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Abstract 

In the  model  matching  problem,  proper  plant  P and 
model  T  are  given  and  a  proper  M  is  to  be  found  such 
that T = PM. M  can  then  be  realized  via  feedback  and 
feedforward  compensation.  For  internal  stability T 
and  M  must  be  stable.  A  proper  and  stable  solution 
M  exists  only  when  the  unstable  finite  and  infinite 
zeros of P  also  appear in T. This  is  studied  using 
the  interactor  and  the  Hermite  forms  of P and T, di- 
rectly  using  factorizations  of  the  transfer  matrices 
and  by utilizing and extending  results of  the  related 
nominal  synthesis problem. How to choose  an  appropri- 
ate T in  control  design  is  also  discussed  using  poly- 
nomial  matrix  interpolation. 

I. Introduction 

In the  past  decade  there  has  been  significant 
interest in the  equation 

T = PM (1) 

where T(pxq),  P(pxm), and M(mxq) are  rational  matrices, 
as such equations  often  appear  in  systems  and  control 
problems. The  problem  of  determining  solution  M  when 
T and  P  are  given  is  usually  referred  to  as  the  model 
matching  problem  for  reasons  discussed  below. 

Consider  a  linear  time-invariant  m-input, 
p-output  plant  y = Pu described  by  its  (pxm)  proper 
transfer  matrix P(s). Let  the  general  control  law 
u = Cyy + Crr be  used 

where  C = [-C C,] is  the controller.  The  control 
action  u  can {e expressed in terms  of  the  reference 
signal  r  only, as a  mathematically  equivalent  open 
loop  control law. In particular  u = Mr with  M = 
(I+C,P)-lC, a  proper  (mxq)  transfer  matrix. In  the 
Modei  Matciing-  Problem ( " e )  a  desired  response ym = 
T,r is  given (Tm the  model)  which  should  be  matched 
exactly by y = PMr  for  all  r of  interest.  And  the 
problem  then  becomes  to  determine  proper  M  which  satis- 
fies  the  equation  Tm = PM where Tm and  P  are  given 
proper  transfer  matrices.  M  can  then  be  realized  via 
feedback and  feedforward  compensation [1-41. Note 
that for Tm = I  we  have  the  Inverse  Problem. For in- 
ternal  stability  in  the  control  structure  it  is  nec- 

. .  

necessary  that Tm and  M  be  stable.  Therefore in ( l ) ,  
P  proper  and T proper  and  stable  are  given  and  we  are 
interested in  the  existence  and  properties  of  proper 
and  stable  solutions M. 

It  should  be  pointed  out  that in  typical  control 

applications T (or T,) is  not  exactly  fixed  since  a 
number of  different  T  do  perhaps  suffice  to  satisfy 
the control  specifications.  Furthermore,  the  model 
of  the  plant  P  only  approximately  describes  the 
behavior  of  the  physical system,  In  which case  at- 
tempting  to  exactly  match  a  given T is  unrealistic. 
The  study of  the  mathematical MMP is  however  useful  in 
in  control,  because  it  provides  insight  to  the  proper- 
ties  of  the realizable  closed  loop  transfer  matrices T 
and  to the  required  control M. 

There  is  a  number  of  control  problems  which  bene- 
fit from  the  understanding of  the MMP. Among  these: 
The  Decoupling  Problem  where  T  in (1) is  not  com- 
pletely  specified  but  it  must  be  a  (block)  diagonal 
transfer  matrix; this is  one  case  of  a  class  of 
problems  where T is not  given  but  restrictions  are 
imposed  on  its  structure  or  other  properties; e.g., 
T must have  specific poles. In  the  Model  Following 
Problem it is  required  that  the  error  e = y - ym 
asymptotically  approaches zero. This is  equivalent 
to  determining  proper  stable  M so that PM - Tm = 2 
where  the  proper,  stable Tm is  given  and 2 is  any 
stable  transfer  matrix.  If 2 is  specified  to  exactly 
determine  the  behavior  of  the  error,  then  this  is  the 
MMP with  T = Tm + 2 in (1). 

The MMP has  received  a  lot  of  attention in the 
literature both  because  of  its importance  in  control 
and its  attractive  mathematical  formulation.  The 
equation  T = PM has  been  studied  over  rationals,  poly- 
nomials,  over  rings,  using  a  variety  of  mathematical 
tools  and  methods.  And the  literature  is  rich  with 
results  which  offer  insight  and  suggest  alternative 
methods  of  solution. 

Here we concentrate  on  the  finite  and  infinite 
zeros  T must have  for  solution  M to  exist.  And we 
express  the  existence  conditions  in  terms  of  those 
zeros and their  associated  structure  (multivariable 
case). Two approaches  are  used:  canonical  forms  in 
Section  I1 and  polynomial  matrix  factorizations  in 
Section  IV. In  Section  I11  the  Nominal  Synthesis 
Problem  which  is  closely  related  to MMP is discussed, 
results  are  reviewed  and  extended  and  then  used in the 
other  sections. It is shown that for  a  proper  P  and 
a  proper  and  stable T, proper  and  stable  solution  M 
exists  if  and  only if-T'has  all  the  unstable  finite 
and infinite  zeros of P  together  with  their  associated 
structure.  This  is  made  precise in this  paper so it 
can  be  used in  control design.  And in  Section  V these 
results  are  utilized  to  derive  simple  guidelines  to 
choose  appropriate T; for  this,  polynomial  matrix  in- 
terpolation  is  used. 

This paper formalizes the  fact  that in any  con- 
trol  design,  where  the  control  law  can  be  described 
by the  above  general  controller  u = - Cyy + Crr,  all 
the RHP zeros of  the  plant  P  must  appear  as  RHP  zeros 
of  the  compensated system  transfer  matrix  T if  inter- 
nal  stability  is  to  be  preserved  or  attained;  further- 
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more, T should  be  "more  proper"  than P. This  impor- 
tant  fact  involving  the  RHP  zeros,  is  perhaps  more  ob- 
vious in the  single-input,  single-output  case  although 
it  does  not  appear  to  have  been  formally  stated in the 
classical  control literature. In the  multi-input, 
multi-output  case  it  is  not  easily  detectable  due  to 
the  character  of  the  multivariable  zeros  and  the  wide- 
spread use of  state-space,  with  its  feedback  first  de- 
sign,  which  tends  to  further  obscure  this  fact.  HOW- 
ever, it  has  been  implied in, shown in different  de- 
grees of detail,  or  shown in abstract  settings  by  a 
number  of  authors.  Among  others: In (51 the  "fixed 
poles" of M  in ( 1 )  are  defined  which  are in effect 
those  poles  of T not in  P and  those  zeros  of  P  not 
in T; for  M  stable,  since  T is already stable, those 
zeros of P not in T must  be stable and  therefore  all 
the  RHP  zeros  of  P  should  be  zeros  of T. In [6]  this 
result is shown  for  a  particular  control  structure  and 
with  only  passing  reference  to  associated zero struc- 
tures  of  P  which  must  also  appear in T. In [3]  the 
A - structure  matrices  defined in the A = l/(s+a) 
domain,  are  used in the  same  way  as  the  canonical 
forms in Section 11. In [ 7 ,  Th.  31  it is shown in 
a  coordinate-free  way  to  what  extent  the  zeros  of  P 
"appear in" the  zeros of T; this is done in terms  of 
pole  and zero modules. 

The  emphasis  of  this  paper is not so much on the 
novelty of  the  results  but on the  derivation  via  al- 
ternative  methods so to gain  insight  and  perhaps  more 
importantly on useful  formulation of  the  results so 
that  they  can  be  directly  used in control  design -- 
And  this is shown in the  last  section. 

11. Canonical  Forms 

Consider  the  equation 

T = PM (1) 

where P(pxm),  T(pxq), rational  matrices  are  given. 
Solution M(mxq), exists  over  the  field  of  rationals  if 
and  only  if 

rank  [T,  PI = rank  P (Im T c Im  P)  (2) 

Suppose  P and T  are  proper, i.e. lim P(s) < . The 

existence  of  proper  solutions  M  can  be  studied  using 
the  interactors  or  the  Hermite  forms  of  P  and T. The 
interactor Ep  of a  proper  P  and  its  extension,  the 
Hermite  normal  form  Hp  were  introduced in [ 8 ,  91 re- 
spectively  as  appropriate  canonical  forms of P  under 
dynamic compensation. 

The  interactor Ep  of a  full  row rank  matrix  P 
(rank  P = p) was  defined  as  the  unique  nonsingular 
polynomial  matrix  of  certain  canonical  structure  for 
which  lim cpP(s) = K where  rank K = p. 

S +m 

S += 
It  was  shown in [ 8 ,  Th.  4.51  that  if  rank T = 

rank  P = p  then  a  proper  solution  M  exists  if  and  only 
if cpcT-1 is a  proper  matrix. 

The interactor  was  generalized in [lo] and  defined  for 
P  where  rank  P = r 5 p. In addition, the  relation  be- 
tween  ep  and Hp (for P  proper  and  denominators of Hp 
at n = s )  was  shown to  be  EpHp = diag [Ir, 01. [lo, 111 

Hp(pxm), the  Hermite  normal  form  of  P  191,  is  a 
basis of Im P. In general  P is an  Rs  -matrix  meaning 
that  the  entries in P  are in Rs  the  ring  of  real 
transfer  functions  with  denominators in S; S is a 
multiplicative  subset  of  R[s]  consisting  of 1 together 
with  all monic polynomials (of positive  degree)  gene- 
rated  by a  set of monic  prime  factors.  P = HpE where 

- P and E-1 are Rs -matrices. It has  been shown that: 

Theorem 2.1 [ 9 ]  -- 
Given T and P, Rs -matrices,  there  exists  solu- 

if 
tion M, an Rs matrix, which  satisfies (1) if  and only 

HT = "pg  , - M  an  Rs  -matrix (3) 

Let R, denote  the  proper  transfer  functions.  The 
above  result  then  deals  with  the  existence  of  proper 
soluticns  M of (1) given  proper  P  and T. (3) in this 
case  can  also  be  written in terms  of  the  interactor  Ep 
and ET as  discussed  above. 

The  zeros  at  infinity  of  proper P(s) are  the 
zeros at w = 0 of  P(l/w). They  are  exactly  the  zeros 
at  infinity  of Hp  which  implies  that (3) can  be  used 
to study the zeros at  infinity  of T  when  a  proper so- 
lution  M  to (1) does  exist.  Note  that in this  case  Hp 
does  not  have  any  finite  zeros. 

Let  rank  T = rank  P = p. 

Corollary 2.2 Any zero at  infinity  of P is a  zero 
at  infinity  of  T. 

Proof:  In  view  of  Hp = [cp-l 01 (3) can be written 
a s S p S ~ - l  = a  proper  matrix  which is the  condition in 
[8, Th.  4.51.  Hp(l/w)  and  therefore  cp-l(l/w) is a 
polynomial  matrix, in Hermite  canonical  form,  with  all 
of  its zeros at w = 0 [lo]. Since cpE~-l must  be a 
proper  matrix in s ,  cp(l/W)cT-l(l/W) should  not  have 
any  pole  (at  w = 0) which  implies  that  all  the  zeros 
at  infinity  of P  must  be  zeros  at  infinity  of T. 

Notice  that  the  structure  of  the  zeros  at  infinity 
of P (in the  sense  of (3)) will  also  appear in T  for 
proper  solutions  M  to  exist. 

Given.P  proper  and T proper  and  stable  we  are 
interested in proper  and  stable  solutions M of (1). 
The  existence of solutions  M in this  case  cannot 
be  studied  directly  via  Theorem 2.1 since  P is not 
necessarily  stable  and  the  theorem  demands  that  all 
matrices  involved  should  be  Rs  -matrices,  here  taken 

possible  to show that a  solution  M of (1) exists if 
to  be  proper  and stable matrices.  It is however 

and  only  if  there  exists  a  solution  to an  equation 
which  only  involves  proper  and  stable  matrices. 

Theorem 2.3 Given  P  proper  and  T  proper  and stable, 
there  exists  proper  and  stable  solution  M in (1) if 
and  only  if  there  exists  proper  and  stable  solution 
X' in 

-- 

T = D'X' , ( 4 )  

where  P = N'D'-l a  proper,  stable  right  coprime  fac- 
torization. Furthermore,  all  solutions  M  are  given by 

M = D'X' . ( 5 )  

Proof  Direct in view  of Theorem 3.2 in next  section. - 
Theorem 2.1 can now be  used  to study  solutions of 

(4). In particular  solution X' exists  if  and  only  if 

HN  contain  the  unstable  (RHP)  finite  zeros  and  the 
HT = H e  where  M  a  proper  and  stable  matrix.  HT  and 

zeros  at  infinity  of T and P and  only  those.  Conse- 
quently  this  relation  can  be  used  to  study  the  condi- 
tions on the  zeros  of  T  for  solutions  to  exist.  The 
analysis is simplified  if  rank  T = rank  P = p  which 
is common in control practice. Also  note that  HT 
(derived with n = s+a a > 0 191) has  as denominators 
of its  entries  powers  of n and  it is of  the form 
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* * 
HT = [HT, 01 with  HT  nonsingular. where  P = N'D'-l  is a  right  coprime  proper  and  stable 

factorization of P. 
Corollary 2.4 Any unstable  finite  zero of P is a 
zero of T. 

Proof:  Similar  to  the  proof of Corollary 2.2. - 
Take  w = l/s+a a > 0. Actually,  using  this  mapping, 
not  only  results  on  the  RHP  zeros  of  T  are  derived 
but also  on  its  zeros  at  infinity. 

Notice  that  the  structure  of  the  RHP  zeros  of  P  will 
also  appear  in  T  in  the  sense of (3). 

Although Cp and Hp provide  significant  insight 
they  are  difficult  to  compute.  This  reduces  their 
applicability and in the  next  sections  we  consider 
alternative  ways  to  study (1). 

111. Nominal  Synthesis  Problem 

In the Nominal  Synthesis  Problem  it  is  assumed 
that P  in  T = PM  is  given and  it  is  of  interest  to  de- 
termine  the  solution  pairs (T, M). This  problem  was 
studied in  [7] and in the  following  the  characteriza- 
tion  of  all  solution  pairs  is  presented  without  proof. 

Given P, we  are  interested in the good solution 
pairs  (T, M) of T = PM. A transfer  matrix  T  is  said 
to be  good  if  its minimal  polynomial  is  good. A poly- 
nomial p(~) will be  good  if p(~) E Sg  where S g c  R[s] 
is  closed under  multiplication  in R[s],  it  includes 
the  polynomial 1 and it excludes  the  zero  polynomial; 
i.e. all  the  roots of p(s) are  in  symmetric  regions, 
with  respect  to  the  real axis, in  the  complex  plane. 

Let P = ND-1  be a  right  coprime  polynonial  factoriza- 
tion  of  P. 

Theorem 3.1 The  pair (T, M) is a  good  solution of 
(1) if  and  only  if  there  exists  a  good  transfer  matrix 
X such that 

-- 

N 
x .  ( 6 )  

Proof:  Direct  from 17, Theorem 21. - 
Note  that in  [7], the above  theorem  is  shown  in  a  co- 
ordinate  free  framework.  Sg  k[sl  is  a  principal 
ideal  domain of  polynomials in s with  coefficients  in 
in an arbitrary  field  k  and T, M etc.  are  morphisms of 
k[s]  -vector  spaces. 

The  above  theorem  deals  with  general  good  trans- 
fer matrices  and  it  will  be  used in this form to show 
results  in  the  next  section. A case  of a  good  trans- 
fer  matrix  is of  course a  stable  one  and  many  times 
in the following  we  will be  using stable and unstable 
instead  of  good  and  not  good  or  bad. 

Using  Theorem 3.1 the following  resulc  is  ob- 
tained  which  characterizes  all  proper  and  stable so- 
lutions of T = PM.  Note  that  it  has already  been  used 
in Section I1 to  prove Theorem 2.3 

Consider T = PM where P proper  is  given 

Theorem 3.2 The  pair (T, M )  is a  proper  and  stable 
solution to (1) if  and  only  if  there  exists  proper  and 
stable X' such  that 

-- 

Proof:  It was  shown  in  [12]  that - 
- -  

N' 
- -  

N 1 - J  = i L _ /  II, (8) 

where II, iT1  stable  and DII biproper.  If  (T,  M)  is a 
proper,  stable  solution  pair, it  is given by (6) or  by 
( 7 )  where X' = Ir1X  which  is  stable;  X'  is  also  proper 
since M = D'X'  and D' is  biproper.  Conversely ( 7 )  is 
a  solution  for  any  proper and stable X'. 

Theorems 3.1  and  3.2 can be  used  to  study 
the zeros of T and  the  results  are  derived in the 
next  section. 

IV. Direct  Study  of  The  Zeros  of 
T and Existence  Theorem 

Given P, let  T  be  a  good  transfer  matrix  such 
that a good solution M to T = PM does  exist.  It  is 
of  interest  to study  the  zeros  of T. It  is  shown  that 
the  requirement T, M to  be  good implies that all  the 
finite  zeros  of  P  which  are  not  good  must  appear  as 
zeros  of T  (under  mild  conditions).  It is  also  shown 
that  the  requirement  for T, M to  be proper,  assuming 
that P is proper,  implies that  all  the  zeros  at 
at  infinity  of P  will  also  be  zeros  at  infinity  of T. 

We  shall  assume that  rank  P = p  which is a  common 
case in practice.  Let  P = ND-l a  right  coprime  (rc) 
polynomial  factorization  and  write 

N = Nbi ( 9 )  

where  the  roots  of lNbl ( # O )  are  exactly  those  zeros  of 
P  which  are  not  good  (also  called bad). This  can  al- 
ways  be  achieved  by using,  for  example,  the  Smith  form 
of  N. Note  that  since  P  has  full row  rank, Nb is  a 
left  divisor  of  a  greatest  left  divisor  (gld) of the 
rows  of N, the  determinant of which has  roots  the 
finite  (transmission)  zeros  of  P. 

Let T = NTDT-~, a  rc polynomial  factorization. 

-- Lema 4.1  NT = N@T. 

Proof:  In  view  of  Theorem 3.1, T = NX where X is 
a d  transfer  matrix.  Then NTDT-~ = NX or  NT = 
Nb(sDT) which  shows  the  result  since ~ D T  = ET a 
polynomial  matrix. 

This  lemma  can  be  used  to study the  relation  be- 
tween  the  bad  zeros of P and T and  their  associated 
structures.  However,  it  does  not  necessarily  imply 
that  the  bad zeros of P in  Nb  should appear  in NT  and 
therefore in  T as  the following  example  shows: 

Consider  T = NTDT-~ good  (stable)  with  NT = [0 1]T , 
P = ND-l  with N = Nb = diag[s-1, 11. M = D[O 1ITD~-' 
is a good  (stable)  solution  of (1). However  the  bad 
(RHP)  zero  of P at 1 does  not  appear in T. 

In general, if  rank T < rank  P = p  the  lemma  does 
not  necessarily  imply  that zi,  a bad zero of P, will 
be a  zero  of  T  since  rank NT(zi) < rank  NT  (the  normal 
normal  rank)  will  not  be  necessarily  true. 

( 7 )  
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Let  rank T = rank P = p . (11) 

Theorem 4.2 Assume  that T and M y  good  transfer 

of b l ~  then 
matrices,  satisfy (1). If GT is a gld  of  the  rows 
-- 

GT = N b 3  (12) 

Proof:  Since  rank T = p,  Nb  will  be a left  divisor 
of  GT in view of (IO). 

Note  that  the  roots  of I GTI * lNbl 1 3 1  are  the  zeros 
of T and  they  include  the  bad  zeros  of P in Nb; 
therefore, 

Corollary 4.3 Any finite  zeros of P  which is not  good 
is also a  zero of  T. 

T may  of  course  have  more  bad  zeros in addition  to  the 
zeros  of P. 

The  theorem  implies  more  than  the  corollary  indicates. 
Not  only  the  bad  zeros  of P appear in T but  also  the 
structure  associated  with  them (in Nb)  also  appears in 
T. 

finity  will  now  be  directly  derived. 

Suppose  that P is proper  and  given a  T proper, a 
proper  solution M to T = PM  has  been  found. Let (11) 
be  satisfied. 

Based on Theorem 4.2 results on the  zeros  at in- 

Corollary 4.4 Any zero at  infinity  of P is a zero  at 
infinity  of T. 

Proof: In T(s) = P(s)M(s) let s = l/w  to  obtain - 
T(w) = P(w)d(w). The zeros at  infinity  of P(S) are 

exactly  the  zeros  at w = 0 in f(w). Consider w = 0 to 

be the  zeros  of P which  are  not  good;  then fib defined 
in (9) only  contains  zeros  at w = 0. Theorem 4.2 then 
directly  implies  the  result. 

Note  that  the  structure  at  infinity  of P is also  re- 
peated in T. Corollary 4.4 says  that  for  existence  of 
a proper  solution My T should  be  "more  proper"  than P. 

The  above  results  involving  the  finite  and in- 
finite  zeros of P could  have  been  derived  simultane- 
ously  as  follows:  Use w = l/s+a a > 0 fixed  to  obtain 
F(w)  and  consider  the  bad  zeros  of 6 to  be  the  map- 
pings  of  the  bad  finite  zeros  of P together  with  the 
zeros  at w = 0 which  correspond  to  the  zeros  at  in- 
infinity  of P; then  the  Theorem  and  Corollary  4.3, in 

terms  of ? and f ,  imply  both  desired  results. 

Theorem 4.5 Given P proper, T proper  and  stable  with 
rank P = rank T = p,  there  exists  proper  and  stable 

RHP  finite  zeros  and  all  the  zeros  at  infinity  of P 
solution M if  and  only  if T has  as  its  zeros  all  the 

in the  sense of (12). 

Proof:  Necessity  has  been  shown.  The  sufficiency 
proof is constructive.  First,  let p = m and  work 

D(NbEl-lNTDT-1.  Since (IO) and  Theorem 4.2  are 
in the w -domain  (w = l/s+a a > 0). M = P-lT = 

satisfied, M = D F 1 3 D ~ - l  which  does  not  have  any 
poles  at w = 0 nor  at  any  bad  locations.  Therefore 
M is proper  and  stable. If p < m, write P = 
[NP 01D-l  and  choose Xp = S - ~ E T D T - ~  in 

~- 

is arbitrarily  chosen  for  stability  and  properness. 

V. Selecting T in Control Design 

In control, T in T = PM is chosen so that  the 
system  response y = Tr  to  test  inputs  satisfies  the 
control  design  specifications.  The  relation 

NT = N b T  (10) 

which  characterizes  the  unstable  finite  zeros  and  the 
zeros  at  infinity T must  have  for a proper  and  stable 
solution M to  exist,  does  not  provide a convenient  and 
direct  way  to  choose  appropriate T. Note  that  the 
transfer  function  entries in T are  individually  chosen 
to  satisfy  specifications.  And  although  they  can  be 
easily  chosen  to  include  the  zeros  at  infinity of P, 
i.e. T is chosen  to  be  "more  proper"  than P, the  un- 
stable  zeros  of P do  not  necessarily  appear  as  zeros 
of  individual  entries  of T. Therefore  there  is a need 
for  simple  and  direct  conditions  which  will  help  the 
designer  to  choose T containing  the  unavoidable  un- 
stable  zeros  together  with  the  appropriate  structure. 

Let t = l,...,t be the  unstable  zeros of P 
(roots  of  Nb 1. Then  rank Nb(Zi) < p which  implies 
that  there  exists a real lxp nonzero  vector  ai  such 
that  aiNb(Zi) = 0. Post  multiplying  by E ( z i ) ,  the 
solutions  do  not  change  and  the  ai  can  be  determined 
from  aiN(zi) = 0. 

Assume  that zi i = l,...,k  are distinct  or  if zj 
is a multiple  zero  the  rank  reduction in N(zi) equals 
the  multiplicity  of zj. 

Theorem 5.1 The  unstable  zeros zi i = l,...,k  of P 
together  with  their  structure  will  appear in T if  and 
only  if 

~- 

aiNT(Zi) = 0 i = l,...,t  (13) 

where  ai  are  determined  from 

aiN(zi) = 0 i = l,...,k . (14) 

Proof:  Relations  (13)  and (14) are  the  necessary  and 
sufficient  conditions  for  Nb  to  be a left  divisor  of 
NT. This-is shown in [13].  Note  that  if zi includes 
multiple  zeros  which do  not  satisfy  the  above  condi- 
tions,  (13)  and  (14)  should  be  modified  as  it is shown 
in 1131;  this  was  not  included  here for  simplicity. 

The  theorem  can  also  be  written in terms  of  transfer 
functions: 

(13) is always  equivalent  to  aiT(zi) = 0 since T 

(14)  can  be  written  as  aiP(zi) = 0 when  P  does 
is  stable; 

not  have  any  poles  at zi. 
Under  this  assumption: 

Corollary 5.2 The  unstable  zeros of P together  with 
their  structure  will  appear in  T if  and  only  if 

aiT(zi) = 0 (13a) 

where  ai  are  determined  from 
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As an  example,  consider  a  diagonal T; that is the  con- 
trol  specifications  demand  diagonal  decoupling of the 
system. Let 

, I- s-1 0 -1 
with  a  zero at s = 1. Then 

1 -  

aP(1) = 0 => a = [l 01 and T must  satisfy aT(1) = 
[ 1 01 T( 1) = 0. Since T must  be  diagonal  (square  and 
stable), tll(1) = 0; that is the RRP zero of  the  plant 
should  appear in the  (1,l)  entry  of T only.  Certainly 
T can  be  chosen  to  have 1 as a  zero  in  both  diagonal 
entries;  note  that  if  T(zi) f 0 (13a) is always  satis- 
fied. However,  the  RHP  zeros  are  undesirable  in  con- 
trol  and  the  minimum  possible  number  should  be in- 
cluded in T. 

Let 

p =  - '- '-' -1 with  also  a  zero  at s = 1. 
1 -  

Then aP(1) = 0 => a = [l, -11 and  aT(1) = 0 => 
tll(1) = 0 and  t22( 1) = 0. That is, there  are  cases 
where  the  structure of P and  the  requirement  that T 
be diagonal  imply  that  the  RHP  zero  must  appear in 
both  diagonal  entries  of T. 
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