Design of Digital Control Networks for Continuous
Passive Plants Subject To Delays and Data Dropouts

Nicholas Kottenstettéand Panos J. Antsaklis
*Corresponding Author
Institute for Software Integrated Systems
Vanderbilt University
PO BOX 1829, Station B
Nashville, TN 37203
Email: nkottens@isis.vanderbilt.edu
fDepartment of Electrical Engineering
University of Notre Dame
Notre Dame, IN 46556
Email: antsaklis.1@nd.edu

Abstract

We present a framework to synthesiZe-stablecontrol networks which are subject to delays and data drtgpdinis framework
can be applied to control systems which use “soft-real-tioo@perative schedulers and wired or wireless networkljeek. The
approach applies tpassiveplants and controllers that can be either linear, nonlinead (or) time-varying. This framework is
based on fundamental results presented here relatpdstivecontrol, and scattering theory. It loosens the requiremémt the
passivesystems to possess specialized storage functions andsgete descriptions as is typically done in showing Lyapunov
stability for passiveforce-feedback telemanipulation systems, of which we ipka short review. The benefits of loosening these
requirements will become quite obvious to the reader as wikencannections between the general input-output defimsitioh
passivityand the more specifipassive dissipativeystem definitions.

Theorem 4 states how a (non)lineatrictly input or strictly outpu) passiveplant can be transformed to a discrestri¢tly
input) passiveplant using a particular digital sampling and hold schemartiermore, Theorem 5(6) provide new sufficient
conditions forl3* (and L3*)-stability in which a strictly-output passiveontroller and plant are interconnected with omive-
variables Lemma 2 shows it is sufficient to use discretave-variablesvhen data is subject to fixed time delays and dropouts in
order to maintairpassivity Lemma 3 shows how to safely handle time varying discvedge-variabledata in order to maintain
passivity Proposition 1 shows how to synthesize a discrgssive LTIsystem from a continuoupassive LTIsystem, which
leads to Corollary 1 that shows how to synthesize a diss#tetly-output passive LTsystem from a continuoupassive LTI
system. Corollary 2 provides a suitable method to apprtglyisscale the synthesized discrateictly-output passive LT$ystem.
Corollaries 3 and 4 show how to integrate the discsttietly-output passive LT8ystem withwave variablesProposition 2 shows
how aLTlI strictly-output passivebserver can be implemented forstictly-output passive LTtontinuous plant. Corollaries 5
and 6 result from Proposition 2 as they relate to an obsersiaguvave variablesWe then present a new cooperative scheduler
algorithm to implement &3*-stablecontrol network. We also provide an illustrative simulatémple followed by a discussion
of future research.

Index Terms

passivity theory, scattering theorywave variables telemanipulation, (wireless) networked control systedigital control
systems, control synthesis, observers, non-linear datigory, linear control theongtrictly-positive reakystemspassivesystems,
strictly-output passiveystemspositive realsystems, control with cooperative schedulérBl systems]3*-stability theory,LMI’s,
adaptive control theory-Hamiltonian systemsEuler-Lagrange systems
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Note: All proofs in Appendix B and the corresponding Theoremsiarthe following paper:

N. Kottenstette, P. Antsaklis, “Stable Digital Control Metrks for Continuous Passive Plants Subject to Delays and Da
Dropouts”. (in the Proceedings of thé!* IEEE Conference on Decision and Control, December 2007)

The result in regards to preservation of passivity usinglBEeSHwill appear in:

N. Kottenstette, J. Hall, X. Koutsoukos, P. Antsaklis, an8zipanovits, “Digital control of multiple discrete passplants over
networks,” International Journal of Systems, Control aman@unications (IJSCC), Special Issue on Progress in N&gtor
Control Systems, 2009.

, however, the more general case in regards tolBHESH preservingstrictly-input passiveand strictly-output passiveare
presented here in Theorem 4.
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Design of Digital Control Networks for Continuous
Passive Plants Subject To Delays and Data Dropouts

. INTRODUCTION Telemanipulation systems are distributed control systems
where a human operator uses a local manipulator to control a
This work has been motivated by the urgent need temotely located robot in order to modify a remote environ-
develop reliable wireless control networks. These net&orkhent. The position tracking between the human operator and
typically consist of distributed-wireless sensors, atitsaand the robot is typically maintained by passiveproportional-
controllers which communicate with low cost devices sudfferivative controller. In fact, a telemanipulation systeypi-
as the MICA2 and MICAz motes [1]. The operating systemsally consists of a series network of interconnected twd-po
for these devices, typically consist of a very simple schegassivesystems in which the human operator and environment
uler, known as a cooperative scheduler [2]. The cooperati¢gminate each end of the network [4]. Thesssivenetworks
scheduler provides a common time-base to schedule taskgd@ remain stable in-spite of system uncertainty; howedesr,
be executed, however, it does not provide a context-switklys as small as a few milliseconds may cause force feedback
mechanism to interrupt tasks. Thus, tasks have to cooperaiemanipulation systems to become unstable. Fixed delaye
in order not to delay other pending tasks which is difficult tpower variables, force (effort) and velocity (flow), makes th
satisfy without careful testing and auditing of the softerarcommunication channel nopassivewhich typically results
being run. The analysis can be quite complex if some @f instabilities except for special cases. For exampleballo
the tasks are event driven and take a moderately long tir@bility can be guaranteed if there exists zero-statectigite
to run to completion. Even deterministic schedulers can rgtants and controllers with positive definite storage fiong
into significant difficulties dealing with issues such agty in ¢! in which the product of theil.;*-gains is less than or
inversion of tasks, for example. As a result, a controllefqual to one [5, Theorem 3.1].
needs to be designed to tolerate time-varying delays causett was shown In [3], [6] that by using the scattering
by disruptive tasks which share the cooperative schedulgansformation, power variables can be transformed wawe
Although, other operating systems can be designed to pgovighriables [7] and the communication channel will remain
a tighter real-time scheduling performance, the time vayyi passivein spite of arbitrary, fixed delays. In [5] additional
delays which will ultimately be encountered with wirelespassivity conditions are provided for stability resultsemtus-
sensing and actuation will be comparable, if not more signg continuous-time plants and controllers in conjunctigth
nificant. The reason for these time varying delays arise® fravave variables For continuous-time systems, if additional
the fundamental fact that digital communication systeng anformation is transmitted along with the continuowsve
subject to noise which limits their average capacity aneémdet variables the communication channel will also remaiassive
mines the average time varying delays in which informat®n in the presence of time varying delays [8]. However, only
transmitted. Furthermore, as information is transmitteer@ recently has it been shown how discretave variablescan
network and stored in queues while waiting to be routed, themain passivein spite of time varying delays and dropouts
variance in the delays continues to increase. If the netwdd, [10]. We verify this to be true for fixed time delays
becomes congested and the queues fill up data will have todii data dropouts (Lemma 2). However, we provide a simple
dropped and random drop outs will occur. counter example showing that this is not the case for all4ime
The primary aim of this paper is to provide a theoreticalarying delays. We then provide a lemma which states how
framework to build/5*-stablecontrollers which can be subjectto properly handle time varying discrete wave variable data
to time-varying scheduling delays and data dropouts. Suahd maintainpassivity(Lemma 3). [11], [12] build upon the
results are also of importance as they will eventually allowovel digital sample and hold scheme introduced in [9] which
the plant-controller network depicted in Fig. 5 to run egltir allows the resulting discrete-time inner-product to beado
isolated from the plant as is done with telemanipulation syhe continuous-time inner-product.
tems. Telemanipulation systems have had to address varelesWe will build on the results in [11] to show in general how
control problems [3] and the corresponding literature fes to transform a (non)linearsfrictly inpu® or (strictly outpu}
results to address how to design stable control systemedubpassive system into a discretesifictly inpu) or (strictly
to transmission delays in such systems. Much of the theasytpu) passivesystem (Theorem 4). We then formally present
presented in this paper is inspired and related to work @i-stability results related tatrictly-output passiveetworks.
telemanipulation systems. Thus, Section Il provides afbrin particular Theorem 3 shows how to make a discpetssive
review of telemanipulation, and how it relates passive plant strictly-output passiveand [3*-stable Theorem 3 also
control and scattering theory in order to provide the readetakes it possible to synthesize discrstectly-output passive
with some physical insight related to the framework presgéntsystems from discretgpassive LTIsystems such as those
in Section Il consisting ofpassivewave digital filters [13]. We will then use
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the scattering transform to interconnect the controlleth®
plant with wave variablesWe use Lemma 3 to show that the
cooperative scheduler can allow time varying data transions
delays and maintain passivity between the plant and cdetrol
As a result our digital control system implemented with a «¢.(s) *
cooperative scheduler will remaifj*-stable

Section 1l provides a brief discussion of telemanipulationg: 1. ~ Telemanipulation system depicted in the s-Domaimjext to
systems includingpassivity and scattering theory from g communication delays.
continuous time and classic control framework. Section Il
provides definitions and theorems necessary to present o]
main results in Section IV. Some of the initial theorems a

. . _ effort and flow pair (e.,f.) whose product is power, are
lemmas were given in [14], therefore the correspondmgfproq ically used to show the exchange of energy between two
have been moved to the appendix and may be omitted. N

L . _ .Systems usindpond graphg19], [20]. Some other examples
passivediscreteL Tl system synthesis results are provided Bt effort and flow pairs of power variablesare voltage and

Section IV-A which includes Proposition 2 that shows ho‘@urrent ¢.d), and magnetomotive force and flux ratg,g).

to implement astrictly-output passivebserver. In Section V In this pa'pe'rwave variablesare used and described ’by the
presents results from a simulation ofpassivemotor being pair of variables .,v.) and determined by the transmission
o_IigitaIIy-controIIed overa network SUbje‘?t fo various fixe wave impedancé(>’ 0) [7]. The fixed channel communication
tlme-.d.elays n W.h'Ch a .novel obs.erver IS used to reCovifhe delay isT" seconds. The transmission between the master
passivity in the discrete time domain. Section VI SUMMAIZE 1 clave controller (as depicted in Fig. 1 in the s-Domain)
our key findings and discusses future research directions. are governed by the following delay equations for the wave

variables:
Il. TELEMANIPULATIONSYSTEMS. us(t) = U (t = T) (2)

Telemanipulation systems typically consist of a network o
. 4 . om(t) =vs(t —=T) 3)
of interconnectedcpassivesystems. In particular [3] showed
how to design telemanipulation which can tolerate arbjtrain which the inputwave variablesare computed using

b velocity {',%). Power variables generally denoted by

fixed time delays. We review these results and introduaee 1

variablesin order to lead the reader into our main results. U (t) = \/——b(bfm(t) + em(t)) 4)
Passive systems are an important class of systems for which 2

Lyapunov like functions exist [15]-[18]. The Lyapunov like _ _

function arises from the definition of passivity (1). passive us(t) = \/%(bfs‘i(t) ec(t)) ®)

systems (1), the rate of change in stored endigy. is equal
to the amount of power put in to the systeR) minus the
amount of power dissipateByss (> 0).

These simple wave variable transformations, which can be
applied to vectors, allow us to show that the wave commu-
nication channel is botlpassiveand lossless assuming zero

Euoe = Py — Piice (1) Initial conditions.
t
As long as all internal states of the system are associated k 1 1 1
) . . : Estore(t) = | Pndr = = = dr >0
with stored energy in the system, it can be shown thztssive stre () €T T g Umtim T 5Us Vs | AT 2
0

system is stable when no input power is present, simply by (6)

setting P, = 0. Puiss > 0 implies that Esore < 0 Which 1y Fig 1. the transfer function associated with the master
shows that the system is Lyapunov stable. By using either tn%nipulator is denoted b, (s) and is typically apassive

invariant set theorem or Barbalat's Lemma [16] asymptotiass Furthermore, the slave manipulator is denoted by the

stability can be shown [4]. Thespassivesystems, which o «tar functionG,(s) and is typically apassivemass. The

can be intercpnnect_e_d in para_llel and feedback COnﬁgmti%assive“proportional-derivative" plant controlleK pp(s) has
which result in additionapassivesystems, are fundamentaly, following form:

components of telemanipulation systems [4]. Instabditian

occur when a telemanipulation system incurs communication Kpp(s) = Bs+ K @)
delays between the master controller and slave manipulator S

note that delays as small as a few milliseconds can caudee plant controller is “proportional-derivative” in thersse
instability. Instabilities may occur when the communioati that the integral of the flow variablg, yields a displacement
channel becomes a non-passive element in the telemaniputriable ¢, which is then multiplied by a proportional gain
tion system [7]Wave variablesre used here to communicatek’ and derivative termB. With r;(s) = eq(s) = 0 the
commands and provide feedback in telemanipulation systeragstem igpassiveand Lyapunov stable in regards to the plant’s
because they allow the communication channel to remaiglocity and the velocity equilibrium point equalgnote that
passivefor arbitrary fixed delays. The variables, the values dhe final position of the plant is dependent on the systems
which were most commonly communicated in the past oveiimtial condition). This velocity equilibrium holds in g of
telemanipulation channel wemmwer variablessuch as force arbitrary fixed delays singgassivityis preserved. See [21] and



" RPN R stability of various parameter adaptation algorithm§g7].
b ] - Additional texts which discusggassivecontrol theory for non-

n linear continuous systems are [16]-[18]. In [28] a compre-
# E dledr hensive treatment is dedicated to thassivecontrol of a

Vs class of non-linear systems, knownEgser-Lagrange systems
Euler-Lagrange systentsan be represented byHamiltonian
which has a Dirac structure that allows dissipative andgner
storage elements to be interconnected to ports withoutataus
specification [29, p. 124]. In [29] an extensive treatment of
intrinsically passivecontrol using Generalized Port-Controlled
Hamiltonian Systems is presented, in particular as it eslat
to telemanipulation and scattering theory. Our presemati
of passivecontrol theory focuses on laying the groundwork
for discretepassivecontrol theorems, mirrors the continuous
counterpart results presented in [17], and extends thancont

Fig. 3. A delay-insensitive system in whichpassivecontroller commands uous and discrete results in [15].
a passiveplant.

Fig. 2. Block diagrams depicting the wave variable transfaion (simplified
version of Fig. 3 in [23]).

e ls) *

A. I5* STABILITY THEORY FOR PASSIVE NETWORKS

[22, Theorem 2] for tests which can be applied to determineThis section covers some basic results related to discrete

an appropriate value fob to satisfy either stability orL;" time passivitytheory some of which are novel. In particular

stability in whichey(s) = 0. We will show that it is sufficient how strictly-output passivityrelates tol3-stability, how to

for Kpp(s) and Gp(s) to be modified to bestrictly-output transform apassivesystem to astrictly-output passiveystem

passivein order to satisfyL3* stability for Vb > 0 and both with negative feedback, and how dRESH (Definition 5)

ea(t) andr,(t) can be signals irL3*. The sufficient proof for converts a continuoysassivesystem to a discrete tinpassive

both Ly* and (3" stability is given in Section IV. Although system.

the wave variables(u.,v.) do not need to be associated Mathematical Preliminaries: TH& space, is the real space

with a particular direction as do the power variables, whesf all bounded, infinitely summable functiorf§i) € R"™. We

interconnected with a pair of effort and flow variables aassumef(i) = 0 for all i < 0. Theinner productis denoted

effective direction is implied. Fig. 2 shows how to implerhery...) in which for example(u,y) = u'y is a valid inner

the wave transform for both cases. Fig. 1 can be modifigloduct [30, p.68]. More generally thiener productwill apply

to yield the following system depicted in Fig. 3 in which &o functions in thel]* space, which is the set of all functions

passivecontroller K pp(s) is able to command passiveplant  f(i) which satisfy the inequality given by (8).

Gp(s). The plant will follow the flow set-point,(s). If we .

preceder,(s) with a causal derivative filteG/y(s) = =~ : N A2 T £(s

such thatrs(s) = Gg(s)as(s) then the plant will trac+kla @, F@) =176 Zf (DI(0) < o0 ®

desired fixed displacement set-point(s) at steady state.
Simulations offers some insights into this system’s bedravi

for example when using velocity feedback opassivemass (i) {f(z‘), if0<i<N

A truncation operator will be deflned as follows:

(Gp(s) = 572), then the plant displacemerft f,(t)d¢ will 0, otherwise ©)

equal the displacement set-poipt(t) = [r(t)dt at steady . .
state. If the plant ipassiveand stable such as a mass-spring-ikewise the extendet}" space/;’, is the set of all functions

damper systemd,(s) = s2+255323+w2) then steady state f (@) which satisfy the following mequallty (20).
error will occur ([ f,(t)dt # [ rs(t)dt). So far the discussion
has taken place with respect to the continuous time domain an (f( )N = Z FT()f(i) <oo, N>1  (10)

has been pointed out that even under fixed delayed data to and
from the controllerpp(s), with the use ofwave variables Note thati3* C i5". TyplcaIIy 13 is defined with the summa-
a passivecontrol system can be designed which is Lyapunaion to NV and the truncation include¥ [27, p. 75] and [15,

stable. p. 172], however, these definitions are equivalent. Finally
can define ouij* norms (11) and truncation of tHg§* norm
[1l. PASSIVE CONTROL THEORY (12) as follows:

Passive systemsl) are a special class dfissipativedy- , 1
namical systems which have storage functiofu,y) = u"y 17 G )H2 = (@), J@) (11)

[24]-[26]. Passive control theory is general and broad at th N-1
it applies to a large class of linear, non-linear, contirsiou £ (w3 2 (f( fT@re)  (12)

and discrete control systems. In [15] results for contirsuou =0

and discretepassivesystems are presented. Passive control The following definition fori5*-stability is similar to the
theory has been used in digitaldaptive controlto show one given in [31] which refers to [17] in regards to statingtth
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finite [5*-gain is sufficient fori3*-stability, for the continuous depends ory(0)). S.(z(0)) represents the maximum amount
time case only. We provide a short proof for the discrete tim# energy which can be extracted frofh for any 2:(0) € X.
case and we note for completeness where the developmépending on the type gassivitywhich is satisfiede > 0

parallel each other [17].
Definition 1: Let the set of all functions(i) € R™, y(i) €

R?, which are either in thé;* space orly' space, be denoted
by I5*(U)/5* (U) andl5*(Y')/15* (Y') respectively. Define now

G as an input-output mapping : [5* (U) — 15* (Y'), such that
it is {5*-stable if
u el (U) = Gu) € I51(Y) (13)

The mapG hasfinite [5*-gain if there exist finite constants
andb such that for allv > 1

[(G(u)nllz < Allunllz +b,Vu € 137(U)

holds. EquivalentlyG hasfinite 3*-gain if there exist finite
constantsy > ~ andb such that for allvV > 1 [17, (2.21)]

H(G)NI3 <A lunll} +b,Yu e 15 (U)  (15)

(14)

holds.
Remark 1:If G hasfinite {5*-gain then it is sufficient for
[5-stability. Letu € [5*(U) and N — oo which leads (14) to

(G ()2 < vllullz + b, Vu € 13'(U) (16)

which implies (13) (see [17, p. 4] for the continuous time

case).
Lemma 1: [17, Lemma 2.2.13] Thé&*-gain v(G) is given
as

v(G) = inf{4 | 3 b s.t. (15) hold} (17)

Next we will present definitions for various types of padgivi

for discrete time systems.
Definition 2: [15], [17] Let G : [3'(U) — 15 (U) then for
allu e (3*(U) and allN > 1:
I. G is passiveif there exists some constapt > 0 such
that (18) holds.

(G(u),u)yy > -0 (18)

ando > 0 will satisfy (22).

0 < S, (x(0) 2

sup  —((y, u)y — dllun3 —ellynll3) < B < oo (22)

z(0)

u(-), N>0
Note that whenV = 0, the truncated inner product and norms
are defined to be equal to zero in order to satigfyx(0)) >
0. Also note that it is the existence of the available storage
0 < Su(z(0)) < o0, Vz(0) € X and S,(0) = 0 which is a
necessary and sufficient condition fBrto bedissipative[25,
Theorem 1] [32, Theorem 13.17].

Remark 3:For adissipative passiveystem a storage func-
tion S(z) : x € X+— R, exists in whichS(z) > 0, Vz € X
and S(0) 0 In particular, the following inequality is
satisfied:

S(@(0)) + (. w)w — dllunll3 — ellyn |3 = S(x(N)) (23)

in which § > 0 for a strictly-input passivesystem,e > 0 for
a strictly-output passivesystem. Equivalently

yT (kyu(k) 8T (kyu(k)—eyT (k)y(k) > S(x(k+1))—S(x(k)).
(24)
We note that any proofs associated wittior passivesystems
(Definition 2) apply equally talissipative passiveystems in
which we can substitute-g = S(z(N)) — S(z(0)). (see
[33] [17, Section 3.1], [25] for a further discussion rethte
to continuous timalissipativesystems and [34, Appendix C]
and [32, Section 13.9] for discrete tingéssipativesystems).
The dissipativedynamical systems storage functidi{z) is
a “Lyapunov-like” function which can be shown to be a
Lyapunov function in whichS(z) > 0, = # 0 if X is
completely reachabland zero-state observahle

Definition 3: [32, Definition 13.12] A dynamical system
Y is completely reachable if for alt(ky) € X C R”, there
exists ak; < ko and a square summable inputk) defined

Il. G is strictly-output passivé there exists some constantson [k, ko] such that the state;(k), k > k;, can be driven

B, € > 0 such that (19) holds.
(G(u),u)n > €| (G(u))nl5 = 5 (19)

M.
B, d > 0 such that (20) holds.

(G(u),u)n > dllun|3 - 5

Remark 2:Denote a discrete time state space syskein
which the stater € X C R™ and outputy C Y € R™ evolves
according to

(20)

w(k+1) = f(x(k), u(k))
y(k) = h(z(k), u(k))

(21)

from z(k1) = 0 to x(ko).
Definition 4: [32, Definition 13.15] A dynamical system
Y is zero-state observableif(k) = 0 andy(k) = 0 implies

G is strictly-input passivef there exists some constantsz(k) = 0.

Theorem 1:If a passive dissipativeystemy described by
(21) which is zero-state observable, completely reachade
there exists a functior : I5*(Y) — 15*(U) such that

k(0) =0 and
y" (k)r(y(k) — ey" (k)y(k) — dr(y(k)) w(y(k)) <O,
y(k) #0
in which e > 0 for the case when the systemsiictly-output
passive(e = 0 otherwise) andd > 0 for the case when the

(25)

in whichu € U C R™ andu € [5*(U) is an input to the system isstrictly-input passivéd = 0 otherwise) thert has a
system. IfG can be described b¥, and satisfies any of the zero solutionz(k) = 0 which is Lyapunov stable. IE is also
definitions listed in Definition 2, in whicl) < § < oo then strictly-output passivéhen is asymptotically stable. Finally,
¥ is a correspondingassive dissipativeystem in which the if S(z) is also proper§(z) — oo, as||z||2 — oo) thenX is
available storage,(z(0)) < § exists (note thafs implicitly — globally asymptotically stable.



Proof: [32, Theorem 13.18] shows th&t(x) > 0, Va €
X if a passive dissipativesystem is zero-state observable,
completely reachable andy) satisfies (25). Setting[k] = 0

i
. . u(i) " ul(t) (1) (i)
in (24) results in 20H ———p» G - IPES H=
-

S(x(k+1))—S(x(k))=0<0 (26) G luli)):u(i)=yli

which satisfies the conditions fd¥(z(k)) to be a Lyapunov Fig. 4. A representation of the®ESHfor SISO LTIsystems [35].
function. WhenX is zero state observable asttictly-output
passivethen settingu[k] = 0 and noting thaty[k] # 0 when

a[k] # 0 implies that (24) results in later, we will be able to maintaistrictly-output passivityhen
S(z(k +1)) — S(z(k)) < —ey  (k)y(k) <0, Vo £0 (27) inte_rconnect_ing twcstrictly-ou_tput passi\_/esystems withwave
) o N _ variableswhich can be subject to arbitrary data delays and
which satisfies the conditions far to be asymptotically stable. gropouts.
Finally, if S() is also proper thek is globally asymptotically  Remark 7: Theorem 3 can be stated in a more general form
stable (see [32, Theorem 13.2] for the corresponding Lyapuny, which K is replaced by astrictly-input passivesystem,

stability con(.jitions just discussed). B however, we want this transformation ofpassivesystem to
Remark 4:For apassivesystem { = § = 0) x(y(k)) = g strictly-output passivesystem to be as simple as possible
—y(k) satisfies (25). For atrictly-output passiveystemd = (see [17, Theorem 2.2.11(b)] for the continuous time case).

0, ¢ >0, r(y(k)) = 0 satisfies (25). Finally, for &trictly-  £yrthermore alTI passivesystems which has zeros on the
IlnpUt passivesystemd > 0, ¢ = 0, x(y(k)) = 7y(k), ¥ > ynit circle can still be madstrictly-output passivéy closing
5 > 0 satisfies (25). Therefore (25) is a redundant conditiof,¢ loop, however it can not be madéictly-input passive

Analogous statements can be made for the continuous tiggnout having to and an additional feed-forward term.
case, if in additionS(z) is aC* (continuously differentiable)

function (see [32, Theorem 5.3] for similar observabilityda
reachability conditions to imply that(z) > 0). B. INNER-PRODUCT EQUIVALENT SAMPLE AND HOLD
Theorem 2:If G : I3 (U) — 13*(U) is strictly-output
passivethen G is passiveand hadinite [5*-gain.
Proof: We denotey = G(u), and rewrite (19)

In this section we show how a (non)lineatrictly inpuj
or (strictly outpu) passiveplant can be transformed to a
discrete étrictly inpui or (strictly outpu) passiveplant using a
ellyn? < (y,u)y + particular digital sampling and hold scheme (Theorem 4js Th
1.1 9 novel zero-order digital to analog hold, and sampling sahem
<y, u)n + 6+ 5”%“1\’ — Veynllz (28) " introduced in [11] results in a combined system such that the
1 € energy exchange between the analog and digital port is equal
<B+ % lunll3 + 5”9]\/”% This equality allows one to interconnect an analog to a aligit
Port-Controlled HamiltonianRCH) system which yields an
overall passive system. In [12], a correction was made to the
griginal scheme proposed in [11]. In order to prove Theorem 4
we will restate the sample and hold algorithm with a slightly
modified nhomenclature.

thus moving all terms of to the left, (28), has the final form
of (15) with I*-gain 4 =  andb = 2.

Remark 5:See [17, Theorem 2.2.14] for the continuou
time case, and [34, Appendix C] for the discrete timtis-
sipative strictly-output passivease. Note that this theorem o i
does apply fodissipative strictly-output passivg/stems (see Definition 5: [11]'_ [12] Let a CO”“”‘_JO“S one-port plant
Remark 2) and the proof can be applied analogously P(? denoted by the |_nput-0u_tput mapplﬁgt : LQZ(U)_ —
continuous time systems as well. L3 (U). Denote continuous time as the discrete time index

The requirement fostrictly-output passivés a relatively easy 2% the sammple and hold time &, the continum:;s input
requirement to obtain for @assiveplant with mapG and asu(?) € L3 (U), the continuous output ag(t) € Ly (U),

input v and outputy. This is accomplished by closing thethe transformed discrete input agi) € [5}(U), and the

loop relative to a reference vectowith a real positive definite r@nsformed discrete output agi) < I5}(U). The inner-
feedback gain matri®’ > 0 such thatu = r — Ky. product equivalent sample and holtPESH) is implemented

Theorem 3:Given apassivesystem with inputu, output as follows:

G(u) =y, areal positive definite matrik > 0, and reference . z(t) = fg y(7)dr
vectorr. If the inputu = r — Ky, then the mapping; : I y(i) = z((¢ + 1)Ts) — x(iTy)
r — y is strictly-output passivevhich impliesi3*-stability. M. w(t) = u(?),Vt € [iTs, (i + 1)T)

Remark 6:Theorem 2 implies that the output energy of As a result
strictly-output passivesystem will be bounded by a constant
times the supplied input energy. IAT| strictly-output passive (@), u(@))n = (y(t),u(t)) N7, , YN > 1 (29)
system can be considered with= 0, therefore the output
y will stay aty = 0 if w = 0 for all i. Practically speaking holds.
the outputy(i) should return td) whenw(z) returns to0 with Remark 8:Fig. 4 shows an implementation of theESH
a strictly-output passiveystem asV — oo. As we shall see for a single-input and single-outpuBkSQ LTI systemG(s)
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holds due to the wave transform. Moving left to right towards
the strictly-output passiveligital controller G,.(foc) = €oc
we first note that

{fopds €oc) v = %(Il(uoc)zvl\g —(woc)nl3)  (32)

holds due to the wave transform. Theave variables
uoc(?), vop (i) are related to the corresponding wave variables
Uop (1), Voc(7) and by the discrete time varying delgy@), c(7)
such that

Fig. 5. [3*-stabledigital control network for cooperative scheduler

Uoc (i) = top(i — p(i)) (33)
Vop (1) = voc (i — ¢(i)) (34)

(33) and (34) hold. Finally the positive definite matik. is
used to make thpassivedigital controllerG.(f.(i)) = eoc(i)

when the output is scaled b%/ it is referred to as théPESH
Transform [35]. The correspondingassivezero-order-hold

equivalent is strictly-output passiveTypically, r,. can be considered the
G (2 - 1)22 G(s) 30 set-point in whichf,,q(i) ~ —r..(i) at steady state, while
a(2) = 2 s2 [ (30) Top(1) Can be thought as a discrete disturbance. Which leads

us to the following theorem.

Theorem 4:Using the IPESH given in Definition 5, the ~ Theorem 5:The system depicted in Fig. 5 i§'-stableif
following relationships can be stated between the contisuo e > (e 35
one-port plant,G,.;, and the discrete transformed one-port ops Cdoct 2 (€ocs fopal (35)
plant, G4 : 15" (U) — 153 (U): holds for all vV > 1.

I. If G,, is passivethenG, is passive Theorem 6:The system depicted in Fig. 5 without the

Il If G, is strictly-input passivethen Gy is strictly-input IPESHin which ¢ and¢ denote continuous time i55*-stable

passive if

lll. If G is strictly-output passivéhenG, is strictly-output (fop: €doc)r 2 {€ocs fopa)r (36)
passive holds for allT > 0.
Proof: See Appendix B-B. ] Proof: The proof is completely analogous to the proof

Remark 9:This is a general result, in which Theorem 4given for Theorem 5 in Appendix B-D, the differences being
| includes the special case where the input is a force attht theIPESHis no longer involved and the discrete time
the output is a velocity [12, Definition 2] and it includeglelays are replaced with continuous time delays. u
the special case for interconnectifH systems [11], [36, In order for (35) to hold, the communication channel/ data-
Theorem 1]. Theorem 4-lIl corrects [14, Theorem 3-11[].  buffer needs to remaipassive The following lemmas state
Remark 10:Note that the storage functiop for the under what time delays and data dropouts these conditions
discrete-time mapping, is simply a discrete-time sampledhold.
version related to the continuous-time mappiig. Therefore, ~Lemma 2: [36, Proposition 1] If the discrete time varying
if 3 > 0 for the continuous time syster@¥,,, then3 > 0 delays are fixedh(i) = p,c(i) = c and/or data packets are
for the discrete time syster6';. Therefore, whenG,, is a dropped then (35) holds.
dissipative passiveystem, then as long as there still exists a [36, Proposition 2] appears to be too broad in stating that
discrete time state realization as governed by (21) then allthe communication channel igassivein spite of variable
the above results apply equally for a discrete tidissipative time delays when only the transmission of one data packet
passivesystem¥. In particular, forLTI systems this always Per sample period occurs. For instance, a simple counter
will be the case. example is to assume(i) = 4, then (99) will not hold
if NH(UOP)lH% > (”(UOP)N”% + H(UOC)NH%) Clearly other
IV. MAIN RESULTS variations can be given such thafi) eventually becomes
_ ) fixed and never changes after sending digplicate samples
Fig. 5 depicts our proposed control scheme that guarantegs siill (35) will not hold. Therefore, we state the followi

[3* stability under variable delays in the feedback and contr@dyymas

channels. Depicted is a continuopassiveplant G, (e,(t)) = Lemma 3:The discrete time varying delayg), c(i) can

f(t) which is actuated by a zero-order hold and samplegry arbitrarily as long as (99) holds. Thus, the main assump

by anIPES Thus (), is transformed into a discrete passivgjgn, (35) will hold if either:

%ani;%dgégp EQ )C;a{gpél) aii?;;itﬁozg%itdszg'st:@”:::t'x 1) Duplicate transmissions are dropped at the receiveis. Th
P , . . " ; can be accomplished by transmitting the tuple,(7)),

.G".p(e"p(z)) N fo”(.l) outlined _by the dashed Ilng. NeQOP if + € { the set of received indexgsthen setu,.(i) = 0.

is interconnected in the following feedback configuratianls 2) we drop received data so that (99) holds. This requires us

that 1 to track the current energy storage in the communication

(fops €doc) N = Q(H(UOP)NHg - ”(UO;D)N”g) (31) channel.



Remark 11:Examples of similar energy-storage audits ashereCy, = Co(®, — I), andDp, = C,T,.
stated in Lemma 3-2 are given in [37, Section IV] which does  Proof: From Definition 5 it is a simple exercise to
not use wave-variables, and in [8] which treats the contisuocompute thepassiveoutputy (k) = p(k+1) —p(k) as follows
time case.
x(k+1) = ®ox(k) + Tou(k)
A. PASSIVE DISCRETE LTI SYSTEM SYNTHESIS y(k) = Co(®o — Dz (k) + Colou(k)  (44)

In [38], using dissipative theory and a longer proof thahenceCp, = Co(®, — I), andD,, = C,T,. ]
we will provide, it was shown how to synthesize a discretgsing Proposition 1 and Theorem 3 the following corollary
passive plant from a linear time invariantT]) plant. The can be shown:
advantage of the observer described in [38] is that it doesCorollary 1: Given a positive definite matriK, > 0 and
not require a measurement of the integrated output of thiscretepassivesystem described by (43), the system
passiveplant. However, if one is concerned with controlling an
integrated output such as position, one will probably héne t o(k +1) = Psp(k) + Lspu(k)
measurement available as well as the corresponpassgive y(k) = Cspx(k) + Dgpu(k) (45)
output such as velocity. We will also show how an observeig, trictliv-outout passiveHere
based on the integrated output measurement can still be udagrety-output p '

Such an observer maintains passivity and eliminates theé nee b, = &, - T Ki(I+D,Ky) 'Cp
to dir_ectly measure the actuzpiassiv_eoutput su_ch_ as the Tap = To(I — Ky (I+ DpKy)~'Dy)
velocity. The proof for the observer will follow a similar gof 1
by [39] CSp - (I + Dpr) Cp
A passivecontinuous timeLTI system [40],H (s), which Dyp = (I+DpKx) 'Dp (46)

has a corresponding minimal state space representatien gi
by (37) and denoted by the matrices
{A e R*** B € R**P C € RP*™ D € RP*P}

With our discretestrictly-output passiveystem we can scale
the gain so that its steady state gain matchesttiely-output
passivecontinuous systems steady state gain.

z(t) = Ax(t) + Bu(t) Corollary 2: Given a diagonal matri¥s > 0 and discrete
y(t) = Ca(t) + Du(t) (37) strictly-output passiveystem described by (45), the following

_ ) ) _ ) _ ) system isstrictly-output passive
is cascaded in series with a diagonal matrix of integrators,

Hj(s), described by{A; = 0,B; = I, C; = I, Dy = 0}. The z(k+1) = ®spa(k) + Tspu(k)
combined systemH,(s) = H(s)H(s), is described by y(k) = KsCspz(k) + KsDgpu(k) 47)
{As,B,,Co}. Where ] ] )
A o in which each diagonal element
n X(n
Ao= g of erermxem 8y = [ i € (L ph i i) andu(i) 0
B N otherwise
B, — {D] c RO P xp (39) (48)
The vectorsy./yq correspond to the respective steady state
Co=[0 I] € RPX("FP) (40) continuous/discrete output of strictly-output passiveplant
iven a unit step input. These vectors can be computed as

Applying a zero-order-hold and an ideal sampler, the syst
is described by [41]

x(k+1) = ®ox(k) + Tou(k)

lows:

Ye = (_CcAc_ch + Dc)l
ya = Hsp(z =1)1, Hsp(2) = Cep(2I — @Sp)fll"sp +Dgp

in which
where
d, = AT
‘. Gy = I+ DK,

T, = / efednB, (42) C.=G, 'C

_ 0 D, =G, 'D
Proposition 1: Applying a zero-order-hold input tpassive A.=A -BK,C,

continuous timeL Tl system,H (s), and sampling the output B. = B(I - K«D.) (50)

with the inner-product equivalent sampler at a sample Tate
results in a discretpassive LTIsystem,G,(z) with discrete Next, the following corollary provides a method to compute
state equations Uop(k), fop(k) Qiven rqp,, vop, b. We can also synthesize
the digital controller from a continuous model using tR&ES
2(k + 1) = ®ox(k) + Lou(k) with ZOH as well, so an additional corollary will show how
y(k) = Cpx(k) + Dpu(k) (43) to computevy(k), eoc(k) given e (k), roc (k).
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Corollary 3: The following state equation describes the - + P(K)
relationship between the inputs,,v,, and scattering gain pk) .
b to the outputsu,,(k), fop(k).

(k4 1) = ®egz(k) + Top(V2000p (k) + 7op(k))

fop(k) = Cet(k) + Dot (V2bvy (k) + rop(k)) ' ——

Uop(k) = \/%fop(k) — Vop(k) (51)

Here [
G =1+0bK:Dgp » K.D,|

Cer = G 'K Csp
Der = G 'KDgp
Por = Pgp — b5 Cor
Fef = Tp(I — bDer) (52) B. Passive Observers

Corollary 4: The following state equation describes the e now propose the following state observer as depicted
relationship between the inpuis., u.. and scattering gain IN Fig. 6 which is based on the sampled integrated output

Fig. 6. Passive Observer Structure.

b to the outputSee(k), €oc (k). of the strictly-input passiveplant with finite /3*-gain and the
5 corresponding output estimagék):
1) = B8] Tty ) + 1) #(J+1) = Boi(k) + Tou(k) — Ko(p(k) — p(F))
() = Creelh) + Droy 2ualh) + 7o) ey
€oc = Lfel fe buoc Toc ?](k) = Kscpj?(k) —+ KSDpu(k) (56)
Voe(k) = e (k) — \/geoc(/{) (53) This observer is similar to the observer proposed in [39gpkc

that it is based on the sampled integrated output. Definiag th

Where ) error in the state estimate agk) 2 #(k) — (k) and the
Gi=I+ EKSDSp augmented observer state vectorzgs(k) 2 [z(k),e(k)] the
_ system dynamics are
Cfe = c'}1 1I<s(jsp y y
Dt = G 'K Dqp Top(k + 1) = ®obzop(k) + Tobu(k)
1 (k) = KsCobZop(k) + KsDpu(k 57
@1 = @y — A TupCre i(k) bZob(k) + KsDpu(k) — (57)
1 where
Iee =Tsp(I— EDfe) (54) o ®, 0
In order to prove that a state observer can be usedtrialy- 710 @ —K.Co
input passivananner, we require the following lemma. T,
Lemma 4: [42] The discreteL Tl system (43) isstrictly- Lob = {0]
input passiveand hasfinite [5*-gain (strictly-positive real
p p 2 g ( y-p Cob — [Cp Cp] (58)

(SPR) if and only if there exists a symmetric positive definite
matrix P that satisfies the followinggMI:
® PH _P T TP _ K.C )T Proposition 2: If the sampledLTI system is strongly pos-
r Ti:,q, OK C (KsD ° T T T < Ojtive real and K. is chosen such that the eigenvalues of
o o S - S + Dp Ks - I‘o PFO) 6. . . . .
P P (55) ®o—KcC, are inside the unit circle the observer described
by (56) is bothSPRand strictly-output passive

Remark 12:Therefore by Theorem 4-1I any continuous  Proof: First by choosing the eigenvalues to be inside the
strictly-input passivavith finite 13*-gain LTI (strongly positive Unit circle there exist two matriceQ; > 0 andP, > 0 such
real [32, Definition 5.18]) system which is sampled and acttpat the following Lyapunov inequality is satisfied
ated by anPESHuwill satisfy (55). Note, that [42] has omitted B T
the key assumption that the system must also haviee = Q2= (B0~ KeCo) Po(Po ~KeCo) <0 (59)
I5*-gain. The combined conditions aétrictly-input passive |n order to satisfy the requirements of Lemma 4 we consider
andfinite /3"-gain conditions require the discretdll systems the following symmetric positive definite matrix
corresponding z-transform to be of relative degdesnd have
no zeros on the unit circle. P,, = {P 0

Remark 13:We also addeds in order to show that any 0 uP,
positive diagonal matrix can be used to scale the oupkf  and show that there exists;a> 0 that satisfies (64). Note
as is done with our observer described by (56). the following inequalities hold from our discre&PRsystem

] >0 (60)



which results from a continuous strongly positive real sgst minimal state space representation described by (37) and
denoted as
3 T _
Q1 =%, P®, - P <T0 i . {A € R"*n B € R™P C € RP*™ D € RP*P}. The dis-
—Q3 = —(KsDp + D, ' K' —Top Poplon) crete counterpart
= (KD, +D,'K," - T, PT, 61
(KsDyp + Dy, )<0  (61) Gp(2) = Cp(21 — B,) "' + Dy, (69)
To simplify the expression we define . . o ) ]
with a corresponding state-space realization given by {&3)

C1 £ L, P&, — K,Cp (62) i) passivewhen H (s) is passive

Therefore the proposeBPRsystem described by (57) has to i) strictly-input passivavhen H(s) is strictly-input passive
satisfy and

[ Q1 0 —C] ] iii) strictly-output passivevhen H (s) is strictly-output pas-

0 pQz —Cp'K | >0 (63) sive

|-C1 —KsCp Qs | DenoteY (z) andU(z) as the corresponding z-transforms of
Using a similarity transformation, (63) is equivalent to g(k) andu(k). The corresponding observer system response

_ : - .

—chl (531 —K(:cp >0 (64) Hor()= Zﬁi = Ko [Cob (s~ ®on)"'Top + Dp] (70)

L 0 _CpTKsT MQ2 _

can be shown to have the final form
The following upper block matrixQ, satisfies (55) due to

Proposition 1, Theorem 4-(l1,1Il), and Lemma 4. Ho(z) = KsGp(2z), Ks > 0. (71)
O — [ Q1 _CI] >0 (65) Therefore the observdi,,(z) is:
-C1 Qs

_ _ N i) passivewhen H (s) is passive
SinceO > 0, andQ2 > 0, then from using Proposition 8.2.3- i) strictly-input passivavhen H s) is strictly-input passive
v in [43] which is based on the Schur Complement Theory gnd

we need to show that iii) strictly-output passivavhen H(s) is strictly-output pas-
0 >0, and (66) sive

- ) 0 Proof:
Qs — 10 —C, Ky |O™ [ ] >0
2 [ p } —Kst

1Qz — Cp 'K ,TO™IK,Cp > 0 (67)

z— P,
Thus denoting\,,, (-)/ A (+) @s the minimum/maximum eigen- [CeCo] { 0 2z — (Po — KeCo) | 0 |
values for a matrix, noting that the similarity transform of (2 — o) 0 T, ]
Q2 — P2AP,", and definingl £ C, 'K, O 'K, Cy, sy 1O7C] { 0 (2 — (®o — Keco))‘l] 0
needs to satisfy ) 1 [T
T . =C,p [(z - ®,) (z = (Po — KcCo)) ] 0
> (P2 (M +M")P3) (68) B LY
22 (Q2) K.~ Hy(2) = Gy(2)
Thereforeu exists and satisfies (64). ] -

, Remark 14:'_I'he proof given in [39] which showsu_ffl- When the observer for a continuosisictly-output passive LTI
ciencyfor passyesystems |mpI|(?|f[Iy assumes Fhat the _d'scretgystem is alsastrictly-output passiveve can set the feedback
sample_d plant 1S strongly positive real_, Wh_'Ch applle_s onl@!ainKp = 0in Fig. 5. Note thatk,, can convert a continuous
to contml_Jous time systems wh|ch aswrictly-input passive passivesignal into a discretstrictly-output passivsignal with
asymptotically stable, and of relative degr(eeFurthermore_, an observer. Similar to Corollary 3, we present Corollary 5
the resuits f_rom [3_9] can not_be applied to our deswe&s it applies to using atrictly-output passivebserver of a
observer design which uses the integrated output of a gvongtrictly-output passiver strongly positive real plant.
positive real plant. We have found in practice, howeverhsuc Corollary 5: The observer described by (56) for LTl
a propo_sed obse_rver system Wi”_ typically prese_paessivity system which is eitherstrictly-output passiveor strongly
for passiveandstrictly-output passive LTplants which can be positive real isstrictly-output passivand the following state

;/erifitid by finding al; which S?I‘;[iSﬁe.st[??A" Lflagmmg C'4't2]'t|nequations describe the relationship between the inpyts,,
act the proposed observer will maintain eittsérictly-output - 4 scattering gaih to the outputsio, (k), fop (k).

passive strictly-input passiveor passivemapping when the
correspondingnownplant is respectively eithestrictly-output 3 (i 4 1) = g0 2(k) + Teo (V2bop (k) + Top(k)) + Kep(k)
passive strictly-input passiveor passive . )

Theorem 7:Assume an observer described by (56) which fop(k) = Cetoit (k) + Dego(V2bop (k) + rop(k))
has precise knowledge of BTl plant H(s) which has a (k) = V20 f,p,(k) — vep (k) (72)
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where

G =1+ VKD,
Ceto = G'KC,,
Defo = G KDy,
Boso = By — KeCo — b0 Coto

Fefo = Fo (I - bDefo) (73)

Remark 15:When b = 0, the expression in Corollary 5
satisfies that of a standard observer which does noivase
variables

Corollary 6: The observer described by (56) for Larl
system which is eitherstrictly-output passiveor strongly
positive real isstrictly-output passivand the following state
equations describe the relationship between the inyts,.
and scattering gaih to the outputsi,(k), é,.(k).

ik +1) = Preoit(k) + Ffeo(\/%uoc(k) +7oc(k)) + Kep(k)

éoc(k) - Cfeoj(k) + Dfeo(\/%uoc(k) + Toc(k))

. 2,
Doc(k) = oe(k) — \/;eoc(k) (74)
where
1
Gl - I + EKSDP
Cfeo = Gl_leCp
Dfeo = GlileDp
1
éfeo = (I>o - KeCo - Erocfeo
1
Ffeo - Fo (I - _Dfeo) (75)

b

V. SIMULATION
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Fig. 8. Nyquist plot for the continuous plant (solid line)dathe synthesized
discrete counterpart (solid dots) with observer.

We shall control a motor with an ideal current source, which
will allow us to neglect the effects of the motor inductancelsing loop-shaping techniques we choase é—z and choose
and resistance for simplicity. The fact that the currentrseu § — ﬁv{nﬂT, This will provide a reasonable crossover fre-
is non-ideal, leads to a non-passive relationship betwken tjuency at roughly a tenth the Nyquist frequency and maintain
desired motor current and motor velocity [23]. There aresvay 90 degree phase margin. We choose to use the same motor
to address this problem usingassivecontrol techniques by parameter values given in [45] in whid,, = 49.13mVrad
controlling the motors velocity indirectly with a switchedlIt-  sec,.J,, = 7.95 x 10~3kgm?, and B,,, = 41uNmsec. With
age source and a minimum phase current feedback technique: .05 seconds, we use Corollary 4 to synthesizstréactly-
[44], and more recently incorporating the motors back \g#ita output passiveontroller from our continuous model (77), and
measurement which provides an exact tracking error dyremgorollary 5 to implement thetrictly-output passivebserver
passiveoutput feedback controller [45]. of our strictly-output passivelant. We also use Corollary 2 in
The motor is characterized by its torque constd, > 0, order to compute the appropriate gains for both the coetroll
back-emf constanfs., rotor inertia,J,, > 0, and damping K, = 1 and thestrictly-output passiv@lant &;, = 20. Note
coefficientB,,, > 0. The dynamics are described by that by arbitrarily choosing(,, = 4 = 20 would have led to
B,, K,, a incorrectly scaled system in which the crossover frequenc
w=—owd =i (76) would essentially equal the Nyquist frequency (only beeaus
_ _ . m o a zero exists at-1 in the complex z-plane). Fig. 7, Fig. 8, and
which are in astrictly-output passivéorm. We choose to use Fig. g indicates that our baseline system performs as espect
the passive“proportional-derivative” controller described by \we chosek, = [16.193271,1.799768]T for our observer in
(7) and definer = £ in order to factor out<’ and yield which the poles are equal to a tenth of the poles of the discret

K

s+ 1
s

KPD(S) = K

(77)

passiveplant synthesized by Proposition 1, this by definition
forces all the poles inside the unit circle. Since the plant i
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and strictly-output passiv@bserver as depicted in Fig. 5 with delays.

VI. CONCLUSIONS

We have presented a theory to design digital control net-
works which maintainy* — stability in spite of time varying
delays caused by cooperative schedulers. We also provided
the necessary conditions for Lyapunov stability and asymp-
totic stability as we connected the relationships betwéen t
more general input-output definitions fgrassivity and the
more specific definitions fopassive dissipativeystems (see
Remark 2). It is important to note that the delays can be eithe
random or deterministic and require no tight bound on delay
when discussingy® — stability (see Theorem 5, Theorem 6,
Lemma 2, and Lemma 3). By usinvgave variablesandpas-
sive control theory we can effectivelgeparatethe controller
design from the communication design. The control engineer

Fig. 10. Baseline step response for motor veitfictly-output passiveligital can effectively shape the system response using a low sagnpli

controller andstrictly-output passivebserver.

data rate confident that stability will be maintained whie t
communication engineer can focus on providing a suitable
channel capacity to maintain a reasonadbleragedelay. We

strictly-output passiveve chosek(,, = 0. For the controller we presented a fairly complete and needgdstability analysis
choseK. = 0.001 in order to make istrictly-output passive (which is lacking from much of the journal literature, hoveev
Fig. 10 shows the step response to a desired position set-peie did find a nice discussion in [34, Appendix C]) in particula
fa(k) which generates an approximate velocity reference f@heorem 2 shows thattrictly-output passivés sufficient for

Toc(2)

of H,(s), in whichwy,,; = 27 and{ = .9.

2

wtraj s

H,y(z)04(z). H,(z) is a zero-order hold equivalentstability while Theorem 3 (for the discrete-time case) appd

to be lacking from the open literature. The remaining new
results (not available in the open literature) which led to a
[5*-stablecontroller design are as follows:

Ht(S) =

(78)

52 + 20Wiraj + Winaj 1) Theorem 4-1 is an improvement which capturespzls-
sive systems (not jusPCH) systems.

Note, that it is important to use a second order filter in order2) Theorem 4-11, and Theorem 4-11l are completely original.
to achieve near perfect tracking, a first order filter resulte 3) Theorem 5 is a new and general theorem to interconnect
in significant steady state position errors for relativelgws continuous nonlinegpassiveplants which should lead to
trajectories. Finally in Fig. 11 we see that the proposedrobn more elaborate networks interconnected in the discrete
network maintains similar performance as the baselinesyst time domain. Theorem 6 is also new. Neither Theorem 5
Note that by increasing = 5 significantly reduced the over- nor Theorem 6 require knowledge of the energy storage
shoot caused by a half second delay (triangles 1/squares function in order to showl§* / L3 -stability of the network.

b = 5). Also note that even a two second delay (large circlesA) Proposition 1 showed how to synthesize a disqpatesive
b = 5) results in only a delayed response nearly identical to LTI system from a continuous one.
the baseline system. 5) Corollary 1 and Corollary 2 showed how to respectively
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6)

7

make the discretpassiveplantstrictly-output passivand
scale the output so that it will match the steady state
output for its continuous counterpart. 8
Corollary 3 and Corollary 4 showed how to implement
the strictly-output passiveetwork depicted in Fig. 5.
Proposition 2 showed how to implement a discretefg
strictly-output passive LTdbserver for a strongly positive
real continuoud Tl system (which is fairly restrictive in

its applicability).
8)
passiveobserver which preserves the specifiassivity

[10]

Theorem 7, however shows how to implement a discrete

properties of the@assiveplant it is tracking. Thus showing [11]
that an observer for either a strongly positive real plant

or strictly-output passiveplant will be strictly-output

passive [34, Lemma C.4.2] provides a necessary and
sufficient test to determine when the observer describpd]

by (56) will maintainpassivitywhen an imperfect model

of the plant is present. It is of interest to determine
what type of plant uncertainties can be tolerated whers]

implementing such an observer.
9)

Corollary 5 and Corollary 6 showed how to implemerﬁm]

a strictly-output passiveobserver when attached to a

scattering junction.

Note that Theorem 3 now allows us to directly desigw-
sensitivity strictly-output passiveontrollers using thevave-

15]
[16]

digital filters described in [13]. Recently we have extended th'[§7]

networking theory as it applies to multiple plants conedll

by either a single or possibly multiple controllers. This 68
achieved using a “power junction” which combines multiplﬁg]

plant and controller inputs in @assivemanner [46, Sec-
tion 2.5]. Furthermore, memoryless input nonlinearitiasts

as actuator saturation and those associated with Hamrmerste
systems can be effectively dealt with under this frameworko]
[46, Section 3.2]. This is important since much work focused
on showing how to achieve stochastic stability of an unetat&l]
plant may bempossibleo achieve when actuator saturation is

present [46, Section 3.1]. Therefore, these fundamendaltse
provide a solid basis for future controls research in whi

distributed wireless control systems can be designed.
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Then we can obtain the following inequality

Dame, August 2007. (y.r)n = A (E) lynll3 — B (84)
in which A\,,,(K) > 0 is the minimum eigenvalue fo¥.

APPENDIX A Hence, (84) has the form of (19) which shoutsictly-output
OBSERVERSIMULATION EQUATIONS passiveand impliesl3*-stability. ]

. It is important to note that for very small maximum eigen-
In order fo S'!””“'ate. an observer for a cont NYalues, the system is essentially the nomipassivesystem
uous LTI plant in which t_he actual state SPACEe started with. This is important, for we can design more

matrices for the actualpassive plant are denoted generalpassivedigital controllers and modify them with this

nxn nxp pXn PXPp A . .
{Aa€R ’.Ba €R ; Ca €R J D, €R . ) simple transform to make thesirictly-output passive
The actual discrete equivalent matrices fopassivesystem

are computed appropriately as described by (38), (39), (40)
(41), and (42), and denoted a8Poq,Toa, Coa}. If the B. Proof for Theorem 4
observer is implemented on the plant side fdc™ strongly Proof:

positive real orstrictly-output passiveplant as depicted in

- ; I. Since the continuoupassivesystemG,, satisfies
Fig. 5 and described by Corollary 5, then the system can be

described by (y(t),u(t))r > —=6,¥7 >0 (85)
Tk+1)| Do KceCoal |Z(k) then by substituting (29) into (85) results in
I(k + 1) o _broacefo ‘I>0a I(k)

T (y(i),u(i))n > —B,¥YN > 1 (86)
+ [ ef°] (V2bvop (k) + rop(k))

Iefoa which satisfies (18).
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Il. Let 7 = NTs, then since the continuowgrictly-input
passivesystem(G,; satisfies

(y(t),u(t))r > dllu(t).[|5 — 8,¥r >0  (87)
and Definition 5-111 implies
[[u(t) ||2 = Ti[lu(i )N||2 (88)
substituting (88) and (29) into (87) results in
(y(@),u(@i))n > Tebllu(@)n |3 - B,YN =1 (89)

therefore, the transformed discrete systém satisfies
(20).

lll. with 7 = NTg, the continuousstrictly-output passive
systemG,,; satisfies

(y(@®),u®))r > €lly®)-]3 - B,¥7 >0

from Definition 5-1 and theSchwarz’'s Inequalitywe

(90)

relate ||y (i) n||3 to [|y(t).||3 as follows:
ly(i)nl3 = [Z Y3 (i ]
j=1 Li=0
n N-1 (i+1)Ts 2
=> (/ yj(t)df>
j=11 i=0 iTs
n [N—1 (i4+1)Ts
<} l ( / yf-u)dtﬂ
j=1 Li=0 \/Ts
<Tslly t)7-||§ (91)
rewriting (91) as
1 .
ly@)- 115 > = lly (@) wllz (92)
and substituting (92) into (90) results in
. . € .
(y(i), u(@))n > ?Hy(l)NHg -B,YN>1  (93)

therefore, the transformed discrete systéh satisfies
(29).
[ ]

C. Proof for Theorem 5
Proof: First, by theorem 4-1,G, is transformed to a

ISIS TECHNICAL REPORT ISIS-2007-002, “MARCH" 2007 (REVI$E1-2010)

so that we can then substitute (94) and (95) to yield

<f0pa 7’0p>N + (€ocs Toc) N 2> E(”(fop)Nng + H(SOC)NH%) - p
(97)
in which ¢ = min(ep, €0c) aNd 8 = Bop + Boc. Thus (97)
satisfies (19) in which the input is the row vector(gf,, 7..].
and the output is the row vectdf,,, e..] and completes the
proof. ]

D. Proof for Lemma 2
Before we begin the proof, we denote the partial sum from
M to N of an extended norm as follows
N-1
> (z,)
=M
Proof: In order to satisfy (35), (31) minus (32) must be
greater than zero, or

A
HCC(M.,N)HS = <$a$>(M,N) = (98)

(1 (uop) w113 = 1 (wop) v I3) = (Il (woc) ¥ 115 = | (voc) [13) = 0
(I (uop) w113 = I (woe) W 113) + (I (o) ¥ 13 = ll(vop) n[13) = 0
(I (op) w113 = [l (uop (i — p(2)) v [13)+
(Ivoe) w13 = ll(vae(i — e(i))w |3) =
(99)

holds. Clearly (99) holds when the delays are fixed, as (99)
can be written to show

(1top) (N—py, ) 13 + [ (Woe) (N—py, ) |13) =0 (100)

the inequality always holds for all < p,c < N. Note if p and

c equal zero, then inequality in (100) becomes an equality. If
all the data packets were dropped théfy,.)~||3) = 0 and
|(vop)n|I3) = 0, such that (35) holds and all the energy is
dissipated. If only part of the data packets are dropped, the
effective inequality described by (99) serves as a lowemndou

> 0; hence dropped data packets do not violate (35). ®

discretepassiveplant. Next, by theorem 3 both the discrete

plant and controller are transformed into s#rictly-output
passivesystems. Thestrictly-output passivelant satisfies

(fop,€op)N = EOPH(fop)NH% — Bop (94)
while the strictly-output passiveontroller satisfies (95).

<eoca foc)N Z 6ocH (eoc)NH% - ﬁoc (95)
Substituting.eqoc = Top — €op AN fopd = foc — Toc iNtO (35)
yields

<fopa Top — eop>N > <€om foc - Toc>N

which can be rewritten as

Z <fopaeop>N + <eocafoc>N (96)

<fop7 T0p>N + <eOC7 Toc)N



