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Technical Report: Results on Continuous and

Discrete Model-Based Networked Control

Systems with Intermittent Feedback, Part I:

Stability

Abstract

The aim of this technical report is to provide a thorough com-

pendium of our results in stability of model-based networked control

systems with intermittent feedback. The first set of sections deal with

continuous time results, while the latter sections focus on discrete

time.

We apply the concept of Intermittent Feedback to a class of net-

worked control systems known as Model-Based Networked Control

Systems (MB-NCS). Model-Based Networked Control Systems use an

explicit model of the plant in order to reduce the network traffic while

attempting to prevent excessive performance degradation, while Inter-

mittent Feedback consists of the loop remaining closed for some fixed

interval, then open for another interval. We begin by introducing the

basic architecture for model-based control with intermittent feedback,

then address the case with output feedback (through the use of a

state observer), providing a full description of the state response of

the system, as well as a necessary and sufficient condition for stability

in each case. Examples are provided to complement the theoretical

results. Extensions of our results to cases with nonlinear plants are

also presented. Next, we investigate the situation where the update
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times τ and h are time-varying, first addressing the case where they

have upper and lower bounds, then moving on to the case where their

distributions are i.i.d or driven by a Markov chain.

We then shift our focus to the stability of discrete-time plants in

Model-Based Networked Control Systems with Intermittent Feedback.

We provide a full description of the output, as well as a necessary and

sufficient condition for stability of the system. We also extend our

results to the case where the full state of the plant is not known, so

that we resort to a state observer. Finally, as for the continuous time

case, we investigate the situation where the update times are time-

varying, first addressing the case where they have upper and lower

bounds, then moving on to the case where their distributions are i.i.d

or driven by a Markov chain.

1 Introduction

A networked control system (NCS) is a control system in which a data net-

work is used as feedback media. NCS is an important area in control, see

for example recent surveys such as [2] and [13], as well as [24], [27], and [28].

The use of networks as media to interconnect the different components of an

industrial system is rapidly increasing. However, the use of NCSs poses some

challenges. One of the main problems to be addressed when considering an

NCS is the size of the bandwidth required by each subsystem. A partic-
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ular class of NCSs is model-based networked control systems (MB-NCS),

introduced by Montestruque and Antsaklis [19]. The MB-NCS architecture

makes explicit use of the knowledge of the plant dynamics to enhance the

performance of the system, and it is an efficient way to address the issue

of reducing packet rate. Here we extend this work by taking advantage of

the novel concept of intermittent feedback. In the previous work done in

MB-NCS, the updates given to the model of the plant state were performed

in instantaneous fashion, but with intermittent feedback the system remains

in closed loop control mode for more extended intervals. This notion makes

sense as it is a good representation of what occurs in both nature and in-

dustry. For example, when driving a car, when approaching a curve or hilly

terrain, we pay attention to the road for a longer time, which is equivalent

to staying in closed-loop mode, and we only reduce our attention -switch to

open loop control- when the road is once again straight. It is worth noting

that while the application of intermittent feedback to MB-NCS, the concept

has been studied in different contexts, in fields such as chemical engineering

[15], psychology and behavior [25],[26], and robotics [16], [20]. While inter-

mittent control is a very intuitive notion, its combination with the MB-NCS

architecture allows for obtaining important results and opening new paths in

controlling NCSs effectively.

In our earlier work [6,7,8], we have provided results for the cases where

the plant is continuous-time. These results are provided with full proofs in

this technical report as well.
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While the continuous time results serve well as an initial approach, net-

worked control systems require us to investigate what happens in the case of

discrete-time plants as well [9]. The results presented in the latter sections

are a natural extension of the corresponding ones in continuous time but

have the advantage of more closely capturing what takes place in practice,

since in digital communications, packets of information are transmitted at

discrete intervals. It is important to note that, in the discrete time case, the

parameters τ and h, which correspond to how often the loop is closed and for

how long the loop is closed each time, are different from the sampling time

of the digital plant, since they are tailored after the demands of use of the

network, not by the internal clock of the plant. Note also that even when

the loop is closed, information is being sent at discrete intervals, typically at

a higher rate determined by the internal clock of the plant.

The rest of the chapter is organized as follows: in Section 2, we introduce

our approach for model-based control with intermittent feedback and study

it in detail. We focus first on the continuous time cases. We provide a full

description of the output, as well as a necessary and sufficient condition for

stability of the system. We also provide examples in order to illustrate the

behavior indicated by the theory. This section deals with the case where

the intervals at which the loop is closed and the intervals for which the loop

remains closed are both fixed. In Section 3 we extend our results to the

case where full information is of the state is not available, and thus we most

resort to output feedback, using a state observer. Once again, we provide a
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full description of the output, as well as necessary and sufficient conditions

for stability. Cases where delays are present in the network are studied in

Section 4. We study the case where the plant is nonlinear in Section 5. The

case for time-varying updates is presented in Section 6.

We then shift our attention to the cases with discrete-time plants. In

Section 7, we describe the problem formulation in detail. We derive the

complete description of the output of such a system. We present a necessary

and sufficient condition for the stability of the system as well. In Section

9, we extend our results for the case where full information of the state of

the plant is not available, so that we resort to a state observer. We once

again provide the full description of the response of the system, as well as a

necessary and sufficient condition for stability. In Section 10, we investigate

the situations where τ and h are time-varying. Finally, in Section 11, we

provide conclusions and propose future work.

2 Basic setup for model-based control with

intermittent feedback

Let us start by introducing model-based control with intermittent feedback,

in its simplest setup.
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2.1 Problem Formulation

The basic setup for MB-NCS with intermittent feedback is essentially the

same as that proposed in the literature for traditional MB-NCS; see references

[16-20] for more results on MB-NCS.

Consider the control of a continuous linear plant where the state sensor

is connected to a linear controller/actuator via a network. In this case, the

controller uses an explicit model of the plant that approximates the plant

dynamics and makes possible the stabilization of the plant even under slow

network conditions.

Figure 1: MB-NCS with intermittent feedback - basic architecture

The main idea here is to perform the feedback by updating the model’s

7

Tomas Estrada and P.J. Antsaklis, Results on Continuous and Discrete Model-Based Networked Control 
Systems with Intermittent Feedback, Part I: Stability, ISIS Technical Report, University of Notre Dame, 
ISIS-2008-001, August 2008.



Figure 2: Partition of the time interval into close and open loop intervals

state using the actual state of the plant that is provided by the sensor.

The rest of the time the control actions is based on a plant model that is

incorporated in the controller/actuator and is running open loop for a period

of h seconds.

As mentioned before, the main difference between model-based networked

control systems as have been studied previously, and the case with intermit-

tent feedback, which we are here discussing, is that in the literature, the loop

is closed instantaneously, and the rest of the time the system is running open

loop. Here, we part from the same basic idea, but the loop will remain closed

for intervals of time which are different from zero. Intuitively, we should be

able to achieve much better results the longer the loop is closed, as the level

of degradation of the information increases the longer the system is running

open loop, so intermittent feedback should yield better results than those for

traditional MB-NCS.

In dealing with intermittent feedback, we have two key time parameters:

how frequently we want to close the loop, which we shall denote by h, and

how long we wish the loop to remain closed, which we shall denote by τ .

Naturally, in the more general cases both h and τ can be time-varying. For
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the purposes of this section, however, we will deal only with the case where

both h and τ are fixed.

We consider then a system such that the loop is closed periodically, every

h seconds, and where each time the loop is closed, it remains so for a time of

τ seconds. The loop is closed at times tk, for k = 1, 2, .... Thus, there are two

very clear modes of operation: closed loop and open loop. The system will

be operating in closed loop mode for the intervals [tk, tk +τ) and in open loop

for the intervals [tk + τ, tk+1). When the loop is closed, the control decision is

based directly on the information of the state of the plant, but we will keep

track of the error nonetheless.

The plant is given by ẋ = Ax + Bu, the plant model by ˙̂x = Âx̂ + B̂u,

and the controller by u = Kx̂. The state error is defined as e = x − x̂

and represents the difference between plant state and the model state. The

modeling error matrices Ã = A− Â and B̃ = B − B̂ represent the plant and

the model. We also define the vector z = [xT eT ]T .

In the next subsection we will derive a complete description of the re-

sponse of the system.

2.2 State Response of the System

We will now proceed to derive the response to prove the above proposition in

a direct way. To this effect, let us separately investigate what happens when

the system is operating under closed and open loop conditions.
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During the open loop case, that is, when t ∈ [tk + τ, tk+1), we have that

u = Kx̂ (1)

so 


ẋ

̂̇x


 =




A BK

0 Â + B̂K







x(t)

x̂(t)


 (2)

with initial conditions x̂(tk + τ) = x (tk + τ).

Rewriting in terms of x and e, that is, of the vector z :

z(t) =




ẋ(t)

ė(t)


 =




A + BK −BK

Ã + B̃K Â− B̃K







x(t)

e(t)


 (3)

z(tk + τ) =




x(tk + τ)

e(tk + τ)


 =




x(tk + τ−)

0


 , ∀t ∈ [tk + τ, tk+1)

Thus, we have

ż = Λoz, where Λo =




A + BK −BK

Ã + B̃K Â− B̃K


 , ∀t ∈ [tk + τ, tk+1) (4)

.

The closed loop case is a simplified version of the case above, as the

difference resides in the fact that the error is always zero. Thus, for t ∈
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[tk, tk + τ), we have

ż = Λcz, where Λc =




A + BK −BK

0 0


 , t ∈ [tk, tk + τ) (5)

. This should be clear in that the error is always zero, while the state pro-

gresses in the same way as before.

From this, it should be quite clear that given an initial condition z(t =

0) = z0, then after a certain time t ∈ [0, τ), the solution of the trajectory of

the vector is given by

z(t) = eΛc(t)z0 , t ∈ [0, τ). (6)

In particular, at time τ, z(τ) = eΛc(τ)z0.

Once the loop is opened, the open loop behavior takes over, so that

z(t) = eΛo(t−τ)z(τ) = eΛo(t−τ)eΛc(τ)z0 , t ∈ [τ, t1). (7)

In particular, when the time comes to close the loop again, that is, after

time h, then z
(
t−1

)
= eΛo(h−τ)eΛc(τ)z0.

Notice, however, that at this instant when we close the loop again, we are

also resetting the error to zero, so that we must pre-multiply by




I 0

0 0




before we analyze the closed loop trajectory for the next cycle. Because we

wish to always start with an error that is set to zero, we should actually
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multiply by




I 0

0 0


 at the beginning.

So then, after k cycles, going through this analysis yields a solution.

z (tk) =







I 0

0 0


 eΛo(h−τ)eΛc(τ)




I 0

0 0







k

z0 = Σkz0 , (8)

where Σ =




I 0

0 0


 eΛo(h−τ)eΛc(τ)




I 0

0 0


 .

The final step is to consider the last (partial) cycle that the system goes

through, that is, the time t ∈ [tk, tk+1). If the system is in closed loop, that is,

t ∈ [tk, tk + τ), then the solution can be achieved merely by pre-multiplying

z (tk) by eΛc(t−tk). In the case of the system being in open loop, that is,

t ∈ [tk + τ, tk+1), then clearly we must pre-multiply by eΛo(t−(tk+τ))eΛc(τ).

The results can thus be summarized in the following proposition.

Proposition 1 The system described by (93) and (94) with initial conditions
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z (t0) =




x (t0)

0


 = z0 has the following response:

z (t) =





eΛc(t−tk)







I 0

0 0


 Σ




I 0

0 0







k

z0 , t ∈ [tk, tk + τ)

eΛo(t−(tk+τ))eΛc(τ)







I 0

0 0


 Σ




I 0

0 0







k

z0 , t ∈ [tk + τ, tk+1)

(9)

where Σ = eΛo(h−τ)eΛc(τ), Λo =




A + BK −BK

Ã + B̃K Â− B̃K


 , Λc =




A + BK −BK

0 0


 ,

and tk+1 − tk = h.

In the next subsection we will present a necessary and sufficient condition

for the stability of the system.

2.3 Stability condition

We now present a necessary and sufficient condition for the stability of the

model-based networked control system with intermittent feedback. We use

the following definition for global exponential stability. [1]

Definition 2 The equilibrium z = 0 of a system described by ż = f (t, z)

with initial condition z(t0) = z0 is exponentially stable at large (or globally)

if there exists α > 0 and for any β > 0, there exists k (β) > 0 such that the
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solution

‖φ (t, t0, z0)‖ ≤ k (β) ‖z0‖ e−α(t−t0), ∀t ≥ t0 (10)

whenever ‖z0‖ < β.

With this definition of stability, we state the following theorem character-

izing the necessary and sufficient conditions for the system described in the

previous section to have globally exponential stability around the solution

z = 0. The norm used here is the 2-norm, but any other consistent norm can

also be used.

Theorem 3 The system described above is globally exponentially stable around

the solution z =




x

e


 if and only if the eigenvalues of




I 0

0 0


 Σ




I 0

0 0




are strictly inside the unit circle, where Σ = eΛo(h−τ)eΛc(τ).

Proof. Sufficiency. Taking the norm of the solution described as in

Proposition #1:

‖z(t)‖ =

∥∥∥∥∥∥∥
eΛc(t−tk)







I 0

0 0


 eΛo(h−τ)eΛc(τ)




I 0

0 0







k

z0

∥∥∥∥∥∥∥
≤ (11)

∥∥∥∥∥∥∥







I 0

0 0


 eΛo(h−τ)eΛc(τ)




I 0

0 0







k∥∥∥∥∥∥∥
‖z0‖

Notice we are only doing this part for the case when t ∈ [tk, tk + τ), but

the process is exactly the same for the intervals where t ∈ (tk + τ, tk + 1).
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Analyzing the first term on the right hand side:

∥∥eΛc(t−tk)
∥∥ ≤ 1 + (t− tk) σ̄ (Λc) +

(t− tk)
2

2!
· · · = eσ̄(Λc)(t−tk) ≤ eσ̄(Λc)(τ) = K1

(12)

where σ̄ (Λc) is the largest singular value of Λc. In general this term can

always be bounded as the time difference t − tk is always smaller than τ.

That is, even when Λc has eigenvalues with positive real part,
∥∥eΛc(t−tk)

∥∥ can

only grow a certain amount. This growth is completely independent of k.

We now study the term

∥∥∥∥∥∥∥







I 0

0 0


 eΛo(h−τ)eΛc(τ)




I 0

0 0







k∥∥∥∥∥∥∥
. It is

clear that this term will be bounded if and only if the eigenvalues of




I 0

0 0


 eΛo(h−τ)eΛc(τ)




I 0

0 0




lie inside the unit circle:

∥∥∥∥∥∥∥







I 0

0 0


 eΛo(h−τ)eΛc(τ)




I 0

0 0







k∥∥∥∥∥∥∥
≤ K2e

−α1k (13)

with K2, α1 > 0.

Since k is a function of time we can bounded the right term of the previous

inequality in terms of t :

K2e
−α1k < K2e

−α1
t−1
h = K2e

α1
h e−

α1
h

t = K3e
−αt (14)

with K3,α > 0.
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So from (11), using (12) and (14) we conclude that:

‖z(t)‖ =

∥∥∥∥∥∥∥
eΛc(t−tk)







I 0

0 0


 eΛo(h−τ)eΛc(τ)




I 0

0 0







k

z0

∥∥∥∥∥∥∥
≤ K1K3e

−αt ‖z0‖ .

(15)

Necessity. We will now provide the necessity part of the theorem. We will

do this by contradiction. Assume the system is stable and that




I 0

0 0


 eΛo(h−τ)eΛc(τ)




I 0

0 0




has at least one eigenvalue outside the unit circle. Let us define Σ(h) =

eΛo(h−τ)eΛc(τ). Since the system is stable, a periodic sample of the response

should converge to zero with time. We will take the samples at times t−k+1,

that is, just before the loop is closed again. We will concentrate on a specific

term: the state of the plant x
(
t−k+1

)
, which is the first element of z

(
t−k+1

)
.

We will call x
(
t−k+1

)
, ξ (k) .

Now assume Σ(η) has the following form:

Σ(η) =




W (η) X (η)

Y (η) Z (η)


 .
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Then we can express the solution z (t) as:

eΛc(t−tk)







I 0

0 0


 Σ (h)




I 0

0 0







k

z0 (16)

=




W (t− tk) X(t− tk)

Y (t− tk) Z(t− tk)







(W (h))k 0

0 0


 z0

=




W (t− tk) (W (h))k 0

Y (t− tk) (W (h))k 0


 z0 .

Now, the values of the solution at times t−k+1, that is, just before the loop

is closed again, are

z
(
t−k+1

)
=




W (h) (W (h))k 0

Y (h) (W (h))k 0


 z0 =




(W (h))k+1 0

Y (h) (W (h))k 0


 z0 (17)

We also know that




I 0

0 0


 eΛo(h−τ)eΛc(τ)




I 0

0 0


 has at least eigen-

value outside the unit circle, which means that those unstable eigenvalues

must be in W (τ). This means that the first element of z
(
t−k+1

)
, which we

call ξ (k) , will in general grow with k. In other words we cannot ensure ξ (k)

will converge to zero for general initial condition x0.

∥∥x
(
t−k+1

)∥∥ = ‖ξ (k)‖ =
∥∥∥(W (h))k+1 x0

∥∥∥ →∞ as k →∞ , (18)
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which clearly means the system cannot be stable. Thus, we have a contra-

diction.

2.4 Examples

We ran simulations to verify the results suggested by the theory, which, in

itself, is highly intuitive. Naturally, one would think that by using inter-

mittent feedback as opposed to instantaneous closed loop control, there will

be many things that will be gained in controlling the system. Indeed, one

way to look at this, focusing in particular on the stability conditions derived

above, is the following. Consider a control system with a certain plant model,

then calculate the eigenvalues of the test matrix as h varies. This curve is

very useful in that the stability of the system is determined by the maximum

eigenvalue of its corresponding test matrix. So, by observing at which value

of h the curve takes a maximum eigenvalue of 1, we are actually determining

the range of h for stability.

The following plots are for A =[1 0;0 0] , B =[0;1], and model matrices

Â =[0.5 0; 0 0], B̂ =[0; 0.25]. Our choice of controller was K =[-1 -1.5].

Figure 3 plots the maximum eigenvalue for a traditional MB-NCS, with-

out intermittent feedback. Then, in Figure 4, we plot the maximum eigen-

value for various values of τ , as it increases as a percentage of h. Figure

5 shows the case where τ = 0.7h. As we can see, increasing τ yields very

significant benefits in terms of expanding the range of stability.

18

Tomas Estrada and P.J. Antsaklis, Results on Continuous and Discrete Model-Based Networked Control 
Systems with Intermittent Feedback, Part I: Stability, ISIS Technical Report, University of Notre Dame, 
ISIS-2008-001, August 2008.



Figure 3: Maximum eigenvalue for traditional MB-NCS

Figure 4: Maximum eigenvalue for MB-NCS with Intermittent Feedback, for
various tau.
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Figure 5: Maximum eigenvalue for MB-NCS with Intermittent Feedback, for
tau = 0.7h

Figures 6 plots the model state of this system, for a high value of tau,

h = 0.5, τ = 0.4. The corresponding control signal is shown in Figure 8.

The plots are repeated in Figures 9-11, this time for a low value of tau. As

we expected, more intermittent feedback leads to smaller error between the

plant state and model state and ”softer” control input.

3 Output feedback case

In the previous section we considered plants where the full vector of the state

was available at the output. When the state is not directly measurable, we

must resort to a state observer. In this section we extend our results to this

situation.
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Figure 6: Model state, h=0.5, tau=0.4

Figure 7: Model state, h=0.5, tau=0.4
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Figure 8: Control signal, h=0.5, tau=0.4

Figure 9: Model state, h=0.5, tau=0.1
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Figure 10: Plant state, h=0.5, tau=0.1

Figure 11: Control signal, h=0.5, tau=0.1
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3.1 Problem formulation

As in the architecture used in [?] for instantaneous model-based feedback,

we assume that the state observer is collocated with the sensor. We use the

plant model to design the state observer. See Figure 12. Our configuration is

based on the analogous setup for model-based control with output feedback,

proposed by Montestruque.

In [?] it is justified that the sensor carry the computational load of an ob-

server by the fact that, typically, sensors that can be connected to a network

have an embedded processor (usually in charge of performing the sampling,

filtering, etc.) inside. The observer has as inputs the output and input of

the plant. In the implementation, in order to acquire the input, which is at

the other side of the communication link, the observer can have a version of

the model and controller, and knowledge of the update times τ and h. The

controller and the observer are also synchronized.

The observer has the form of a standard state observer with gain L. It

makes use of the plant model.

In summary, the system equations are the following:

Plant: ẋ = Ax + Bu, y = Cx + Du

Model: ̂̇x = Âx̂ + B̂u, y = Ĉx + D̂u

Controller: u = Kx̂

Observer: ẋ = (Â− LĈ)x̄ +

[
B̂ − LD̂ L

]



u

y




Controller model state: x̂
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Figure 12: MB-NCS with intermittent feedback - state observer
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Observer’s estimate: x̄

When loop is closed: e = 0

Error matrices: Ã = A− Â, B̃ = B − B̂, C̃ = C − Ĉ, D̃ = D − D̂

We will derive the state response of the system in the following subsection.

3.2 State response of the system

To find the state response of the system, we proceed in the same fashion as

we did before.

During open loop case, that is, when t ∈ [tk + τ, tk+1), we have that

u = Kx̂ (19)

so

ẋ = Ax + BKx̂ (20)

̂̇x = (Â + B̂K)x̂
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and

ẋ = (Â− LĈ)x̄ +

[
B̂ − LD̂ L

]



Kx̂

Cx + DKx̂


 (21)

=

[
LC B̂K + LD̃K Â− LC

]



x

x̂

x̄




We define z =




x

x̄

e




with initial condition x̂ (tk) = x̄ (tk) .

Thus,

ż = Λoz (22)

where Λo =




A BK −BK

LC Â− LĈ + B̂K + LD̃K −B̂K − LD̃K

LC LD̃K − LĈ A− LD̃K




and

z (tk + τ) =




x(tk + τ)

x̄(tk + τ)

e(tk + τ)




=




x(tk + τ)−

x̄(tk + τ)−

0




Similarly, for the closed loop case, that is, when t ∈ [tk, tk + τ), we have

ż = Λcz (23)
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where Λc =




A BK −BK

LC Â− LĈ + B̂K + LD̃K −B̂K − LD̃K

0 0 0




because

the error is always zero.

From this, it should be quite clear that given an initial condition z (t = 0) =

z0, then after a certain time t ∈ [0, τ), the solution of the trajectory of the

vector is

z (t) = eΛc(t)z0, t ∈ [0, τ) (24)

In particular,

z (τ) = eΛc(τ)z0 (25)

Once the loop is opened

z (t) = eΛo(t−τ)z (τ) = eΛo(t−τ)eΛc(τ)z0 , t ∈ [τ, t1) (26)

We close the loop again at t = h.

z
(
t−1

)
= eΛo(h−τ)eΛc(τ)z0 (27)

But we must reset the error to zero, so we pre- and post-multiply by


I 0 0

0 I 0

0 0 0




.
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After going through k cycles, we find that

z (tk) = Σkz0 (28)

where Σ =




I 0 0

0 I 0

0 0 0




eΛo(h−τ)eΛc(τ)




I 0 0

0 I 0

0 0 0




.

Taking into account the last (partial) cycle,

z (t) =





eΛc(t−tk)Σkz0 , t ∈ [tk, tk + τ)

eΛo(t−(tk+τ))eΛc(τ)Σkz0 , t ∈ [tk + τ, tk+1)
(29)

where Σ =




I 0 0

0 I 0

0 0 0




eΛo(h−τ)eΛc(τ)




I 0 0

0 I 0

0 0 0




, and Λo, Λc as before.

We summarize the result in this proposition.

Proposition 4 The system described above has a state response:

z (t) =





eΛc(t−tk)Σkz0 , t ∈ [tk, tk + τ)

eΛo(t−(tk+τ))eΛc(τ)Σkz0 , t ∈ [tk + τ, tk+1)
(30)

where Σ =




I 0 0

0 I 0

0 0 0




eΛo(h−τ)eΛc(τ)




I 0 0

0 I 0

0 0 0




, and Λo =




A BK −BK

LC Â− LĈ + B̂K + LD̃K −B̂K − LD̃K

LC LD̃K − LĈ A− LD̃K




,

29

Tomas Estrada and P.J. Antsaklis, Results on Continuous and Discrete Model-Based Networked Control 
Systems with Intermittent Feedback, Part I: Stability, ISIS Technical Report, University of Notre Dame, 
ISIS-2008-001, August 2008.



Λc =




A BK −BK

LC Â− LĈ + B̂K + LD̃K −B̂K − LD̃K

0 0 0



.

In the next subsection, we obtain a necessary and sufficient condition for

stability.

3.3 Stability condition

As before, we provide a necessary and sufficient condition for stability.

Theorem 5 The system described above is globally exponentially stable around

the solution z =




x

x̄

e




= 0 if and only if the eigenvalues of Σ are strictly in-

side the unit circle, where where Σ =




I 0 0

0 I 0

0 0 0




eΛo(h−τ)eΛc(τ)




I 0 0

0 I 0

0 0 0




,

and Λo, Λc as before.

Proof. Sufficiency. We will do it for [tk, tk+τ), but it’s the same otherwise

too.

‖z (t)‖ =
∥∥eΛc(t−tk)Σkz0

∥∥ (31)

≤
∥∥eΛc(t−tk)

∥∥ ∥∥Σk
∥∥ ‖z0‖
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∥∥eΛc(t−tk)
∥∥ ≤ 1 + (t− tk) σ̄ (Λc) +

(t− tk)
2

2!
+ · · · (32)

= eσ̄(Λc)(t−tk) ≤ eσ̄(Λc)(τ) = K1

And

∥∥∥∥∥∥∥∥∥∥







I 0 0

0 I 0

0 0 0




eΛo(h−τ)eΛc(τ)




I 0 0

0 I 0

0 0 0







k∥∥∥∥∥∥∥∥∥∥

is clearly bounded if

and only if the eigenvalues of Σ are within the unit circle.

∥∥∥∥∥∥∥∥∥∥




I 0 0

0 I 0

0 0 0




eΛo(h−τ)eΛc(τ)




I 0 0

0 I 0

0 0 0




∥∥∥∥∥∥∥∥∥∥

k

≤ K2e
−α1k , K2, α1 > 0 (33)

Since k is a function of time, we can bound the right term in terms of t.

K2e
−α1k ≤ K2e

−α1
t−1
h ≤ K2e

α1/he−α1t/h = K3e
−αt , K3, α1 > 0 (34)

Thus,

‖z (t)‖ =
∥∥eΛc(t−tk)Σkz0

∥∥ ≤ K1K3e
−αt ‖z0‖ (35)

Necessity. Assume that




I 0 0

0 I 0

0 0 0




eΛo(h−τ)eΛc(τ)




I 0 0

0 I 0

0 0 0




has at

least one eigenvalue outside the unit circle. We will take samples... as we did
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in the case without the observer. Let’s call Σ (h) = eΛo(h−τ)eΛc(τ). We will

concentrate on ξ (k) =




x
(
t−k+1

)

x̄
(
t−k+1

)


 .

Assume Σ (η) =




W1 (η) W2 (η) X1 (η)

W3 (η) W4 (η) X2 (η)

Y1 (η) Y2 (η) Z (η)




For simplicity, let’s call

W (η) =




W1 (η) W2 (η)

W3 (η) W4 (η)


 , X (η) =




X1 (η)

X2 (η)


 , Y (η) =

[
Y1 (η) Y2 (η)

]

(36)

Then we can express z (t) as

eΛc(t−tk)







I 0 0

0 I 0

0 0 0




Σ (h)




I 0 0

0 I 0

0 0 0







k

z0

=




W (t− tk) X (t− tk)

Y (t− tk) Z (t− tk)







(W (h))k




0

0




[
0 0

]
0




z0 (37)

=




W (t− tk) (W (h))k




0

0




Y (t− tk) (W (h))k 0




z0
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We know




I 0 0

0 I 0

0 0 0




Σ (h)




I 0 0

0 I 0

0 0 0




has at least one eigenvalue out-

side the unit circle, thus those unstable eigenvalues must be in W (h) . This

means that the first two elements of z
(
t−k+1

)
, which we call ξ (k) , will in

general grow with k (if one selects initial condition z0 along the eigenvector

of the corresponding eigenvalue).

Thus, we cannot ensure ξ (k) will converge to zero for a general condition.

∥∥∥∥∥∥∥




x
(
t−k+1

)

x̄
(
t−k+1

)




∥∥∥∥∥∥∥
= ‖ξ (k)‖ =

∥∥∥∥∥∥∥
(W (h))k




x0

x̄0




∥∥∥∥∥∥∥
→∞ as k →∞ (38)

This means the system is unstable; thus we have a contradiction.

3.4 Examples

We now run simulations to illustrate the above results. Figure 13 displays

the model and plant state for a high value of τ , while an analogous plots

are displayed in Figure 14 for low values. Finally, in Figure 15 we show the

maximum eigenvalue of the system (the system becomes unstable when this

value exceeds 1), verifying the added stability range provided by increased

intermittent feedback.

For the purpose of these simulations, we used the following values: A =[0

1;0 0.25], B =[0;1], C =[1 0], D =0, Â =[0.0958 1.0604; -0.0066 -0.0134],
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B̂ =[-0.0518; 1.0269], Ĉ =[0.9734 -0.0137], D̂ =-.0396, K =[-1 -2], L =[20;100].
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Figure 13: Plant and model state. State observer case, h = 0.5, tau = 0.4

The above results are useful for situations when the full state of the plant

is unavailable. An extension of our results to nonlinear plants is presented

in the next section.

4 Delays

In the previous sections, we have assumed that the delays in the network are

negligible. However, in reality, this is usually not the case. We now consider

the case where delays in the network are present. Although in real-life plants

delays might be variable, for the sake of analysis we will consider the case

where delays are constant and known.
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Figure 14: Plant and model state. State observer case, h = 0.5, tau = 0.1
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Figure 15: Maximum eigenvalue search. State observer case, intermittent
feedback
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4.1 Problem formulation

Consider the following setup:

Figure 16: MB-NCS with intermittent feedback - delay case

The corresponding equations are as follows:

Plant: ẋ = Ax + Bu

Model: ̂̇x = Âx̂ + B̂u

Controller: u = Kx̂ , t ∈ [tk, tk+1)

Propagation unit: x̆′ = Ăx̆ + B̆u , t ∈ [tk+1 − τd, tk+1]

Update law: x̆ ←− x, t = tk+1 − τd ; x̂ ←− x̆, t = tk

This setup follows the original one proposed my Montestruque for the
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case with instantaneous feedback. The explanation is as follows: ”to ease the

analysis, we initialize the propagation unit at time tk+1 − τd with the state

vector the sensor obtains. We then run the plant, model, and propagation

unit together until tk+1. At this time, the model is updated with the prop-

agation unit state vector, as described in the update law. This is equivalent

to having the propagation unit receive the state vector x (tk+1 − τd) at tk+1

and propagate it instantaneously to tk+1.” []

To understand this better, let us consider again the setup. As we can see,

there are two different times when certain values are reset:

At times tk+1, x̂ ←− x̆. Thus, ê = 0 (where ê = x̆− x̂).

At times tk+1 − τd, x̆ ←− x. Thus, ĕ = 0 (where e = x− x̆).

The loop closes at times tk, tk+1, tk+2, and this happens every h seconds.

Now, at this time when the loop closes, information about the plant will pass

from the sensor to the propagation unit. Unfortunately, because of the delay

τd, this is old information. So, instead of x (tk+1), what the propagation unit

receives is x (tk+1 − τd).

Now, the role of the propagation unit is that of a predictor. It uses the old

information to predict the actual current state of the plant, that is, it takes

old information and predicts current information. We will assume that the

processing delay at this stage is negligible, so the propagation unit produces

an estimate (or ”prediction”), x̆ (tk+1) and this value is fed to the model at

time as well. This is why the update rule at tk+1 is as stated.

Once the model receives its update, it will run on its own for h seconds,
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as in the traditional setup, until it receives its next update.

The question arises: if all this is happening at tk+1, why the update

x̆ ←− x at time tk+1−τd? Furthermore, how is this even possible if, when the

loop is closed, the information that the propagation unit receives is delayed?

Is the loop closed at any other time? No, what happens is that x̆, the state of

the propagation unit, is a sort of dummy variable. In fact, if at time tk+1−τd

we took a scope and measured the value of x̆, the actual value would be

different from the x̆ (tk+1 − τd) we will be using in the analysis. The setup

is such that the analysis is performed as if the propagation unit received

updated information at tk+1 − τd and then used its model to produce the

estimate. This is not what is really happening in practice. The propagation

unit does not actually receive the update until the loop is closed at time tk+1.

However, as we know, this is old information: x (tk+1 − τd).

But since we do not actually care about the actual state of the propagation

unit at times when it is not feeding information to the model, we can just

say that, from the point of view of the propagation unit, the information was

in fact received at time . Thus the update law x̆ ←− x at time tk+1 − τd.

The next question that may arise is, then, how the propagation unit

actually makes its estimate. The propagation unit is set to x̆ (tk+1 − τd)

and has the same Â, B̂ as the plant model, but notice it also has memory.

What is being stored in this memory are the set of control actions u (t)

generated by the model during the previous cycle, in particular, during the

last τd seconds of the past cycle. The propagation unit uses the set of control
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actions to predict (or ”propagate”) the value to a ”new,” updated value:

x̆ (tk+1). This is the value which the model uses for its updates when the

loop is closed. Once again, note that we are assuming the processing delay

in the propagation unit is negligible compared to the network delay.

4.2 State response of the system

The following is the development of the system response of for the case of

intermittent feedback with delays. We use the setup described previously.

Also, let us recall that, from the analysis Montestruque made for the

instantaneous update case,

ż (t) = Λoz (t) , (39)

where Λo =




A + BK −BK −BK

Ã + B̃K Â− B̃K −B̃K

0 0 Â




and z =




x

ĕ

ê




, with ap-

propriate initial conditions and reset errors.

For the closed loop case, we have dynamics governed by a new matrix,

due to the error ê always being zero,

ż (t) = Λcz (t) (40)
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where Λc =




A + BK −BK −BK

Ã + B̃K Â− B̃K −B̃K

0 0 0




.

Let us start out by looking at the interval t ∈ [0, τ). During this interval,

the system will behave according to closed loop dynamics. So, clearly,

z(t) = eΛc(t−t0)z0 , t ∈ [0, τ) (41)

At time t = τ− we have

z(t) = eΛcτz0 , t = τ− (42)

But when we get to t = τ , we have to make sure ê is zero. In fact, as this

error should have been reset as soon as the loop as closed, we should both

pre- and post-multiply by




I 0 0

0 I 0

0 0 0




.

Thus,

z(t) =




I 0 0

0 I 0

0 0 0




eΛcτ




I 0 0

0 I 0

0 0 0




z0 , t = τ (43)

The next interval, t ∈ [t0 + τ, t1− τd), is governed by open loop dynamics,

so
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z(t) = eΛo(t−(t0+τ))




I 0 0

0 I 0

0 0 0




eΛcτ




I 0 0

0 I 0

0 0 0




z0 , t ∈ [t0 + τ, t1 − τd)

(44)

So at time t = (t1 − τd)
−

z(t) = eΛo(h−τd−τ))




I 0 0

0 I 0

0 0 0




eΛcτ




I 0 0

0 I 0

0 0 0




z0 , t = (t1 − τd)
− (45)

But here we reset ĕ and ê = ê + ĕ

So at t = t1 − τd,

z(t) =




I 0 0

0 0 0

0 I I




eΛo(h−τd−τ))




I 0 0

0 I 0

0 0 0




eΛcτ




I 0 0

0 I 0

0 0 0




z0 , t = t1−τd

(46)

For the next interval, that is t ∈ [t1 − τd, t1)
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z(t) = eΛo(t−(t1−τd))




I 0 0

0 0 0

0 I I




eΛo(h−τd−τ))




I 0 0

0 I 0

0 0 0




eΛcτ




I 0 0

0 I 0

0 0 0




z0 , t ∈ [t1−τd, t1)

(47)

At t = t−1 ,

z(t) = eΛoτd




I 0 0

0 0 0

0 I I




eΛo(h−τd−τ))




I 0 0

0 I 0

0 0 0




eΛcτ




I 0 0

0 I 0

0 0 0




z0 , t = t−1

(48)

But because of update rule at t = t1

z(t1) =




I 0 0

0 I 0

0 0 0




eΛoτd




I 0 0

0 0 0

0 I I




eΛo(h−τd−τ))




I 0 0

0 I 0

0 0 0




eΛcτ




I 0 0

0 I 0

0 0 0




z0

(49)

So, clearly, we have the following general solution:

For t ∈ [tk, tk + τ)

z (t) = eΛc(t−tk)Σkz0 , t ∈ [tk, tk + τ) (50)

For t ∈ [tk + τ, tk+1 − τd)
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z (t) = eΛo(t−(tk+τ))




I 0 0

0 I 0

0 0 0




eΛcτΣkz0 , t ∈ [tk + τ, tk+1 − τd) (51)

For t ∈ [tk+1 − τd, tk+1)

z (t) = eΛo(t−(tk+1−τd))




I 0 0

0 0 0

0 I I




eΛo(h−τd−τ)




I 0 0

0 I 0

0 0 0




eΛcτΣkz0 , t ∈ [tk+1−τd, tk+1)

(52)

where

Σ =




I 0 0

0 I 0

0 0 0




eΛoτd




I 0 0

0 0 0

0 I I




eΛo(h−τd−τ))




I 0 0

0 I 0

0 0 0




eΛcτ




I 0 0

0 I 0

0 0 0




.

(53)

4.3 Stability condition

We obtain a stability condition as we did for the cases without delays. It is

of the same form, depending on the eigenvalues of a test matrix.

Theorem 6 The system described above is globally exponentially stable around

43

Tomas Estrada and P.J. Antsaklis, Results on Continuous and Discrete Model-Based Networked Control 
Systems with Intermittent Feedback, Part I: Stability, ISIS Technical Report, University of Notre Dame, 
ISIS-2008-001, August 2008.



the solution z =




x

ĕ

ê




= 0 if and only if the eigenvalues of Σ are strictly in-

side the unit circle, where where Σ =




I 0 0

0 I 0

0 0 0




eΛoτd




I 0 0

0 0 0

0 I I




eΛo(h−τd−τ))




I 0 0

0 I 0

0 0 0




eΛcτ




I 0 0

0 I 0

0 0 0




,

and Λo, Λc as before.

Proof. The proof is performed in the same way as that of the previous

cases.

5 Nonlinear plants

In the previous sections we have restricted our study to the cases where the

plant is linear. Let us now lift this restriction and seek to find the correspond-

ing stability properties for nonlinear plants with intermittent feedback.

The setup and procedure that follows closely mirrors that proposed by

Montestruque [17] for traditional MB-NCS. The sufficient conditions ob-

tained relate the stability of the nonlinear MB-NCS with the value of a

function that depends on the Lipschitz constants of the plant and model as

well as the stability properties of the compensated non-networked model.

The results are obtained by studying the worst-case behavior of the norm of

the plant state and the error, thus leading to conservative results.

.
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5.1 Stability of a class of nonlinear MB-NCS

Let the plant be given by:

ẋ = f(x) + g (u) (54)

We use a model on the actuator side of the plant to estimate the actual

state of the plant. The controller will be assumed to be a nonlinear state

feedback controller. The control signal u is generated by taking into account

the plant model state . The plant state sensor will send through the network

the real value of the plant state to the model (that is, the loop will be closed)

every h seconds, and the loop will remain closed for τ seconds during each

cycle. During these times, the state of the model is set to be the same as

that of the plant. We will assume the plant model dynamics are given by:

ˆ̇x = f̂(x) + ĝ (u) (55)

And the controller has the following form:

u = ĥ (x̂) (56)

We define as the error between the plant state and the plant model state,
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e = x− x̂. Combining the above, we obtain:

ẋ = f(x) + g
(
ĥ (x̂)

)
= f (x) + m(x̂)

ˆ̇x = f̂(x) + ĝ
(
ĥ (x̂)

)
= f (x) + m̂ (x̂) (57)

Assume also that the plant model dynamics differ from the actual plant

dynamics in an additive fashion:

f̂ (ζ) = f (ζ) + δf (ζ) (58)

m̂ (ζ) = m (ζ) + δm (ζ)

Thus:

ẋ = f (x) + m (x̂) (59)

ˆ̇x = f (x) + m̂ (x̂) + δf (x̂) + δm (x̂)

Assume that f and δ satisfy the following local Lipschitz conditions for

with x, y ∈ BL, a ball centered on the origin:

‖f (x)− f (y)‖ ≤ Kf ‖x− y‖ (60)

‖δ (x)− δ (y)‖ ≤ Kδ ‖x− y‖

It is to be noted that if the plant model is accurate the Lipschitz constant

Kδ will be small.
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Assume that the non-networked compensated plant model is exponen-

tially stable when x̂ (t0) ∈ BS, x̂ (t) ∈ Bτ , for t ∈ [t0, t0 + τ) with BS and Bτ

balls centered on the origin.

‖x̂ (t)‖ ≤ α ‖x̂ (t0)‖ e−β(t−t0) with α, β > 0 . (61)

Theorem 7 The non-linear MB-NCS with dynamics described above, and

that satisfies the Lipschitz conditions described and with exponentially stable

compensated plant model satisfying is asymptotically stable if:

(
1− α

(
e−β(h−τ) +

(
eKf (h−τ) − e−β(h−τ)

) (
Kδ

Kf + δ

)))
> 0 (62)

Proof. We will now analyze the behavior of the plant state norm when

the loop is open. The stability of the system can be guaranteed if ‖x (t)‖ decreases

such that ‖x (tk + τ)‖ > ‖x (tk+1)‖, where tk+τ is the time the loop is opened

and tk+1 is the next time the loop is closed, with tk+1 − tk + τ = h− τ .

In general, we see that in any interval [tk + τ, tk+1) the following holds

true:

‖x‖ = ‖x̂ + e‖ < ‖x̂‖+ ‖e‖

‖e (tk + τ)‖ = 0 (63)

‖x (tk + τ)‖ = ‖x̂ (tk + τ)‖

So, we can guarantee that ‖x‖ will decrease over the interval [tk + τ, tk+1)
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if ‖x̂‖+ ‖e‖ decrease.

We know that:

ė = ẋ− ˆ̇x = f (x)− f (x̂)− δ (x̂) (64)

Thus:

e (t) = e (tk + τ)

∫ t

tk+τ

(f (x (s))− f (x̂ (s))− δ (x̂ (s))) ds (65)

=

∫ t

tk+τ

(f (x (s))− f (x̂ (s))− δ (x̂ (s))) ds , ∀t ∈ [tk + τ, tk)

The last equality holds since at tk + τ the plant model state is updated

and the error is equal to zero. We will now use the Lipschitz condition to

bound the norm of the error.

‖e (t)‖ ≤
∫ t

tk+τ

(‖f (x (s))− f (x̂ (s))‖+ ‖δ (x̂ (s))‖) ds (66)

≤
∫ t

tk+τ

(Kf ‖(x (s))− (x̂ (s))‖+ Kδ ‖x̂ (s)‖) ds

= Kf

∫ t

tk+τ

‖(x (s))− (x̂ (s))‖ ds + Kδ

∫ t

tk+τ

‖x̂ (s)‖ ds

= Kf

∫ t

tk+τ

‖e (s)‖ ds + Kδ

∫ t

tk+τ

‖x̂ (s)‖ ds , ∀t ∈ [tk + τ, tk)
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Then:

‖e (t)‖ ≤ Kf

∫ t

tk+τ

‖e (s)‖ ds + Kδ

∫ t

tk+τ

‖x̂ (s)‖ ds (67)

= Kf

∫ t

tk+τ

‖e (s)‖ ds + Kδ

∫ t

tk+τ

α ‖x̂ (tk + τ)‖ e−β(t−tk+τ)ds

= Kf

∫ t

tk+τ

‖e (s)‖ ds + Kδ
α

β
‖x̂ (tk + τ)‖ (

1− e−β(t−tk+τ)
)
, ∀t ∈ [tk + τ, tk)

We now use the Gronwall-Bellman Inequality [] for the following step.

This inequality states that if a continuous real-valued function y(t) sat-

isfies y (t) < λ (t) +
∫ t

a
µ (s) y (s) ds with λ(t) and µ(t) continuous real-

valued functions and µ(t) non-negative for t ∈ [a, b), then y (t) < λ (t) +
∫ t

a
λ (s) µ (s) e

∫ t
s u(ψ)dψds over the same interval. So, we assign y (t) = ‖e (t)‖,
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λ (t) = Kδ
α
β
‖x̂ (tk + τ)‖ (

1− e−β(t−tk+τ)
)
, and µ (t) = Kf , and thus obtain:

‖e (t)‖ ≤ Kδ
α

β
‖x̂ (tk + τ)‖ (

1− e−β(t−tk+τ)
)

(68)

+

∫ t

tk+τ

Kδ
α

β
‖x̂ (tk + τ)‖ (

1− e−β(s−tk+τ)
)
Kfe

Kf (t−s)ds (69)

= Kδ
α

β
‖x̂ (tk + τ)‖

(
1− e−β(t−tk+τ) +

∫ t

tk+τ

(
1− e−β(s−tk+τ)

)
Kfe

Kf (t−s)ds

)

= Kδ
α

β
‖x̂ (tk + τ)‖

(
1− e−β(t−tk+τ) + Kf

∫ t

tk+τ

eKf (t−s) − e−β(s−tk+τ)eKf (t−s)ds

)

= Kδ
α

β
‖x̂ (tk + τ)‖

(
1− e−β(t−tk+τ) + Kf

∫ t

tk+τ

eKf (t−s) − eKf t−Kf s−βs+β(tk+τ)ds

)

= Kδ
α

β
‖x̂ (tk + τ)‖

(
1− e−β(t−tk+τ) + Kf

(−1

Kf

(
1− eKf (t−(tk+τ))

)
+

1

Kf + β

(
e−β(t−(tk+τ)) − eKf (t−(tk+τ))

)))

= Kδ
α

β
‖x̂ (tk + τ)‖

(
1− e−β(t−tk+τ) − 1 + eKf (t−(tk+τ)) +

Kf

Kf + β

(
e−β(t−(tk+τ)) − eKf (t−(tk+τ))

))

= Kδ
α

β
‖x̂ (tk + τ)‖ (

eKf (t−(tk+τ)) − e−β(t−(tk+τ))
) (

1− Kf

Kf + β

)

= Kδ ‖x̂ (tk + τ)‖ (
eKf (t−(tk+τ)) − e−β(t−(tk+τ))

) (
α

Kf + β

)
, ∀t ∈ [tk + τ, tk)

Note that he error signal will be zero if the update time h − τ = tk+1 −
(tk + τ) is zero (or if the model is perfect, that is, same dynamics as the

plant). With this bound over the error signal we can proceed to calculate

50

Tomas Estrada and P.J. Antsaklis, Results on Continuous and Discrete Model-Based Networked Control 
Systems with Intermittent Feedback, Part I: Stability, ISIS Technical Report, University of Notre Dame, 
ISIS-2008-001, August 2008.



the bound over the plant state.

‖x (t)‖ ≤ ‖x̂ (t)‖+ ‖e (t)‖

≤ α ‖x̂ (tk + τ)‖ e−β(t−(tk+τ)) + Kδ ‖x̂ (tk + τ)‖ (
eKf (t−(tk+τ)) − e−β(t−(tk+τ))

) (
α

Kf + β

)

(70)

= α ‖x̂ (tk + τ)‖
(

e−β(t−(tk+τ)) +
(
eKf (t−(tk+τ)) − e−β(t−(tk+τ))

) (
Kδ

Kf + β

))

(71)

, ∀t ∈ [tk + τ, tk)

For stability, we need‖x̂ (tk + τ)‖ > ‖x̂ (tk+1)‖. Therefore, we require:

‖x̂ (tk + τ)‖ − α ‖x̂ (tk + τ)‖
(

e−β(h−τ) +
(
eKf (h−τ) − e−β(h−τ)

) (
Kδ

Kf + β

))
> 0

(72)

‖x̂ (tk + τ)‖
(

1−
(

e−β(h−τ) +
(
eKf (t−(tk+τ)) − e−β(h−τ)

) (
Kδ

Kf + β

)))
> 0

(
1−

(
e−β(h−τ) +

(
eKf (h−τ) − e−β(h−τ)

) (
Kδ

Kf + β

)))
> 0
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5.2 Stability for a more general class of non-linear MB-

NCS

We now extend the results to a nonlinear system whose plant dynamics are

given by

ẋ = f (x) + g (x, u) . (73)

As above, we will follow the procedure used by Montestruque.

The model and controller are given by

ˆ̇x = f̂ (x̂) + ĝ (x̂, u) (74)

u = k (x̂)

Substituting, we get:

ẋ = f (x) + g (x, k (x̂)) = f (x) + m (x, x̂) (75)

ˆ̇x = f̂ (x̂) + ĝ (x̂, k (x̂)) = f̂ (x̂) + m̂ (x̂, x̂)

Again, let us assume that the uncertainty between the plant and the

model is of the additive type:

f̂ (ζ) = f (ζ) + δf (ζ) (76)

m̂ (ζ) = m (ζ, ζ) + δm (ζ)
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So, the error dynamics between the plant and the model are:

e = f (x)− f (x̂)− δf (x̂) + m (x, x̂)−m (x̂, x̂)− δm (x̂) (77)

Assume also that the Lipschitz conditions hold:

‖f (x)− f (y)‖ ≤ Kf ‖x− y‖ (78)

‖m (x, s)−m (y, s)‖ ≤ Km (s) ‖x− y‖ (79)

‖δf (x)− δf (y)‖ ≤ Kδf
‖x− y‖ (80)

‖δm (x)− δm (y)‖ ≤ Kδm ‖x− y‖ (81)

Define also Km,max = maxs∈BS
(Km (s)) for BS, where BS is a ball

centered at the origin. Assume as well that the non-networked compen-

sated plant model is exponentially stable when x̂ (t0) ∈ BS, x̂ (t) ∈ Bτ , for

t ∈ [t0, t0 + τ) with BS and Bτ balls centered on the origin.

‖x̂ (t)‖ ≤ α ‖x̂ (t0)‖ e−β(t−t0) with α, β > 0 . (82)

The following theorem states a sufficient condition for stability.

Theorem 8 The nonlinear system with dynamics described above and that

satisfies the Lipschitz conditions described and with exponentially stable com-
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pensated plant model satisfying () is asymptotically stable if:

(
1− α

(
e−β(h−τ) +

(
e(Kf+Km,max)(h−τ) − e−β(h−τ)

) (
Kδf

+ Kδm

Kf + Km,max + β

)))
> 0

(83)

Proof. Note that the error can be bounded as follows:

‖e (t)‖ ≤
∫ t

tk+τ

(
(Kf + Km,max) ‖x (s)− x̂ (s)‖+

(
Kδf

+ Kδm

) ‖x̂ (s)‖) ds , ∀t ∈ [tk+τ, tk+1) .

(84)

The rest of the proof is done as in the previous theorem.

6 Stability of MB-NCS with Intermittent Feed-

back and time-varying updates

Until now we have only considered the case where the parameters τ and h

are constant. Let us now take a closer look at what happens when these

parameters vary with time. The definitions for Lyapunov stability and mean

square stability used throughout this section are the same as those in [18].

6.1 Lyapunov stability with bounded intervals

We shall first analyze the case where the parameters are time-varying, but

their probability distributions are unknown. Let the plant, model, and con-
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troller have the same dynamics as described in Section 2. The following result

describes the state response of the system. The derivation of this result is

analogous to that for constant τ and h.

Proposition 9 The system described above with initial conditions z =




x (t0)

0


 =

z0 has the following response:

z (t) =





eΛo(t−tk)

(
k∏

j=1

M (j)

)
z0 , t ∈ [tk, tk + τ)

eΛo(t−(tk+τ))eΛc(τ)

(
k∏

j=1

M (j)

)
z0,

t ∈ [tk + τ, tk+1)

where M (j) =




I 0

0 0


 eΛo(h(j)−τ(j))eΛc(τ(j))




I 0

0 0


, Λo =




A + BK −BK

Ã + B̃K Â− B̃K


 , Λc =




A + BK −BK

0 0


 , tk+1 − tk = h (k) , and τ(j) < h(j).

The proof is as follows.

Proof. The proof is similar to the corresponding development for con-

stant h and τ. On the closed loop interval, the system response is:

z (t) =




x (t)

e (t)


 = eΛc(t−tk)




x (tk)

0


 = eΛc(t−tk)z (tk) , ∀t ∈ [tk, tk + τ).

(85)
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And on the open loop interval, the response is:

z (t) =




x (t)

e (t)


 = eΛo(t−(tk+τ))eΛc(t−tk)




x (tk)

0


 = eΛo(t−(tk+τ))eΛc(t−tk)z (tk) ,(86)

∀t ∈ [tk + τ, tk+1)

Now, note that at times tk,, the error is reset to zero, which corresponds

to pre-multiplying by




I 0

0 0


.

Using the above, we obtain

z (tk) =




I 0

0 0


 eΛo(h(k)−τ(k))eΛcτ(k)z (tk−1) .

Then, with initial conditions t(0) = t0, z (t0) = z0 =




x0

0


 :

z (t) = eΛc(t−tk)z (tk)

= eΛc(t−tk)




I 0

0 0


 eΛo(h(k)−τ(k))eΛcτ(k)z (tk−1)

= eΛc(t−tk)




I 0

0 0


 eΛo(h(k)−τ(k))eΛcτ(k)




I 0

0 0


 eΛo(h(k−1)−τ(k−1))eΛcτ(k−1)z (tk−2)

= eΛc(t−tk)

(
k∏

j=1

M (j)

)
z0 , t ∈ [tk, tk + τ) ,
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where

M (j) =




I 0

0 0


 eΛo(h(j)−τ(j))eΛcτ(j)




I 0

0 0




And similarly for the interval t ∈ [tk + τ, tk+1).

We now present a condition for Lyapunov stability of this system.

Theorem 10 The system described above is Lyapunov asymptotically sta-

ble for h ∈ [hmin, hmax] and τ ∈ [τmin, τmax] (with τmax < hmin) if there ex-

ists a symmetric positive definite matrix X such that Q = X −MXMT is

positive definite for all h ∈ [hmin, hmax] and τ ∈ [τmin, τmax], where M =


I 0

0 0


 eΛo(h−τ)eΛc(τ)




I 0

0 0


 .

Proof. Note that the output norm can be bounded by

∥∥∥∥∥eΛo(t−(tk+τ))eΛc(τ)

(
k∏

j=1

M (j)

)
z0

∥∥∥∥∥

≤
∥∥eΛo(t−(tk+τ))

∥∥ ∥∥eΛc(τ)
∥∥

∥∥∥∥∥
k∏

j=1

M (j)

∥∥∥∥∥ ‖z0‖

≤ eσ̄(Λo)hmax−τmin
∥∥eΛc(τ)

∥∥
∥∥∥∥∥

k∏
j=1

M (j)

∥∥∥∥∥ ‖z0‖

That is, since eΛo(t−(tk+τ)) has finite growth and will grow for at most from

τmin to hmax, then convergence of the product of matrices M (j) to zero

ensures the stability of the system. Such convergence to zero is guaranteed

by the existence of a symmetric positive definite matrix X in the Lyapunov
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equation.

6.2 Mean square stability of continuous MB-NCS with

IF with i.i.d update times

Now, let us consider the case where τ is constant, but h (k) are independent

identically distributed with probability distribution F (h) . This corresponds

to the situation where we might not know how frequently we can access the

network, but when we do obtain access to it, we continue to have access to

it for a fixed amount of time, so as to, for example, complete a given task

or transmit a certain set of packets. We present a stability condition for this

case:

Theorem 11 The system described above with update times h (j) indepen-

dent identically distributed random variable with probability distribution F (h)

is globally mean square asymptotically stable around the solution z =




0

0




if K = E
[(

eσ̄(Λo)(h−τ)
)2

]
< ∞ and the maximum singular value of the ex-

pected value MT M,
∥∥E

[
MT M

]∥∥ = σ̄
(
E

[
MT M

])
is strictly less than one,

where M =




I 0

0 0


 eΛo(h−τ)eΛc(τ)




I 0

0 0


.

Proof. Let us begin by evaluating the expectation of the squared norm

of the system. Note that we are doing this for the interval t ∈ [tk, tk + τk) ,
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but the proof is the same for the interval t ∈ [tk + τk, tk+1).

E

∥∥∥∥∥eΛo(t−(tk+τk))eΛc(τk)

(
k∏

j=1

M (j)

)
z0

∥∥∥∥∥

2

(87)

= E


zT

0

(
k∏

j=1

M (j)

)T (
eΛo(t−(tk+τk))eΛc(τk)

)T
eΛo(t−(tk+τk))eΛc(τk)

(
k∏

j=1

M (j)

)
z0




≤ E


σ̄

((
eΛo(t−(tk+τk))eΛc(τk)

)T
eΛo(t−(tk+τk))eΛc(τk)

)
zT
0

(
k∏

j=1

M (j)

)T (
k∏

j=1

M (j)

)
z0




≤ E


(

eσ̄(Λo)(h−τ)(k+1)
)2

zT
0

(
k∏

j=1

M (j)

)T (
k∏

j=1

M (j)

)
z0




Now that the expectation is all in terms of the update times, we can use

the iid property of the update times and the assumption that K is bounded:

E


(

eσ̄(Λo)(h−τ)(k+1)
)2

zT
0

(
k∏

j=1

M (j)

)T (
k∏

j=1

M (j)

)
z0


 (88)

= K zT
0 E




(
k∏

j=1

M (j)

)T

M(k)T M(k)

(
k∏

j=1

M (j)

)
 z0

= K zT
0 E




(
k∏

j=1

M (j)

)T

E
[
MT M

]
(

k∏
j=1

M (j)

)
 z0

≤ K σ̄
(
E

[
MT M

])
zT
0 E




(
k∏

j=1

M (j)

)T (
k∏

j=1

M (j)

)
 z0
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We repeat the last three steps recursively to obtain

E

∥∥∥∥∥eΛc(t−tk)

(
k∏

j=1

M (j)

)
z0

∥∥∥∥∥

2

≤ K
(
σ̄

(
E

[
MT M

]))k
zT
0 z0

From here, we can see that if
∥∥E

[
MT M

]∥∥ =,σ̄
(
E

[
MT M

])
< 1, then

the limit of the expectation as time goes to infinity approaches zero.

6.3 Mean square stability of continuous MB-NCS with

IF with Markov chain-driven update times

We now consider the situation where the parameter h is driven by a Markov

chain and provide a stability condition.

Theorem 12 The system described above with update times h (k) = hωk
6=

∞ driven by a finite state Markov chain {ωk} with state space {1, 2, ..., N}
and transition probability matrix Γ with elements pi,j is globally mean square

asymptotically stable around the solution z =
[
xT eT

]T
= 0 if there exist

positive definite matrices P (1) , P (2) , ... , P (N) such that

(
N∑

j=1

pi,j

(
H (i)T P (j) H (i)

)
− P (i)

)
< 0 ∀i, j ∈ 1, ..., N

with H (i) = eΛo(hi−τ)eΛc(τ)




I 0

0 0


 .

60

Tomas Estrada and P.J. Antsaklis, Results on Continuous and Discrete Model-Based Networked Control 
Systems with Intermittent Feedback, Part I: Stability, ISIS Technical Report, University of Notre Dame, 
ISIS-2008-001, August 2008.



The proof follows that in [18] for the case of instantaneous feedback.

7 Stability of Discrete-Time Plants using Model-

Based Control with Intermittent Feedback

7.1 Problem Formulation

The basic setup for discrete-time MB-NCS with intermittent feedback is es-

sentially the same as that for continuous time; see also [6]. We make the same

assumptions as in [15] for the instantaneous feedback case, where both the

sensor and actuator sides are synchronized and updates occur at the same

instants of time.

Consider the control of a discrete linear plant where the state sensor is

connected to a linear controller/actuator via a network. In this case, the

controller uses an explicit model of the plant that approximates the plant

dynamics and makes possible the stabilization of the plant even under slow

network conditions.

In dealing with intermittent feedback, we have two key time parameters:

how frequently we want to close the loop, which we shall denote by h, and

how long we wish the loop to remain closed, which we shall denote by τ .

Naturally, in the more general cases both h and τ can be time-varying. Unlike

the continuous time formulation, h and τ are both integers here, as they
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Figure 17: Basic MB-NCS architecture

represent the number of ticks of the clock in the corresponding interval.

We consider then a system such that the loop is closed periodically, every

h ticks of the clock, and where each time the loop is closed, it remains so for

a time of τ ticks of the clock. The loop is closed at times nk, for k = 1, 2, ....

The system will be operating in closed loop mode for the intervals [nk, nk +τ)

and in open loop for the intervals [nk + τ, nk+1), with nk+1 − nk = h. When

the loop is closed, the control decision is based directly on the information

of the state of the plant, but we will keep track of the error nonetheless.

As mentioned in the introduction, it is important to note that the pa-

rameters τ and h are different from the sampling time of the digital plant,

since they are tailored after the demands of use of the network, not by the

internal clock of the plant. It is also important to keep in mind that even

when the loop is ”closed”, information is being sent at discrete intervals, the
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duration of which is determined by the internal clock of the plant.

The plant is given by x (n + 1) = Ax (n) + Bu (n), the plant model by

x̂ (n + 1) = Âx̂ (n)+ B̂u (n), and the controller by u (n) = Kx̂ (n) . The state

error is defined as e (n) = x (n)− x̂ (n) and represents the difference between

plant state and the model state. The modeling error matrices Ã = A − Â

and B̃ = B− B̂ represent the plant and the model. We also define the vector

z = [xT eT ]T .

In the next section we will derive a complete description of the response

of the system as well as a necessary and sufficient condition for stability.

7.2 State Response of the System and Stability Con-

dition

We will now proceed to derive the response to prove the above proposition.

The approach is similar to that we used in [6] for the continuous time case.

To this effect, let us separately investigate what happens when the system is

operating under closed and open loop conditions.

7.2.1 State response of the system

During the open loop case, that is, when n ∈ [nk + τ, nk+1), we have that

u (n) = Kx̂ (n) (89)
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so 


x (n + 1)

x̂(n + 1)


 =




A BK

0 Â + B̂K







x(n)

x̂(n)


 (90)

with initial conditions x̂(nk + τ) = x (nk + τ).

Rewriting in terms of x and e, that is, of the vector z :

z(n + 1) =




x (n + 1)

e(n + 1)


 = (91)




A + BK −BK

Ã + B̃K Â− B̃K







x(n)

e(n)




z(nk + τ) =




x(nk + τ)

e(nk + τ)


 =




x(nk + τ−)

0


 ,

∀n ∈ [nk + τ, nk+1) (92)

Thus, we have

z(n + 1) = ΛDoz(n), where ΛDo =




A + BK −BK

Ã + B̃K Â− B̃K


 , (93)

∀n ∈ [nk + τ, nk+1)

.

The closed loop case is a simplified version of the case above, as the

difference resides in the fact that the error is always zero. Thus, for n ∈
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[nk, nk + τ), we have

z(n + 1) = ΛDcz(n), where ΛDc =




A + BK −BK

0 0


 , (94)

n ∈ [nk, nk + τ)

. This should be clear in that the error is always zero, while the state pro-

gresses in the same way as before.

From this, it should be quite clear that given an initial condition z(n =

0) = z0, then after a certain time n ∈ [0, τ), the solution of the trajectory of

the vector is given by

z(n) = Λn
Dcz0 , n ∈ [0, τ). (95)

In particular, at time τ, z(τ) = Λτ
Dcz0.

Once the loop is opened, the open loop behavior takes over, so that

z(n) = Λ
(n−τ)
Do z(τ) = Λ

(n−τ)
Do Λτ

Dcz0 , n ∈ [τ, n1). (96)

In particular, when the time comes to close the loop again, that is, after

time h, then z (n1) = Λ
(h−τ)
Do Λτ

Dcz0.

Notice, however, that at this instant when we close the loop again, we are

also resetting the error to zero, so that we must pre-multiply by




I 0

0 0



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before we analyze the closed loop trajectory for the next cycle. Because we

wish to always start with an error that is set to zero, we should actually

multiply by




I 0

0 0


 at the beginning.

So then, after k cycles, going through this analysis yields a solution.

z (tk) =







I 0

0 0


 Λ

(h−τ)
Do Λτ

Dc




I 0

0 0







k

z0

=







I 0

0 0


 Σ




I 0

0 0







k

z0 , (97)

where Σ = Λ
(h−τ)
Do Λτ

Dc.

The final step is to consider the last (partial) cycle that the system

goes through, that is, the time n ∈ [nk, nk+1). If the system is in closed

loop, that is, n ∈ [nk, nk + τ), then the solution can be achieved merely

by pre-multiplying z (nk) by Λ
(n−nk)
Dc . In the case of the system being in

open loop, that is, n ∈ [nk + τ, nk+1), then clearly we must pre-multiply by

Λ
(n−(nk+τ))
Do Λτ

Dc.

The results can thus be summarized in the following proposition.

Proposition 13 The system described by (93) and (94) with initial condi-
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tions z (n0) =




x (n0)

0


 = z0 has the following response:

z (n) =





Λ
(n−nk)
Dc







I 0

0 0


 Σ




I 0

0 0







k

z0 ,

n ∈ [nk, nk + τ)

Λ
(n−(nk+τ))
Do Λτ

Dc







I 0

0 0


 Σ




I 0

0 0







k

z0 ,

n ∈ [nk + τ, nk+1)

(98)

where Σ = Λ
(h−τ)
Do Λτ

Dc, ΛDo =




A + BK −BK

Ã + B̃K Â− B̃K


 , ΛDc =




A + BK −BK

0 0


 ,

and nk+1 − nk = h.

7.2.2 Stability Condition

We will present a necessary and sufficient condition for the stability of the

system.

Theorem 14 The system described by (93) and (94) is globally exponen-

tially stable around the solution z =




x

e


 =




0

0


 if and only if the

eigenvalues of




I 0

0 0


 Σ




I 0

0 0


 are strictly inside the unit circle, where
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Σ = Λ
(h−τ)
Do Λτ

Dc.

Proof. Sufficiency. Taking the norm of the solution described as in

Proposition #1:

‖z(n)‖ =

∥∥∥∥∥∥∥
Λ

(n−nk)
Dc







I 0

0 0


 Λ

(h−τ)
Do Λτ

Dc




I 0

0 0







k

z0

∥∥∥∥∥∥∥
(99)

≤
∥∥∥Λ

(n−nk)
Dc

∥∥∥

∥∥∥∥∥∥∥







I 0

0 0


 Λ

(h−τ)
Do Λτ

Dc




I 0

0 0







k∥∥∥∥∥∥∥

‖z0‖

Notice we are only doing this part for the case when n ∈ [nk, nk + τ), but

the process is exactly the same for the intervals where n ∈ (nk + τ, nk + 1).

Analyzing the first term on the right hand side:

∥∥∥Λ
(n−nk)
Dc

∥∥∥ ≤ (σ̄ (ΛDc))
n−nk ≤ (σ̄ (ΛDc))

τ = K1 (100)

where σ̄ (ΛDc) is the largest singular value of ΛDc. In general this term can

always be bounded as the time difference n − nk is always smaller than τ.

That is, even when ΛDc has eigenvalues with positive real part,
∥∥∥Λ

(n−nk)
Dc

∥∥∥
can only grow a certain amount. This growth is completely independent of

k.
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We now study the term

∥∥∥∥∥∥∥







I 0

0 0


 Λ

(h−τ)
Do Λτ

Dc




I 0

0 0







k∥∥∥∥∥∥∥
. It is clear

taht this term will be bounded if and only if the eigenvalues of




I 0

0 0


 Λ

(h−τ)
Do Λτ

Dc




I 0

0 0




lie inside the unit circle:

∥∥∥∥∥∥∥







I 0

0 0


 Λ

(h−τ)
Do Λτ

Dc




I 0

0 0







k∥∥∥∥∥∥∥
≤ K2e

−α1k (101)

with K2, α1 > 0.

Since k is a function of time we can bounded the right term of the previous

inequality in terms of t :

K2e
−α1k < K2e

−α1
n−1

h = K2e
α1
h e−

α1
h

n = K3e
−αn (102)

with K3,α > 0.

So from the above, we conclude that:

‖z(n)‖

=

∥∥∥∥∥∥∥
Λ

(n−nk)
Dc







I 0

0 0


 Λ

(h−τ)
Do Λτ

Dc




I 0

0 0







k

z0

∥∥∥∥∥∥∥

≤ K1K3e
−αn ‖z0‖ . (103)
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Necessity. We will now provide the necessity part of the theorem. We will

do this by contradiction. Assume the system is stable and that




I 0

0 0


 Λ

(h−τ)
Do Λτ

Dc




I 0

0 0




has at least one eigenvalue outside the unit circle. Let us define Σ(h) =

Λ
(h−τ)
Do Λτ

Dc. Since the system is stable, a periodic sample of the response

should converge to zero with time. We will take the samples at times nk+1,

that is, just before the loop is closed again. We will concentrate on a specific

term: the state of the plant x (nk+1) , which is the first element of z (nk+1) .

We will call x (nk+1) , ξ (k) .

Now assume Σ(η) has the following form:

Σ(η) =




W (η) X (η)

Y (η) Z (η)


 .

Then we can express the solution z (n) as:

Λ
(n−nk)
Dc







I 0

0 0


 Σ (h)




I 0

0 0







k

z0 (104)

=




W (n− nk) X(n− nk)

Y (n− nk) Z(n− nk)







(W (h))k 0

0 0


 z0

=




W (n− nk) (W (h))k 0

Y (n− nk) (W (h))k 0


 z0 .
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Now, the values of the solution at times n−k+1, that is, just before the loop

is closed again, are

z (nk+1) =




W (h) (W (h))k 0

Y (h) (W (h))k 0


 z0

=




(W (h))k+1 0

Y (h) (W (h))k 0


 z0 (105)

We also know that




I 0

0 0


 Λ

(h−τ)
Do Λτ

Dc




I 0

0 0


 has at least one eigen-

value outside the unit circle, which means that those unstable eigenvalues

must be in W (h). This means that the first element of z (nk+1) , which we

call ξ (k + 1) , will in general grow with k. In other words we cannot ensure

ξ (k + 1) will converge to zero for general initial condition x0.

‖x (nk+1)‖ = ‖ξ (k + 1)‖ =
∥∥∥(W (h))k+1 x0

∥∥∥ →∞

as k → ∞ , (106)

which clearly means the system cannot be stable. Thus, we have a contra-

diction.
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8 Stability of Discrete MB-NCS with Inter-

mittent Feedback (State Observer case)

When the full information of the state is not available, we use a state observer

to estimate its value. The corresponding architecture is showing in Figure

18 and is the same as that developed for continuous plants in [6].

Figure 18: Model-based networked control system with state observer

The equations governing the behavior of the system can be summarized

as follows:

Plant: x (n + 1) = Ax (n) + Bu (n) ,

y (n) = Cx (n) + Du (n)

Model: x̂ (n + 1) = Âx̂ (n) + B̂u (n) ,

y (n) = Ĉx̂ (n) + D̂u (n)

Controller: u (n) = Kx̂ (n)
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Observer: x̄ (n + 1) = (Â− LĈ)x̄ (n) +

[
B̂ − LD̂ L

]



u (n)

y (n)




Controller model state: x̂

Observer’s estimate: x̄

Error matrices: Ã = A− Â, B̃ = B − B̂,

C̃ = C − Ĉ, D̃ = D − D̂

We will present the full description of the state response of the system as

well as a necessary and sufficient condition for stability. As before, τ and h

are integers.

8.1 State Response of the system (State Observer case)

The following proposition details the state response of the system for the

case with state observer. The derivation of this result is similar to that of

the full information case from the previous section. We will not include it

here because of space limitations.

Proposition 15 The system described above and with initial condition z (n0) =


x (n0)

x̄(n0)

0




= z0 has the following state response:
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z (n) =





Λ
(n−nk)
Dc







I 0 0

0 I 0

0 0 0




Σ




I 0 0

0 I 0

0 0 0







k

z0,

n ∈ [nk, nk + τ)

Λ
(n−(nk+τ))
Do Λτ

Dc





I 0 0

0 I 0

0 0 0




Σ




I 0 0

0 I 0

0 0 0







k

z0,

n ∈ [nk + τ, nk+1)

(107)

where Σ = Λ
(h−τ)
Do Λτ

Dc, and

ΛDo =




A BK −BK

LC Â− LĈ + B̂K + LD̃K −B̂K − LD̃K

LC LD̃K − LĈ A− LD̃K




,

ΛDc =




A BK −BK

LC Â− LĈ + B̂K + LD̃K −B̂K − LD̃K

0 0 0




,

and nk+1 − nk = h..

8.2 Stability condition (State Observer case)

We now state the following theorem characterizing the necessary and suf-

ficient conditions for the system described in the previous section to have
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globally exponential stability around the solution z = 0.

Theorem 16 The system described above is globally exponentially stable

around the solution z =




x

x̄

e




= 0 if and only if the eigenvalues of




I 0 0

0 I 0

0 0 0




Σ




I 0 0

0 I 0

0 0 0




are strictly inside the unit circle, where Σ = Λ
(h−τ)
Do Λτ

Dc, and ΛDo, ΛDc as be-

fore.

The proof is similar to that of the case with full information and will be

omitted for reasons of space.

9 Stability of discrete time plants with time-

varying updates

Until now we have only considered the case where the parameters τ and h

are constant. Let us now take a closer look at what happens when these

parameters vary with time. The definitions for Lyapunov stability and mean

square stability used throughout this section are the same as those in [14].

9.1 Lyapunov stability with bounded intervals

We shall first analyze the case where the parameters are time-varying, but

their probability distributions are unknown. The following result describes
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the state response of the system. The derivation of this result is analogous

to that for constant τ and h and is included for the sake of completeness.

Proposition 17 The system described in (93) and (94) with initial condi-

tions z =




x (n0)

0


 = z0 has the following response:

z (n) =





Λ
(n−nk)
Dc

(
k∏

j=1

M (j)

)
z0 , n ∈ [nk, nk + τk)

Λ
(n−(nk+τ))
Do Λτk

Dc

(
k∏

j=1

M (j)

)
z0 , n ∈ [nk + τk, nk+1)

where M (j) =




I 0

0 0


 Λ

(h−τ)(j)
Do Λ

τ(j)
Dc




I 0

0 0


, ΛDo =




A + BK −BK

Ã + B̃K Â− B̃K


 , ΛDc =




A + BK −BK

0 0


 , nk+1 − nk = h (k) , and τ(j) < h(j).

Proof. The proof is similar to the corresponding development for con-

stant h and τ. On the closed loop interval, the system response is:

z (n) =




x (n)

e (n)


 = Λ

(n−nk)
Dc




x (nk)

0


 = Λ

(n−nk)
Dc z (nk) , ∀n ∈ [nk, nk + τ).

(108)
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And on the open loop interval, the response is:

z (n) =




x (n)

e (n)


 = Λ

(n−(nk+τ))
Do Λ

(n−nk)
Dc




x (nk)

0


 = Λ

(n−(nk+τ))
Do Λ

(n−nk)
Dc z (nk) ,(109)

∀n ∈ [nk + τ, nk+1)

Now, note that at times nk,, the error is reset to zero, which corresponds

to pre-multiplying by




I 0

0 0


.

Using the above, we obtain

z (tk) =




I 0

0 0


 Λ

(h−τ)(j)
Do Λ

τ(j)
Dc z (nk−1) .

Then, with initial conditions n(0) = t0, z (n0) = z0 =




x0

0


 :

z (n) = Λ
(n−nk)
Dc z (nk)

=




I 0

0 0


 Λ

(n−(nk+τk))
Do Λ

(n−nk)
Dc z (nk−1)

=




I 0

0 0


 Λ

(n−(nk+τk))
Do Λ

(n−nk)
Dc




I 0

0 0


 Λ

(n−(nk−1+τk−1))
Do Λ

(n−nk−1)
Dc z (nk−2)

= Λ
(n−nk)
Dc

(
k∏

j=1

M (j)

)
z0 , n ∈ [nk, nk + τk) ,
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where

M (j) =




I 0

0 0


 Λ

(h−τ)(j)
Do Λ

τ(j)
Dc




I 0

0 0




And similarly for the interval n ∈ [nk + τ, nk+1).

We now present a condition for Lyapunov stability of this system.

Theorem 18 The system described in (93) and (94) is Lyapunov asymptoti-

cally stable for h ∈ [hmin, hmax] and τ ∈ [τmin, τmax] (with τmax < hmin) if there

exists a symmetric positive definite matrix X such that Q = X − MXMT

is positive definite for all h ∈ [hmin, hmax] and τ ∈ [τmin, τmax], where M =


I 0

0 0


 Λ

(h−τ)
Do Λτ

Dc




I 0

0 0


 .

Proof. Note that the output norm can be bounded by

∥∥∥∥∥Λ
(n−(nk+τ))
Do Λτ

Dc

(
k∏

j=1

M (j)

)
z0

∥∥∥∥∥

≤
∥∥∥Λ

(n−(nk+τ))
Do Λτ

Dc

∥∥∥ ‖Λτ
Dc‖

∥∥∥∥∥
k∏

j=1

M (j)

∥∥∥∥∥ ‖z0‖

≤ σ̄
(
Λhmax−τmin

Do

) ‖Λτ
Dc‖

∥∥∥∥∥
k∏

j=1

M (j)

∥∥∥∥∥ ‖z0‖

That is, since Λ
(n−(nk+τ))
Do has finite growth and will grow for at most from

τmin to hmax, then convergence of the product of matrices M (j) to zero

ensures the stability of the system. Such convergence to zero is guaranteed

by the existence of a symmetric positive definite matrix X in the Lyapunov
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equation.

9.2 Mean square stability of discrete MB-NCS with IF

with i.i.d update times

Now, let us consider the case where τ is constant, but h (k) are independent

identically distributed with probability distribution F (h) . This corresponds

to the situation where we might not know how frequently we can access the

network, but when we do obtain access to it, we continue to have access to

it for a fixed amount of time, so as to, for example, complete a given task

or transmit a certain set of packets. We present a stability condition for this

case:

Theorem 19 The system described in (93) and (94) with update times h (j)

independent identically distributed random variable with probability distribu-

tion F (h) is globally mean square asymptotically stable around the solution

z =




0

0


 if K = E

[(
Λ

(h−τ)
Do

)2
]

< ∞ and the maximum singular value of

the expected value MT M,
∥∥E

[
MT M

]∥∥ = σ̄
(
E

[
MT M

])
is strictly less than

one, where M =




I 0

0 0


 Λ

(h−τ)
Do Λτ

Dc




I 0

0 0


.

The proof is similar to that for the continuous case.
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9.3 Mean square stability of discrete MB-NCS with IF

with Markov chain-driven update times

We now consider the situation where the parameter h is driven by a Markov

chain and provide a stability condition.

Theorem 20 The system described in (93) and (94) with update times h (k) =

hωk
6= ∞ driven by a finite state Markov chain {ωk} with state space {1, 2, ..., N}

and transition probability matrix Γ with elements pi,j is globally mean square

asymptotically stable around the solution z =
[
xT eT

]T
= 0 if there exist posi-

tive definite matrices P (1) , P (2) , ... , P (N) such that
(∑N

j=1 pi,j

(
H (i)T P (j) H (i)

)
− P (i)

)
<

0 ∀i, j ∈ 1, ..., N with H (i) = Λ
(hi−τ)
Do Λτ

Dc




I 0

0 0




Once again, the proof follows that of the continuous case.

10 Conclusions and future work

We have introduced the concept of model-based control with intermittent

feedback. We proposed a basic architecture, focusing first on the continuous

time case, and derived a complete description of the output of the system,

as well as necessary and sufficient conditions for stability. We have then

extended our results to cases with state observers, delays, and nonlinear

plants. Finally, we investigated the situation where the update times τ and

h are time-varying, first addressing the case where they have upper and
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lower bounds, then moving on to the case where their distributions are i.i.d

or driven by a Markov chain, providing stability conditions in each case. We

also obtained an analogous set of results for the discrete-time case.

The focus of the present report was on stability, but the area of perfor-

mance of networked control systems, both under the model-based architec-

ture and otherwise, remains a relatively unexplored ground for research. In

future work, we expect to provide results on performance of model-based net-

worked control systems with intermittent feedback, and will consider other

issues, such as robustness, tracking, filtering, and improving control as time

elapses (that is, to use intermittent feedback to improve performance, by up-

dating the model during the times when the system is running closed loop,

with the aim of enabling the user to run the system closed loop for pro-

gressively shorter intervals), as well. Results on some of these issues will be

provided in the next part of the technical report.
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