] Let G : lm2e
(U) → lm2e

(U) then for
all u ∈ lm2e

(U) and allN ≥ 1:

I. G is passiveif there exists some constantβ > 0 such
that (18) holds.

〈G(u), u〉N ≥ −β (18)

II. G is strictly-output passiveif there exists some constants
β, ǫ > 0 such that (19) holds.

〈G(u), u〉N ≥ ǫ‖(G(u))N‖2
2 − β (19)

III. G is strictly-input passiveif there exists some constants
β, δ > 0 such that (20) holds.

〈G(u), u〉N ≥ δ‖uN‖2
2 − β (20)

Remark 2:Denote a discrete time state space systemΣ in
which the statex ∈ X ⊆ R

n and outputy ⊆ Y ∈ R
m evolves

according to

x(k + 1) = f(x(k), u(k)) (21)

y(k) = h(x(k), u(k))

in which u ∈ U ⊆ R
m and u ∈ lm2 (U) is an input to the

system. IfG can be described byΣ, and satisfies any of the
definitions listed in Definition 2, in which0 ≤ β < ∞ then
Σ is a correspondingpassive dissipativesystem in which the
available storageSa(x(0)) ≤ β exists (note thatβ implicitly

depends ony(0)). Sa(x(0)) represents the maximum amount
of energy which can be extracted fromΣ for any x(0) ∈ X.
Depending on the type ofpassivitywhich is satisfiedǫ ≥ 0
andδ ≥ 0 will satisfy (22).

0 ≤ Sa(x(0))
△
=

sup
x(0)

u(·), N≥0

−(〈y, u〉N − δ‖uN‖2
2 − ǫ‖yN‖2

2) ≤ β < ∞ (22)

Note that whenN = 0, the truncated inner product and norms
are defined to be equal to zero in order to satisfySa(x(0)) ≥
0. Also note that it is the existence of the available storage
0 ≤ Sa(x(0)) < ∞, ∀x(0) ∈ X and Sa(0) = 0 which is a
necessary and sufficient condition forΣ to bedissipative[25,
Theorem 1] [32, Theorem 13.17].

Remark 3:For adissipative passivesystem a storage func-
tion S(x) : x ∈ X 7→ R+ exists in whichS(x) ≥ 0, ∀x ∈ X

and S(0) = 0 In particular, the following inequality is
satisfied:

S(x(0)) + 〈y, u〉N − δ‖uN‖2
2 − ǫ‖yN‖2

2 ≥ S(x(N)) (23)

in which δ > 0 for a strictly-input passivesystem,ǫ > 0 for
a strictly-output passivesystem. Equivalently

yT(k)u(k)−δuT(k)u(k)−ǫyT(k)y(k) ≥ S(x(k+1))−S(x(k)).
(24)

We note that any proofs associated withβ for passivesystems
(Definition 2) apply equally todissipative passivesystems in
which we can substitute−β = S(x(N)) − S(x(0)). (see
[33] [17, Section 3.1], [25] for a further discussion related
to continuous timedissipativesystems and [34, Appendix C]
and [32, Section 13.9] for discrete timedissipativesystems).
The dissipativedynamical systems storage functionS(x) is
a “Lyapunov-like” function which can be shown to be a
Lyapunov function in whichS(x) > 0, x 6= 0 if Σ is
completely reachableandzero-state observable.

Definition 3: [32, Definition 13.12] A dynamical system
Σ is completely reachable if for allx(k0) ∈ X ⊆ R

n, there
exists ak1 < k0 and a square summable inputu(k) defined
on [k1, k0] such that the state,x(k), k ≥ k1, can be driven
from x(k1) = 0 to x(k0).

Definition 4: [32, Definition 13.15] A dynamical system
Σ is zero-state observable ifu(k) = 0 andy(k) = 0 implies
x(k) = 0.

Theorem 1:If a passive dissipativesystemΣ described by
(21) which is zero-state observable, completely reachableand
there exists a functionκ : lm2 (Y ) → lm2 (U) such that

κ(0) = 0 and

yT(k)κ(y(k)) − ǫyT(k)y(k) − δκ(y(k))Tκ(y(k)) < 0,

y(k) 6= 0
(25)

in which ǫ > 0 for the case when the system isstrictly-output
passive(ǫ = 0 otherwise) andδ > 0 for the case when the
system isstrictly-input passive(δ = 0 otherwise) thenΣ has a
zero solutionx(k) = 0 which is Lyapunov stable. IfΣ is also
strictly-output passivethenΣ is asymptotically stable. Finally,
if S(x) is also proper (S(x) → ∞, as‖x‖2 → ∞) thenΣ is
globally asymptotically stable.
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Proof: [32, Theorem 13.18] shows thatS(x) > 0, ∀x ∈
X if a passive dissipativesystem is zero-state observable,
completely reachable andκ(y) satisfies (25). Settingu[k] = 0
in (24) results in

S(x(k + 1)) − S(x(k)) = 0 ≤ 0 (26)

which satisfies the conditions forS(x(k)) to be a Lyapunov
function. WhenΣ is zero state observable andstrictly-output
passivethen settingu[k] = 0 and noting thaty[k] 6= 0 when
x[k] 6= 0 implies that (24) results in

S(x(k + 1)) − S(x(k)) ≤ −ǫyT(k)y(k) < 0, ∀x 6= 0 (27)

which satisfies the conditions forΣ to be asymptotically stable.
Finally, if S(x) is also proper thenΣ is globally asymptotically
stable (see [32, Theorem 13.2] for the corresponding Lyapunov
stability conditions just discussed).

Remark 4:For a passivesystem (ǫ = δ = 0) κ(y(k)) =
−y(k) satisfies (25). For astrictly-output passivesystemδ =
0, ǫ > 0, κ(y(k)) = 0 satisfies (25). Finally, for astrictly-
input passivesystemδ > 0, ǫ = 0, κ(y(k)) = γy(k), γ >
1
δ

> 0 satisfies (25). Therefore (25) is a redundant condition.
Analogous statements can be made for the continuous time
case, if in additionS(x) is a C1 (continuously differentiable)
function (see [32, Theorem 5.3] for similar observability and
reachability conditions to imply thatS(x) > 0).

Theorem 2:If G : lm2e
(U) → lm2e

(U) is strictly-output
passivethenG is passiveand hasfinite lm2 -gain.

Proof: We denotey = G(u), and rewrite (19)

ǫ‖yN‖2
2 ≤ 〈y, u〉N + β

≤ 〈y, u〉N + β +
1

2
‖ 1√

ǫ
uN −

√
ǫyN‖2

2 (28)

≤ β +
1

2ǫ
‖uN‖2

2 +
ǫ

2
‖yN‖2

2

thus moving all terms ofy to the left, (28), has the final form
of (15) with lm2 -gain γ̂ = 1

ǫ
and b̂ = 2β

ǫ
.

Remark 5:See [17, Theorem 2.2.14] for the continuous
time case, and [34, Appendix C] for the discrete timedis-
sipative strictly-output passivecase. Note that this theorem
does apply fordissipative strictly-output passivesystems (see
Remark 2) and the proof can be applied analogously to
continuous time systems as well.
The requirement forstrictly-output passiveis a relatively easy
requirement to obtain for apassiveplant with mapG and
input u and outputy. This is accomplished by closing the
loop relative to a reference vectorr with a real positive definite
feedback gain matrixK > 0 such thatu = r − Ky.

Theorem 3:Given a passivesystem with inputu, output
G(u) = y, a real positive definite matrixK > 0, and reference
vector r. If the input u = r − Ky, then the mappingGcl :
r → y is strictly-output passivewhich implieslm2 -stability.

Remark 6:Theorem 2 implies that the output energy of a
strictly-output passivesystem will be bounded by a constant
times the supplied input energy. ALTI strictly-output passive
system can be considered withβ = 0, therefore the output
y will stay at y = 0 if u = 0 for all i. Practically speaking
the outputy(i) should return to0 whenu(i) returns to0 with
a strictly-output passivesystem asN → ∞. As we shall see

Fig. 4. A representation of theIPESH for SISO LTIsystems [35].

later, we will be able to maintainstrictly-output passivitywhen
interconnecting twostrictly-output passivesystems withwave
variables which can be subject to arbitrary data delays and
dropouts.

Remark 7:Theorem 3 can be stated in a more general form
in which K is replaced by astrictly-input passivesystem,
however, we want this transformation of apassivesystem to
a strictly-output passivesystem to be as simple as possible
(see [17, Theorem 2.2.11(b)] for the continuous time case).
Furthermore aLTI passivesystems which has zeros on the
unit circle can still be madestrictly-output passiveby closing
the loop, however it can not be madestrictly-input passive
without having to and an additional feed-forward term.

B. INNER-PRODUCT EQUIVALENT SAMPLE AND HOLD

In this section we show how a (non)linear (strictly input)
or (strictly output) passiveplant can be transformed to a
discrete (strictly input) or (strictly output) passiveplant using a
particular digital sampling and hold scheme (Theorem 4). This
novel zero-order digital to analog hold, and sampling scheme
introduced in [11] results in a combined system such that the
energy exchange between the analog and digital port is equal.
This equality allows one to interconnect an analog to a digital
Port-Controlled Hamiltonian (PCH) system which yields an
overall passive system. In [12], a correction was made to the
original scheme proposed in [11]. In order to prove Theorem 4,
we will restate the sample and hold algorithm with a slightly
modified nomenclature.

Definition 5: [11], [12] Let a continuous one-port plant
be denoted by the input-output mappingGct : Lm

2e
(U) →

Lm
2e

(U). Denote continuous time ast, the discrete time index
as i, the sample and hold time asTs, the continuous input
as u(t) ∈ Lm

2e
(U), the continuous output asy(t) ∈ Lm

2e
(U),

the transformed discrete input asu(i) ∈ lm2e
(U), and the

transformed discrete output asy(i) ∈ lm2e
(U). The inner-

product equivalent sample and hold(IPESH) is implemented
as follows:

I. x(t) =
∫ t

0
y(τ)dτ

II. y(i) = x((i + 1)Ts) − x(iTs)

III. u(t) = u(i), ∀t ∈ [iTs, (i + 1)Ts)

As a result

〈y(i), u(i)〉N = 〈y(t), u(t)〉NTs
, ∀N ≥ 1 (29)

holds.
Remark 8:Fig. 4 shows an implementation of theIPESH

for a single-input and single-output (SISO) LTI systemG(s)
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Fig. 5. l
m

2
-stabledigital control network for cooperative scheduler

when the output is scaled by1
T

it is referred to as theIPESH-
Transform [35]. The correspondingpassivezero-order-hold
equivalent is

Gd(z) =
(z − 1)2

z
Z
{

G(s)

s2

}

. (30)

Theorem 4:Using the IPESH given in Definition 5, the
following relationships can be stated between the continuous
one-port plant,Gct, and the discrete transformed one-port
plant,Gd : lm2e

(U) → lm2e
(U):

I. If Gct is passivethenGd is passive.
II. If Gct is strictly-input passivethen Gd is strictly-input

passive.
III. If Gct is strictly-output passivethenGd is strictly-output

passive.

Proof: See Appendix B-B.
Remark 9:This is a general result, in which Theorem 4-

I includes the special case where the input is a force and
the output is a velocity [12, Definition 2] and it includes
the special case for interconnectingPCH systems [11], [36,
Theorem 1]. Theorem 4-III corrects [14, Theorem 3-III].

Remark 10:Note that the storage functionβ for the
discrete-time mappingGd is simply a discrete-time sampled
version related to the continuous-time mappingGct. Therefore,
if β ≥ 0 for the continuous time systemGct, then β ≥ 0
for the discrete time systemGd. Therefore, whenGct is a
dissipative passivesystem, then as long as there still exists a
discrete time state realizationΣ as governed by (21) then all
the above results apply equally for a discrete timedissipative
passivesystemΣ. In particular, forLTI systems this always
will be the case.

IV. MAIN RESULTS

Fig. 5 depicts our proposed control scheme that guarantees
lm2 stability under variable delays in the feedback and control
channels. Depicted is a continuouspassiveplantGp(ep(t)) =
fp(t) which is actuated by a zero-order hold and sampled
by an IPES. Thus Gp is transformed into a discrete passive
plant Gdp(ep(i)) = fop(i). Next, a positive definite matrix
Kp is used to create a discretestrictly-output passiveplant
Gop(eop(i)) = fop(i) outlined by the dashed line. NextGop

is interconnected in the following feedback configuration such
that

〈fop, edoc〉N =
1

2
(‖(uop)N‖2

2 − ‖(vop)N‖2
2) (31)

holds due to the wave transform. Moving left to right towards
the strictly-output passivedigital controller Goc(foc) = eoc

we first note that

〈fopd, eoc〉N =
1

2
(‖(uoc)N‖2

2 − ‖(voc)N‖2
2) (32)

holds due to the wave transform. Thewave variables
uoc(i), vop(i) are related to the corresponding wave variables
uop(i), voc(i) and by the discrete time varying delaysp(i), c(i)
such that

uoc(i) = uop(i − p(i)) (33)

vop(i) = voc(i − c(i)) (34)

(33) and (34) hold. Finally the positive definite matrixKc is
used to make thepassivedigital controllerGc(fc(i)) = eoc(i)
strictly-output passive. Typically, roc can be considered the
set-point in whichfopd(i) ≈ −roc(i) at steady state, while
rop(i) can be thought as a discrete disturbance. Which leads
us to the following theorem.

Theorem 5:The system depicted in Fig. 5 islm2 -stableif

〈fop, edoc〉N ≥ 〈eoc, fopd〉N (35)

holds for allN ≥ 1.
Theorem 6:The system depicted in Fig. 5 without the

IPESH in which i andt denote continuous time isLm
2 -stable

if
〈fop, edoc〉τ ≥ 〈eoc, fopd〉τ (36)

holds for allτ ≥ 0.
Proof: The proof is completely analogous to the proof

given for Theorem 5 in Appendix B-D, the differences being
that the IPESH is no longer involved and the discrete time
delays are replaced with continuous time delays.

In order for (35) to hold, the communication channel/ data-
buffer needs to remainpassive. The following lemmas state
under what time delays and data dropouts these conditions
hold.

Lemma 2: [36, Proposition 1] If the discrete time varying
delays are fixedp(i) = p, c(i) = c and/or data packets are
dropped then (35) holds.

[36, Proposition 2] appears to be too broad in stating that
the communication channel ispassive in spite of variable
time delays when only the transmission of one data packet
per sample period occurs. For instance, a simple counter
example is to assumep(i) = i, then (99) will not hold
if N‖(uop)1‖2

2 > (‖(uop)N‖2
2 + ‖(voc)N‖2

2). Clearly other
variations can be given such thatp(i) eventually becomes
fixed and never changes after sending oldduplicate samples,
and still (35) will not hold. Therefore, we state the following
lemma:

Lemma 3:The discrete time varying delaysp(i), c(i) can
vary arbitrarily as long as (99) holds. Thus, the main assump-
tion (35) will hold if either:

1) Duplicate transmissions are dropped at the receivers. This
can be accomplished by transmitting the tuple (i,uop(i)),
if i ∈ { the set of received indexes} then setuoc(i) = 0.

2) we drop received data so that (99) holds. This requires us
to track the current energy storage in the communication
channel.
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Remark 11:Examples of similar energy-storage audits as
stated in Lemma 3-2 are given in [37, Section IV] which does
not use wave-variables, and in [8] which treats the continuous
time case.

A. PASSIVE DISCRETE LTI SYSTEM SYNTHESIS

In [38], using dissipative theory and a longer proof than
we will provide, it was shown how to synthesize a discrete
passive plant from a linear time invariant (LTI) plant. The
advantage of the observer described in [38] is that it does
not require a measurement of the integrated output of the
passiveplant. However, if one is concerned with controlling an
integrated output such as position, one will probably have this
measurement available as well as the correspondingpassive
output such as velocity. We will also show how an observer,
based on the integrated output measurement can still be used.
Such an observer maintains passivity and eliminates the need
to directly measure the actualpassiveoutput such as the
velocity. The proof for the observer will follow a similar proof
by [39].

A passivecontinuous timeLTI system [40],H(s), which
has a corresponding minimal state space representation given
by (37) and denoted by the matrices
{A ∈ R

n×n,B ∈ R
n×p,C ∈ R

p×n,D ∈ R
p×p}

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (37)

is cascaded in series with a diagonal matrix of integrators,
HI(s), described by{AI = 0,BI = I,CI = I,DI = 0}. The
combined system,Ho(s) = H(s)HI(s), is described by
{Ao,Bo,Co}. Where

Ao =

[

A 0

C 0

]

∈ R
(n+p)×(n+p) (38)

Bo =

[

B

D

]

∈ R
(n+p)×p (39)

Co =
[

0 I
]

∈ R
p×(n+p) (40)

Applying a zero-order-hold and an ideal sampler, the system
is described by [41]

x(k + 1) = Φox(k) + Γou(k)

p(k) = Cox(k) (41)

in which

Φo = eAoT

Γo =

∫ T

0

eAoηdηBo (42)

.
Proposition 1: Applying a zero-order-hold input topassive

continuous timeLTI system,H(s), and sampling the output
with the inner-product equivalent sampler at a sample rateT
results in a discretepassive LTIsystem,Gp(z) with discrete
state equations

x(k + 1) = Φox(k) + Γou(k)

y(k) = Cpx(k) + Dpu(k) (43)

whereCp = Co(Φo − I), andDp = CoΓo.
Proof: From Definition 5 it is a simple exercise to

compute thepassiveoutputy(k) = p(k+1)−p(k) as follows

x(k + 1) = Φox(k) + Γou(k)

y(k) = Co(Φo − I)x(k) + CoΓou(k) (44)

henceCp = Co(Φo − I), andDp = CoΓo.
Using Proposition 1 and Theorem 3 the following corollary
can be shown:

Corollary 1: Given a positive definite matrixKx > 0 and
discretepassivesystem described by (43), the system

x(k + 1) = Φspx(k) + Γspu(k)

y(k) = Cspx(k) + Dspu(k) (45)

is strictly-output passive. Here

Φsp = Φo − ΓoKx(I + DpKx)−1Cp

Γsp = Γo(I − Kx(I + DpKx)−1Dp)

Csp = (I + DpKx)−1Cp

Dsp = (I + DpKx)−1Dp (46)

With our discretestrictly-output passivesystem we can scale
the gain so that its steady state gain matches thestrictly-output
passivecontinuous systems steady state gain.

Corollary 2: Given a diagonal matrixKs > 0 and discrete
strictly-output passivesystem described by (45), the following
system isstrictly-output passive

x(k + 1) = Φspx(k) + Γspu(k)

y(k) = KsCspx(k) + KsDspu(k) (47)

in which each diagonal element

ks(i) =

{

yc(i)/yd(i)∀i ∈ {1, . . . , p} if yc(i) andyd(i) 6= 0;
1
T

otherwise
(48)

The vectorsyc/yd correspond to the respective steady state
continuous/discrete output of astrictly-output passiveplant
given a unit step input. These vectors can be computed as
follows:

yc = (−CcAc
−1Bc + Dc)1

yd = Hsp(z = 1)1, Hsp(z) = Csp(zI− Φsp)−1Γsp + Dsp

(49)

where

Gx = I + DKx

Cc = Gx
−1C

Dc = Gx
−1D

Ac = A− BKxCc

Bc = B(I − KxDc) (50)

Next, the following corollary provides a method to compute
uop(k), fop(k) given rop, vop, b. We can also synthesize
the digital controller from a continuous model using theIPES
with ZOH as well, so an additional corollary will show how
to computevoc(k), eoc(k) given uoc(k), roc(k).
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Corollary 3: The following state equation describes the
relationship between the inputsrop, vop and scattering gain
b to the outputsuop(k), fop(k).

x(k + 1) = Φefx(k) + Γef (
√

2bvop(k) + rop(k))

fop(k) = Cefx(k) + Def (
√

2bvop(k) + rop(k))

uop(k) =
√

2bfop(k) − vop(k) (51)

Here

G = I + bKsDsp

Cef = G−1KsCsp

Def = G−1KsDsp

Φef = Φsp − bΓspCef

Γef = Γsp(I − bDef ) (52)

Corollary 4: The following state equation describes the
relationship between the inputsroc, uoc and scattering gain
b to the outputsvoc(k), eoc(k).

x(k + 1) = Φfex(k) + Γfe(

√

2

b
uoc(k) + roc(k))

eoc(k) = Cfex(k) + Dfe(

√

2

b
uoc(k) + roc(k))

voc(k) = uoc(k) −
√

2

b
eoc(k) (53)

Where

G1 = I +
1

b
KsDsp

Cfe = G1
−1KsCsp

Dfe = G1
−1KsDsp

Φfe = Φsp − 1

b
ΓspCfe

Γfe = Γsp(I − 1

b
Dfe) (54)

In order to prove that a state observer can be used in astrictly-
input passivemanner, we require the following lemma.

Lemma 4: [42] The discreteLTI system (43) isstrictly-
input passiveand hasfinite lm2 -gain (strictly-positive real
(SPR)) if and only if there exists a symmetric positive definite
matrix P that satisfies the followingLMI:
[

Φo
TPΦo − P (Γo

TPΦo − KsCp)T

Γo
TPΦo − KsCp −(KsDp + Dp

TKs
T − Γo

TPΓo)

]

< 0

(55)

Remark 12:Therefore by Theorem 4-II any continuous
strictly-input passivewith finite lm2 -gain LTI (strongly positive
real [32, Definition 5.18]) system which is sampled and actu-
ated by anIPESHwill satisfy (55). Note, that [42] has omitted
the key assumption that the system must also havefinite
lm2 -gain. The combined conditions ofstrictly-input passive
andfinite lm2 -gain conditions require the discreteLTI systems
corresponding z-transform to be of relative degree0 and have
no zeros on the unit circle.

Remark 13:We also addedKs in order to show that any
positive diagonal matrix can be used to scale the outputy(k)
as is done with our observer described by (56).

Fig. 6. Passive Observer Structure.

B. Passive Observers

We now propose the following state observer as depicted
in Fig. 6 which is based on the sampled integrated output
of the strictly-input passiveplant with finite lm2 -gain and the
corresponding output estimatêy(k):

x̂(k + 1) = Φox̂(k) + Γou(k) − Ke(p̂(k) − p(k))

p̂(k) = Cox̂(k)

ŷ(k) = KsCpx̂(k) + KsDpu(k) (56)

This observer is similar to the observer proposed in [39] except
that it is based on the sampled integrated output. Defining the

error in the state estimate ase(k)
△
= x̂(k) − x(k) and the

augmented observer state vector asxob(k)
△
= [x(k), e(k)] the

system dynamics are

xob(k + 1) = Φobxob(k) + Γobu(k)

ŷ(k) = KsCobxob(k) + KsDpu(k) (57)

where

Φob =

[

Φo 0

0 Φo − KeCo

]

Γob =

[

Γo

0

]

Cob =
[

Cp Cp

]

(58)

Proposition 2: If the sampledLTI system is strongly pos-
itive real and Ke is chosen such that the eigenvalues of
Φo − KeCo are inside the unit circle the observer described
by (56) is bothSPRandstrictly-output passive.

Proof: First by choosing the eigenvalues to be inside the
unit circle there exist two matricesQ2 > 0 andPo > 0 such
that the following Lyapunov inequality is satisfied

− Q2 = (Φo − KeCo)TPo(Φo − KeCo) < 0 (59)

In order to satisfy the requirements of Lemma 4 we consider
the following symmetric positive definite matrix

Pob =

[

P 0

0 µPo

]

> 0 (60)

and show that there exists aµ > 0 that satisfies (64). Note
the following inequalities hold from our discreteSPRsystem
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which results from a continuous strongly positive real system.

−Q1 = Φo
TPΦo − P < 0

−Q3 = −(KsDp + Dp
TKs

T − Γob
TPobΓob)

= −(KsDp + Dp
TKs

T − Γo
TPΓo) < 0 (61)

To simplify the expression we define

C1
△
= Γo

TPΦo − KsCp (62)

Therefore the proposedSPRsystem described by (57) has to
satisfy





Q1 0 −CT
1

0 µQ2 −Cp
TKs

T

−C1 −KsCp Q3



 > 0 (63)

Using a similarity transformation, (63) is equivalent to




Q1 −CT
1 0

−C1 Q3 −KsCp

0 −Cp
TKs

T µQ2



 > 0 (64)

The following upper block matrix,O, satisfies (55) due to
Proposition 1, Theorem 4-(II,III), and Lemma 4.

O =

[

Q1 −CT
1

−C1 Q3

]

> 0 (65)

SinceO > 0, andQ2 > 0, then from using Proposition 8.2.3-
v in [43] which is based on the Schur Complement Theory
we need to show that

O > 0, and (66)

µQ2 −
[

0 −Cp
TKs

T
]

O−1

[

0

−KsCp

]

> 0

µQ2 − Cp
TKs

TO−1KsCp > 0 (67)

Thus denotingλm(·)/λM (·) as the minimum/maximum eigen-
values for a matrix, noting that the similarity transform of

Q2 = P2Λ2P2
T, and definingM

△
= Cp

TKs
TO−1KsCp, µ

needs to satisfy

µ >
λM (P2

T(M + MT)P2)

2λm(Q2)
(68)

Thereforeµ exists and satisfies (64).
Remark 14:The proof given in [39] which showssuffi-

ciencyfor passivesystems implicitly assumes that the discrete
sampled plant is strongly positive real, which applies only
to continuous time systems which arestrictly-input passive,
asymptotically stable, and of relative degree0. Furthermore,
the results from [39] can not be applied to our desired
observer design which uses the integrated output of a strongly
positive real plant. We have found in practice, however, such
a proposed observer system will typically preservepassivity
for passiveandstrictly-output passive LTIplants which can be
verified by finding aP which satisfies [34, Lemma C.4.2]. In
fact the proposed observer will maintain eitherstrictly-output
passive, strictly-input passive, or passivemapping when the
correspondingknownplant is respectively eitherstrictly-output
passive, strictly-input passive, or passive.

Theorem 7:Assume an observer described by (56) which
has precise knowledge of aLTI plant H(s) which has a

minimal state space representation described by (37) and
denoted as
{A ∈ R

n×n,B ∈ R
n×p,C ∈ R

p×n,D ∈ R
p×p}. The dis-

crete counterpart

Gp(z) = Cp(zI− Φo)−1Γo + Dp, (69)

with a corresponding state-space realization given by (43)is:

i) passivewhenH(s) is passive,
ii) strictly-input passivewhenH(s) is strictly-input passive,

and
iii) strictly-output passivewhen H(s) is strictly-output pas-

sive.

DenoteŶ (z) andU(z) as the corresponding z-transforms of
ŷ(k) andu(k). The corresponding observer system response

Hob(z) =
Ŷ (z)

U(z)
= Ks

[

Cob(zI− Φob)−1Γob + Dp

]

(70)

can be shown to have the final form

Hob(z) = KsGp(z), Ks > 0. (71)

Therefore the observerHob(z) is:

i) passivewhenH(s) is passive,
ii) strictly-input passivewhenH(s) is strictly-input passive,

and
iii) strictly-output passivewhen H(s) is strictly-output pas-

sive.

Proof:

Ks
−1Hob(z) − Dp =

[

CpCp

]

[

z − Φo 0

0 z − (Φo − KeCo)

]−1 [
Γo

0

]

=
[

CpCp

]

[

(z − Φo)−1 0

0 (z − (Φo − KeCo))−1

] [

Γo

0

]

= Cp

[

(z − Φo)−1 (z − (Φo − KeCo))−1
]

[

Γo

0

]

Ks
−1Hob(z) = Gp(z)

When the observer for a continuousstrictly-output passive LTI
system is alsostrictly-output passivewe can set the feedback
gainKp = 0 in Fig. 5. Note thatKp can convert a continuous
passivesignal into a discretestrictly-output passivesignal with
an observer. Similar to Corollary 3, we present Corollary 5
as it applies to using astrictly-output passiveobserver of a
strictly-output passiveor strongly positive real plant.

Corollary 5: The observer described by (56) for aLTI
system which is eitherstrictly-output passiveor strongly
positive real isstrictly-output passiveand the following state
equations describe the relationship between the inputsrop, vop

and scattering gainb to the outputŝuop(k), f̂op(k).

x̂(k + 1) = Φefox̂(k) + Γefo(
√

2bvop(k) + rop(k)) + Kep(k)

f̂op(k) = Cefox̂(k) + Defo(
√

2bvop(k) + rop(k))

ûop(k) =
√

2bf̂op(k) − vop(k) (72)
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where

G = I + bKsDp

Cefo = G−1KsCp

Defo = G−1KsDp

Φefo = Φo − KeCo − bΓoCefo

Γefo = Γo(I − bDefo) (73)

Remark 15:When b = 0, the expression in Corollary 5
satisfies that of a standard observer which does not usewave
variables.

Corollary 6: The observer described by (56) for aLTI
system which is eitherstrictly-output passiveor strongly
positive real isstrictly-output passiveand the following state
equations describe the relationship between the inputsroc, uoc

and scattering gainb to the outputŝvoc(k), êoc(k).

x̂(k + 1) = Φfeox̂(k) + Γfeo(

√

2

b
uoc(k) + roc(k)) + Kep(k)

êoc(k) = Cfeox̂(k) + Dfeo(

√

2

b
uoc(k) + roc(k))

v̂oc(k) = uoc(k) −
√

2

b
êoc(k) (74)

where

G1 = I +
1

b
KsDp

Cfeo = G1
−1KsCp

Dfeo = G1
−1KsDp

Φfeo = Φo − KeCo − 1

b
ΓoCfeo

Γfeo = Γo(I− 1

b
Dfeo) (75)

V. SIMULATION

We shall control a motor with an ideal current source, which
will allow us to neglect the effects of the motor inductance
and resistance for simplicity. The fact that the current source
is non-ideal, leads to a non-passive relationship between the
desired motor current and motor velocity [23]. There are ways
to address this problem usingpassivecontrol techniques by
controlling the motors velocity indirectly with a switchedvolt-
age source and a minimum phase current feedback technique
[44], and more recently incorporating the motors back voltage
measurement which provides an exact tracking error dynamics
passiveoutput feedback controller [45].

The motor is characterized by its torque constant,Km > 0,
back-emf constantKe, rotor inertia,Jm > 0, and damping
coefficientBm > 0. The dynamics are described by

ω̇ = −Bm

Jm

ω +
Km

Jm

i (76)

which are in astrictly-output passiveform. We choose to use
the passive“proportional-derivative” controller described by
(7) and defineτ = B

K
in order to factor outK and yield

KPD(s) = K
τs + 1

s
(77)
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Fig. 7. Bode plot depicting crossover frequency for baseline plant with
observer and controller.
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Fig. 8. Nyquist plot for the continuous plant (solid line) and the synthesized
discrete counterpart (solid dots) with observer.

Using loop-shaping techniques we chooseτ = Jm

Bm

and choose
K = Jmπ

10KmT
. This will provide a reasonable crossover fre-

quency at roughly a tenth the Nyquist frequency and maintain
a 90 degree phase margin. We choose to use the same motor
parameter values given in [45] in whichKm = 49.13mV rad
sec,Jm = 7.95 × 10−3kgm2, andBm = 41µNmsec. With
T = .05 seconds, we use Corollary 4 to synthesize astrictly-
output passivecontroller from our continuous model (77), and
Corollary 5 to implement thestrictly-output passiveobserver
of our strictly-output passiveplant. We also use Corollary 2 in
order to compute the appropriate gains for both the controller
Ksc

= 1 and thestrictly-output passiveplantKsp
= 20. Note

that by arbitrarily choosingKsc
= 1

T
= 20 would have led to

a incorrectly scaled system in which the crossover frequency
would essentially equal the Nyquist frequency (only because
a zero exists at−1 in the complex z-plane). Fig. 7, Fig. 8, and
Fig. 9 indicates that our baseline system performs as expected.
We choseKe = [16.193271, 1.799768]T for our observer in

which the poles are equal to a tenth of the poles of the discrete
passiveplant synthesized by Proposition 1, this by definition
forces all the poles inside the unit circle. Since the plant is
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Fig. 9. Nyquist plot for the continuous controller (solid line) and the
synthesized discrete counterpart (solid dots).
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Fig. 10. Baseline step response for motor withstrictly-output passivedigital
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strictly-output passivewe choseKp = 0. For the controller we
choseKc = 0.001 in order to make itstrictly-output passive.
Fig. 10 shows the step response to a desired position set-point
θd(k) which generates an approximate velocity reference for
roc(z) = −Ht(z)θd(z). Ht(z) is a zero-order hold equivalent
of Ht(s), in which ωtraj = 2π andζ = .9.

Ht(s) =
ω2

trajs

s2 + 2ζωtraj + ω2
traj

(78)

Note, that it is important to use a second order filter in order
to achieve near perfect tracking, a first order filter resulted
in significant steady state position errors for relatively slow
trajectories. Finally in Fig. 11 we see that the proposed control
network maintains similar performance as the baseline system.
Note that by increasingb = 5 significantly reduced the over-
shoot caused by a half second delay (trianglesb = 1/squares
b = 5). Also note that even a two second delay (large circles
b = 5) results in only a delayed response nearly identical to
the baseline system.
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Fig. 11. Step response for motor withstrictly-output passivedigital controller
andstrictly-output passiveobserver as depicted in Fig. 5 with delays.

VI. CONCLUSIONS

We have presented a theory to design digital control net-
works which maintainlm2 − stability in spite of time varying
delays caused by cooperative schedulers. We also provided
the necessary conditions for Lyapunov stability and asymp-
totic stability as we connected the relationships between the
more general input-output definitions forpassivity and the
more specific definitions forpassive dissipativesystems (see
Remark 2). It is important to note that the delays can be either
random or deterministic and require no tight bound on delay
when discussinglm2 − stability (see Theorem 5, Theorem 6,
Lemma 2, and Lemma 3). By usingwave variables, andpas-
sive control theory we can effectivelyseparatethe controller
design from the communication design. The control engineer
can effectively shape the system response using a low sampling
data rate confident that stability will be maintained while the
communication engineer can focus on providing a suitable
channel capacity to maintain a reasonableaveragedelay. We
presented a fairly complete and neededlm2 stability analysis
(which is lacking from much of the journal literature, however
we did find a nice discussion in [34, Appendix C]) in particular
Theorem 2 shows thatstrictly-output passiveis sufficient for
stability while Theorem 3 (for the discrete-time case) appeared
to be lacking from the open literature. The remaining new
results (not available in the open literature) which led to a
lm2 -stablecontroller design are as follows:

1) Theorem 4-I is an improvement which captures allpas-
sivesystems (not justPCH) systems.

2) Theorem 4-II, and Theorem 4-III are completely original.
3) Theorem 5 is a new and general theorem to interconnect

continuous nonlinearpassiveplants which should lead to
more elaborate networks interconnected in the discrete
time domain. Theorem 6 is also new. Neither Theorem 5
nor Theorem 6 require knowledge of the energy storage
function in order to showlm2 /Lm

2 -stabilityof the network.
4) Proposition 1 showed how to synthesize a discretepassive

LTI system from a continuous one.
5) Corollary 1 and Corollary 2 showed how to respectively
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make the discretepassiveplantstrictly-output passiveand
scale the output so that it will match the steady state
output for its continuous counterpart.

6) Corollary 3 and Corollary 4 showed how to implement
the strictly-output passivenetwork depicted in Fig. 5.

7) Proposition 2 showed how to implement a discrete
strictly-output passive LTIobserver for a strongly positive
real continuousLTI system (which is fairly restrictive in
its applicability).

8) Theorem 7, however shows how to implement a discrete
passiveobserver which preserves the specificpassivity
properties of thepassiveplant it is tracking. Thus showing
that an observer for either a strongly positive real plant
or strictly-output passiveplant will be strictly-output
passive. [34, Lemma C.4.2] provides a necessary and
sufficient test to determine when the observer described
by (56) will maintainpassivitywhen an imperfect model
of the plant is present. It is of interest to determine
what type of plant uncertainties can be tolerated when
implementing such an observer.

9) Corollary 5 and Corollary 6 showed how to implement
a strictly-output passiveobserver when attached to a
scattering junction.

Note that Theorem 3 now allows us to directly designlow-
sensitivity strictly-output passivecontrollers using thewave-
digital filtersdescribed in [13]. Recently we have extended this
networking theory as it applies to multiple plants controlled
by either a single or possibly multiple controllers. This is
achieved using a “power junction” which combines multiple
plant and controller inputs in apassivemanner [46, Sec-
tion 2.5]. Furthermore, memoryless input nonlinearities such
as actuator saturation and those associated with Hammerstein
systems can be effectively dealt with under this framework
[46, Section 3.2]. This is important since much work focused
on showing how to achieve stochastic stability of an unstable
plant may beimpossibleto achieve when actuator saturation is
present [46, Section 3.1]. Therefore, these fundamental results
provide a solid basis for future controls research in which
distributed wireless control systems can be designed.
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APPENDIX A
OBSERVERSIMULATION EQUATIONS

In order to simulate an observer for a contin-
uous LTI plant in which the actual state space
matrices for the actual passive plant are denoted
{Aa ∈ R

n×n,Ba ∈ R
n×p,Ca ∈ R

p×n,Da ∈ R
p×p}.

The actual discrete equivalent matrices for apassivesystem
are computed appropriately as described by (38), (39), (40),
(41), and (42), and denoted as{Φoa,Γoa,Coa}. If the
observer is implemented on the plant side for aLTI strongly
positive real orstrictly-output passiveplant as depicted in
Fig. 5 and described by Corollary 5, then the system can be
described by

[

x̂(k + 1)
x(k + 1)

]

=

[

Φefo KeCoa

−bΓoaCefo Φoa

] [

x̂(k)
x(k)

]

+

[

Γefo

Γefoa

]

(
√

2bvop(k) + rop(k))

[

f̂op(k)
p(k)

]

=

[

Cefo 0

0 Coa

] [

x̂(k)
x(k)

]

+

[

Defo

0

]

(
√

2bvop(k) + rop(k)) (79)

in which
Γefoa = Γoa(I− bDefo) (80)

. Similarly, if we implement the observer for a continuous plant
on the “controller side” (i.e. when the plant is more accurately
depicted as having a flow input and corresponding effort
output) as depicted in Fig. 5 and described by Corollary 6
then the system can be described by

[

x̂(k + 1)
x(k + 1)

]

=

[

Φfeo KeCoa

− 1
b
ΓoaCfeo Φoa

] [

x̂(k)
x(k)

]

+

[

Γfeo

Γfeoa

]

(

√

2

b
uoc(k) + roc(k))

[

êoc(k)
p(k)

]

=

[

Cfeo 0

0 Coa

] [

x̂(k)
x(k)

]

+

[

Dfeo

0

]

(

√

2

b
uoc(k) + roc(k)) (81)

in which

Γfeoa = Γoa(I − 1

b
Dfeo) (82)

.

APPENDIX B
ADDITIONAL PROOFS

A. Proof for Theorem 3

Proof: First we use the definition of passivity forG and
substitute the feedback formula foru.

〈y, u〉N = 〈y, r − Ky〉N ≥ −β (83)

Then we can obtain the following inequality

〈y, r〉N ≥ λm(K)‖yN‖2
2 − β (84)

in which λm(K) > 0 is the minimum eigenvalue forK.
Hence, (84) has the form of (19) which showsstrictly-output
passiveand implieslm2 -stability.

It is important to note that for very small maximum eigen-
values, the system is essentially the nominalpassivesystem
we started with. This is important, for we can design more
generalpassivedigital controllers and modify them with this
simple transform to make themstrictly-output passive.

B. Proof for Theorem 4

Proof:

I. Since the continuouspassivesystemGct satisfies

〈y(t), u(t)〉τ ≥ −β, ∀τ ≥ 0 (85)

then by substituting (29) into (85) results in

〈y(i), u(i)〉N ≥ −β, ∀N ≥ 1 (86)

which satisfies (18).
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II. Let τ = NTs, then since the continuousstrictly-input
passivesystemGct satisfies

〈y(t), u(t)〉τ ≥ δ‖u(t)τ‖2
2 − β, ∀τ ≥ 0 (87)

and Definition 5-III implies

‖u(t)τ‖2
2 = Ts‖u(i)N‖2

2 (88)

substituting (88) and (29) into (87) results in

〈y(i), u(i)〉N ≥ Tsδ‖u(i)N‖2
2 − β, ∀N ≥ 1 (89)

therefore, the transformed discrete systemGd satisfies
(20).

III. with τ = NTS, the continuousstrictly-output passive
systemGct satisfies

〈y(t), u(t)〉τ ≥ ǫ‖y(t)τ‖2
2 − β, ∀τ ≥ 0 (90)

from Definition 5-II and theSchwarz’s Inequalitywe
relate‖y(i)N‖2

2 to ‖y(t)τ‖2
2 as follows:

‖y(i)N‖2
2 =

n
∑

j=1

[

N−1
∑

i=0

y2
j (i)

]

=

n
∑

j=1





N−1
∑

i=0

(

∫ (i+1)Ts

iTs

yj(t)dt

)2




≤ Ts

n
∑

j=1

[

N−1
∑

i=0

(

∫ (i+1)Ts

iTs

y2
j (t)dt

)]

≤ Ts‖y(t)τ‖2
2 (91)

rewriting (91) as

‖y(t)τ‖2
2 ≥ 1

Ts

‖y(i)N‖2
2 (92)

and substituting (92) into (90) results in

〈y(i), u(i)〉N ≥ ǫ

Ts

‖y(i)N‖2
2 − β, ∀N ≥ 1 (93)

therefore, the transformed discrete systemGd satisfies
(19).

C. Proof for Theorem 5

Proof: First, by theorem 4-I,Gp is transformed to a
discretepassiveplant. Next, by theorem 3 both the discrete
plant and controller are transformed into astrictly-output
passivesystems. Thestrictly-output passiveplant satisfies

〈fop, eop〉N ≥ ǫop‖(fop)N‖2
2 − βop (94)

while thestrictly-output passivecontroller satisfies (95).

〈eoc, foc〉N ≥ ǫoc‖(eoc)N‖2
2 − βoc (95)

Substituting,edoc = rop − eop andfopd = foc − roc into (35)
yields

〈fop, rop − eop〉N ≥ 〈eoc, foc − roc〉N
which can be rewritten as

〈fop, rop〉N + 〈eoc, roc〉N ≥ 〈fop, eop〉N + 〈eoc, foc〉N (96)

so that we can then substitute (94) and (95) to yield

〈fop, rop〉N + 〈eoc, roc〉N ≥ ǫ(‖(fop)N‖2
2 + ‖(eoc)N‖2

2) − β
(97)

in which ǫ = min(ǫop, ǫoc) and β = βop + βoc. Thus (97)
satisfies (19) in which the input is the row vector of[rop, roc],
and the output is the row vector[fop, eoc] and completes the
proof.

D. Proof for Lemma 2

Before we begin the proof, we denote the partial sum from
M to N of an extended norm as follows

‖x(M,N)‖2
2

△
= 〈x, x〉(M,N) =

N−1
∑

i=M

〈x, x〉 (98)

Proof: In order to satisfy (35), (31) minus (32) must be
greater than zero, or

(‖(uop)N‖2
2 − ‖(vop)N‖2

2) − (‖(uoc)N‖2
2 − ‖(voc)N‖2

2) ≥ 0

(‖(uop)N‖2
2 − ‖(uoc)N‖2

2) + (‖(voc)N‖2
2 − ‖(vop)N‖2

2) ≥ 0

(‖(uop)N‖2
2 − ‖(uop(i − p(i))N‖2

2)+

(‖(voc)N‖2
2 − ‖(voc(i − c(i))N‖2

2) ≥ 0
(99)

holds. Clearly (99) holds when the delays are fixed, as (99)
can be written to show

(‖(uop)((N−p),N)‖2
2 + ‖(voc)((N−p),N)‖2

2) ≥ 0 (100)

the inequality always holds for all0 ≤ p, c < N . Note if p and
c equal zero, then inequality in (100) becomes an equality. If
all the data packets were dropped then,‖(uoc)N‖2

2) = 0 and
‖(vop)N‖2

2) = 0, such that (35) holds and all the energy is
dissipated. If only part of the data packets are dropped, the
effective inequality described by (99) serves as a lower bound
≥ 0; hence dropped data packets do not violate (35).


