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Abstract

This paper presents a framework for control design of general nonlinear switched systems
using passivity and two passivity indexes. Background material will be presented on traditional
passivity for continuously varying systems, the concept of a passivity index, and passivity theory
for switched systems. The passivity index concept will then be generalized to apply to switched
systems to measure the degree of passivity in a system. It will be shown that when the passivity
indexes exist, controllers can be designed to yield stable systems using the indexes. Two special
cases are given for designing controllers for linear switched systems. The final result will then
be presented showing that the passivity indexes can be used to design controllers for general
nonlinear switched systems.
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1 Introduction

Traditional passive systems theory is a powerful tool for system analysis and control design [1],[2].
Its origins are in electrical circuit theory where networks of passive circuit components were known
to be stable in various configurations. These components were often linear, but passivity can be
applied to general nonlinear systems. Although Lyapunov theory provides more general stability
results for nonlinear systems, passivity gives a similarly intuitive approach. The real strength in
using this theory is that passivity is a property that is preserved when systems are interconnected in
parallel or feedback. Using these results, large-scale systems can be shown to be stable by verifying
passive definitions for each system component and by following simple interconnection rules.

Passivity has been applied to many systems using a traditional notion of energy. Examples
include simple systems such as electrical circuits and mass-spring-dampers. More complex appli-
cations include robotics [3], distributed systems [4], and chemical processes [5]. It has also been
applied to networked control systems with delays where systems can be stabilized using a wave
variable transformation [6]. In these more general cases, passivity can be applied even when there
isn’t a traditional notion of energy, but rather a generalized energy. This generalized energy can be
defined for each specific system using an energy storage function. When a storage function exists
and the energy stored in a system can be bounded above by the energy supplied to the system, the
system is passive.

Although passivity has traditionally been applied to continuous time nonlinear systems, there
is a natural extension to switched systems. Using this expanded definition, a much larger class of
systems can be identified as passive and controlled using passivity techniques. This includes systems
with naturally hybrid dynamics, complex systems that are modeled using switched systems, and
systems with multiple switching controllers.

Traditional passivity is only a binary characterization of system behavior based on whether or
not that system dissipates sufficient energy. However, there are systems that dissipate significantly
more energy than is required to maintain passivity. Simply terming these systems “passive” does
not describe the systems’ behavior well enough. Likewise, there are non-passive systems that would
become passive with a simple loop transformation. Knowing the type and magnitude of the loop
transformation would help in designing a stable system. In both cases, this information can be
presented in the form of a passivity index. Using a passivity index provides more information for
control design.

The remainder of this report will be concerned with presenting two passivity indexes for switched
systems. First, background material on passivity and the concept of a passivity index for contin-
uously varying systems will be covered. Then the definition of passive switched systems will be
reviewed. After the generalized passivity index for switched systems is presented, theorems using
the index will be given to guide the control design of general (not necessarily passive) switched
systems.
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2 Background Material

2.1 Passive Systems

Passivity is a characterization of dynamic systems based on energy dissipation. It is typically
shown by defining an energy storage function and showing that the energy stored during any time
interval is bounded above by the energy supplied to the system. The energy supplied to the system
takes the form of the inner product of the system input and output and may not correspond to a
traditional notion of energy. This generalized energy function must be constrained to be positive
definite.

Definition 1. A scalar function V (x) of a vector quantity x ∈ R
n is positive definite if the following

are true.

• V (x) > 0, ∀x 6= 0

• V (0) = 0

Using this generalized notion of energy, the definition of passivity can be given.

Definition 2. A system is passive if there exists a positive definite storage function V (x) such
that, for all t1 ≤ t2,

∫ t2

t1

uT (t)y(t)dt ≥ V (x(t2)) − V (x(t1)). (1)

If the energy supply rate is relaxed to be any function of input and output, the passive inequality
becomes the more general dissipative inequality. For further details on passivity and dissipativity,
refer to [5],[7],[8].

Definition 3. A system is dissipative if there exists a positive definite storage function V (x) such
that, for some ω(u, y) and for all t1 ≤ t2,

∫ t2

t1

ω(u, y)dt ≥ V (x(t2)) − V (x(t1)). (2)

Passive systems have the property that the unforced system, u = 0, is Lyapunov stable. Dissi-
pative systems aren’t necessarily Lyapunov stable but there exists a control input for which ω(u, y)
is negative definite

The following definitions are important when analyzing the level of passivity of a system. The
main reason to cover these is to discuss properties of passive systems and how to use these properties
to characterize systems that lack passivity. The properties have familiar definitions for linear
systems, but they have nonlinear generalizations that are equally useful.

Definition 4. The zero dynamics of a system are the state dynamics associated with the output
fixed at zero,

ẋ = f(x, u)
0 = h(x, u).

(3)
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Definition 5. A system is minimum phase if its zero dynamics are Lyapunov stable in a neigh-
borhood around the origin.

Minimum phase linear systems are ones with all zeros located in the left half plane. Systems
with non-minimum phase zeros have the distinct behavior that, when being controlled to a set-
point, they initially move away from the set-point. This behavior is generalized to nonlinear systems
when a given system has unstable zero dynamics. All passive systems are minimum phase.

Another important characterization of linear passive systems is that they have low relative
degree. When written as a transfer function, the relative degree of the system is the difference
between the denominator polynomial and the numerator polynomial. Assuming that the system
is causal, the relative degree of the system cannot be negative. The relative degree of nonlinear
system is as follows.

Definition 6. The relative degree of a system is the number of times the output equation must be
differentiated before the input variable appears.

Passive systems have relative degree of zero or one. For simplicity, this will be referred to as
low relative degree for the remainder of this paper. When either of these definitions is applied to a
linear system it gives the same result as the traditional definition.

2.2 Passivity Index

The concept of a passivity index is most thoroughly covered by Bao and Lee [5]. The first index is
based on the range of positive feedback gains that will passivate a system. The other is the range of
feedforward gains that will passivate a system. The two are independent in the sense that knowing
one index does not provide any information about the other except that the other index must exist.
Both indexes are necessary to characterize the level of passivity in a system.

The two indexes are designed so that each is the largest such gain that will passivate the system
and any smaller gain will also render the system passive. This means that passive systems have
a positive or zero value for both indexes. Non-passive systems can have one index negative and
the other positive or neither index exists. When a system has a positive value for an index, this is
termed an excess of that particular form of passivity. Likewise a negative value for that index is
termed a shortage.

Definition 7. The output feedback passivity index (OFP) is shown in the following block diagram
(Fig. 1). It is the largest gain that can be placed in positive feedback with a system such that the
interconnected system is passive. This index is denoted OFP(ρ).

Definition 8. The input feedforward passivity index (IFP) is shown in the following block diagram
(Fig. 2). It is the largest gain that can be put in a negative parallel interconnection with a system
such that the interconnected system is passive. This index is denoted IFP(ν).

When applying the two indexes simultaneously (Fig. 3), a system is said to have OFP(ρ) and
IFP(ν). For examples of the two passivity indexes, refer to Appendix A.
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Figure 1: Positive feedback measure for OFP.

Figure 2: Negative feedforward measure for IFP.

It isn’t always possible to passivate a system using these two loop transformations. When a
system lacks OFP it is unstable and can be made passive with negative feedback only if the system
is of low relative degree and is minimum phase. Likewise, when a system lacks IFP it is non-
minimum phase and can be made passive with positive feedforward only if the system is stable.
This means that a system that is both unstable and non-minimum phase cannot be made passive
with any combination of feedback and feedforward gains. In this case, neither index exists. In some
cases it may be possible to passivate these systems with state feedback and a feedforward gain.
From a design perspective, these cases are significantly different so will not be addressed in this
paper.

It should be noted that there are two special cases when the system under consideration is
passive. When the system is passive and has an excess of OFP, the system is output strictly passive.
Likewise, if it is passive with an excess of IFP, the system is input strictly passive. Consider the
following inequality:

∫ t2

t1

uT (t)y(t)dt ≥ V (x(t2)) − V (x(t1)) +

∫ t2

t1

νuT (t)u(t)dt+

∫ t2

t1

ρyT (t)y(t)dt. (4)

Definition 9. A system is output strictly passive if (4) holds for ρ > 0 and ν ≥ 0.

Definition 10. A system is input strictly passive if (4) holds for ν > 0 and ρ ≥ 0.

As expected, both of these special cases of passivity describe systems that are Lyapunov stable,
but output strictly passive systems have the added result that they are finite-gain L2 stable. When
the inequality 4 holds without the sign constraint on ρ or ν, it is equivalent to the system being
OFP(ρ) and IFP(ν).

Using the passivity indexes provides more information about a system other than the simple
characterization of passive or not passive. This information can be used to define stable feedback
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Figure 3: The system with both indexes applied. This will be referred to as the modified system.

loops even when the systems in the loop aren’t passive. How this is done will be covered in the
design section of this paper.

2.3 Passive Switched Systems

There have been a few definitions of passivity proposed for switched systems [9],[10],[11]. For an
overview of these works, refer to Appendix B. The most comprehensive definition in the literature
seems to be the work of Zhao and Hill [11]. In this paper, passivity for switched systems is
defined and used to show that passive switched systems are stable and passivity is preserved when
combined in negative feedback. The switched systems in question are in the following form with a
finite number of subsystems, i = 1, ...,m,

ẋ = fi(x, u)
y = hi(x, u).

(5)

Throughout this paper, assume that the system switches a finite number of times on any finite
time interval. The switching signal is a function of time that takes on the value of the index of the
subsystem (1, ...,m) that is active at each time instant. Consider the kth time switching to the ith

subsystem. The switching signal has the value i from time tik up to time tik+1.

Definition 11. Given a switched system (5), this system is passive if the following conditions are
satisfied.

1. There exist storage functions Vi(x) such that the system is passive while the ith subsystem is
on,

∫ t2

t1

uT (t)y(t)dt ≥ Vi(x(t2)) − Vi(x(t1)),∀i. (6)

2. There exist cross supply rates ωi
j(u, y, x, t) such that the jth subsystem is dissipative when the

ith subsystem is on,

∫ t2

t1

ωi
j(u, y, x, t)dt ≥ Vj(x(t2)) − Vj(x(t1)),∀j,∀i 6= j. (7)
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3. There exist functions φi
j(t) for each cross supply rate that are absolutely summable and such

that
ωi

j(u, y, x, t) ≤ φi
j(t),∀j 6= i. (8)

3 Passivity Index for Switched Systems

Although passivity indexes have been defined and used for continuously varying systems, they
haven’t previously been applied to switched systems. This is mainly because passivity applied to
switched systems is a relatively new research area. This section covers two formulations of the
passive indexes for switched systems based on different assumptions about the switching behavior.
It will be shown that these generalize the traditional concept of the indexes.

Any generalization of the passivity index to switched systems should maintain the precise con-
cept of the index for continuously varying systems. When both indexes exist, the system with the
appropriate gains applied (Fig. 3) should remain passive. However, there are two ways the indexes
can be defined to meet these expectations. If the gains remain constant, a conservative definition of
the indexes can be formed. This definition is valid for any switching signal. If the gains are allowed
to be time varying, the indexes can be made much less conservative, but the switching signal must
be known. The two proposed definitions will be provided. Since the first proposition is a special
case of the second, after both are covered it will be shown that they meet the expected condition
of the index.

Proposition 1. Consider a switched system (5) with arbitrary switching signal. Assume the sub-
systems have OFP index set {ρi} and IFP index set {νi}. Then the switched system is OFP with
index ρ = min{ρi} and IFP with index ν = min{νi}.

The next case to consider is when the overall switched system gains are allowed to be a function
of time. The gain functions are simple, being in a piecewise constant form. The value of the
gain functions at a given time is simply the values of the constant passivity indexes for the active
subsystem. With a reasonable assumption, such as finite dwell time for each subsystem, the gain
functions are well defined.

Using time varying gains is a more general framework than restricting the gains to be constant.
However, to make use of this index requires some knowledge of the switching signal. This could be
that the switching sequence is a known function of time, that it is a function of the known continuous
state, or that it is a measurable discrete valued signal. The definition of the time-varying indexes
is given in the following proposition.

Proposition 2. Consider a switched system (5) with a known or measurable switching signal.
Assume each subsystem i has constant OFP index ρi and IFP index νi. The ith subsystem is active
for the kth time over an interval [tik , tik+1). During this time interval, the values of the indexes are
the constant values of the indexes for that active switched system. The overall switched system is
OFP with index ρ(t) and IFP with index ν(t), where

ρ(t) = ρi and
ν(t) = νi

(9)

for tik ≤ t < tik+1.
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Proof. To show that the switched system has the given passivity indexes, it is sufficient to show
that the system with feedback ρ(t) and feedforward ν(t) is passive. Note that the well-posedness
of the feedback loop requires that ρ(t)ν(t) 6= 1, ∀t.

From the modified system (Fig. 3), the following loop equations hold:

u = ũ+ ρ(t)y
ỹ = y − ν(t)u.

(10)

The conditions for the modified system to be passive will now be verified.

1. For the modified system, each subsystem is passive when active. By the choice of ρ(t) and
ν(t), the gains applied to each active subsystem are always less than or equal to the largest
gains that will passivate each subsystem,

ρ(t) ≤ ρi, ∀i, and
ν(t) ≤ νi, ∀i.

Note that the inequality holds with strict equality for time varying gains, but the inquality
is needed for constant gains.

2. The original system G satisfied the cross supply rate dissipative inequalities (7) with rates
ωi

j . To show that the modified system remains dissipative, new cross supply rates must be

defined. Consider the following modified rates ω̃i
j :

ω̃i
j(u, y, x, t) = ωi

j(
u+ ρy

1 − ρν
,
y + νu

1 − ρν
, x, t). (11)

Using these new rates, it can be shown that each of the subsystems of the modified system is
dissipative while inactive:

∫ t2

t1

ω̃i
j(ũ, ỹ, x, t)dt =

∫ t2

t1

ωi
j(
ũ+ ρỹ

1 − ρν
,
ỹ + νũ

1 − ρν
, x, t)dt

=

∫ t2

t1

ωi
j(
u− ρy + ρ(y − νu)

1 − ρν
,
y − νu+ ν(u− ρy)

1 − ρν
, x, t)dt

=

∫ t2

t1

ωi
j(u, y, x, t)dt ≥ Vi(x(t2)) − Vi(x(t1)).

3. To show that the cross supply rates satisfy the last condition of passive hybrid systems (8) it
is sufficient to use the same functions φi

j(t),

ω̃i
j(ũ, ỹ, x, t) = ωi

j(u, y, x, t) ≤ φi
j(t) .

This shows that for all subsystems the mapping G̃ : ũ → ỹ is dissipative with respect to ω̃i
j

when the ith subsystem is on, ∀i 6= j.
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The conditions for the modified system to be passive are met. The original system is passive
with OFP(ρ(t)) and IFP(ν(t)).

This proof shows sufficiency for establishing the expected result, but the gains are also the
largest such gains that meet this condition. Consider a switched system with the subsystems
having the OFP set {ρi} and IFP set {νi}. Rather than the gains given by the definition, pick
either one and increase it by some arbitrarily small value. For example, pick the gains during a
particular active subsystem i to be ρ(t) = ρi + ǫ and ν(t) = νi for ǫ > 0. With these gains applied
the system (Fig. 3), when this subsystem is active the overall system is no longer passive so the
first condition (6) of the definition is no longer met.

It should be noted that both definitions place restrictions on the switched systems that can be
considered. For example, if any one of the subsystems is unstable and non-minimum phase, the
indexes don’t exist for that subsystem and likewise for the overall switched system.

The constant indexes defined in the first proposition are a special case of these time varying
indexes. In the case when little or nothing can be said about the switching signal, the more
conservative constant indexes must be used. For the remainder of the paper, it is assumed that the
indexes are allowed to be time varying, but the theory developed also applies in the special case of
constant indexes.

4 Design with Passivity Index

Typically, passive systems are controlled by designing a passive feedback controller. The feedback
invariance that passivity provides gives the immediate result that this interconnected system (Fig.
4) is passive and stable. This approach is valid when the systems in the loop have switching
behavior or when they are continuously varying. For proofs that passivity is preserved when systems
are connected in feedback or parallel, refer to Appendix C. When the system to be controlled is
not passive, the passivity indexes can be used to design a feedback system that still renders the
interconnection stable. We will first consider the case of linear switched systems and then move
onto the general nonlinear case.

Figure 4: The feedback interconnection of two systems.

4.1 Linear System Design

Many well-studied systems have switched linear behavior or are modeled using a switched linear
system model. Using the passivity indexes with linear switched systems provides an intuitive design
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framework that follows from well known linear system theory. The indexes can be used to design
stable, and in some cases passive, loops when a given plant may not be passive or even stable.
Some of this material is a direct application of linear system theory [12],[13],[14].

A general result for switched linear systems will be presented. Then a powerful special case
will be provided. The general theorem assesses stability of a loop when one of the two systems
lack OFP or IFP. It is not necessary to show these four cases individually. When considering both
inputs and both outputs, the interconnection has some symmetries. Only one case need be shown
and the other cases follow from interchanging the definition of G1 and G2 and changing the sign of
the indexes.

Theorem 1. Consider the feedback interconnection (Fig. 4) of two switched linear systems where
all passivity indexes exist. Assume that one of the two systems lacks either OFP or IFP on some
time interval. Without loss of generality, assume G1 is passive with OFP(ρ1(t)) and IFP(ν1(t)),
and G2 is non-passive with OFP(ρ2(t)) and IFP(ν2(t)) where ρ1(t) ≥ 0,∀t and ν2(t) < 0 on any
time interval. This interconnection is stable if the following relations hold ∀t:

1. ρ1(t) + ν2(t) ≥ 0 and

2. ρ2(t) + ν1(t) ≥ 0.

Proof. When considering all cases this theorem encompasses, one of the two conditions holds
trivially. As the problem is stated, the second condition is immediately satisfied. When the first
condition is also true, a loop transformation of the feedback interconnection is considered. It is
shown that this transformed system is stable only if the original system is stable.

Define G̃ to be the feedback interconnection of G̃1 and G̃2 which is a loop transformation (Fig.
5) from G. From the first condition, there exists a set of functions k(t) such that −ν2(t) ≤ k(t) ≤
ρ1(t),∀t to make the transformed systems G̃1 and G̃2 passive so that the interconnection G̃ is
passive and stable.

Figure 5: The loop transformation to compensate for a shortage of IFP in G2.

The transfer function for the original system G is

[

y1

y2

]

=

[

(I +G1G2)
−1G1 −(I +G1G2)

−1G1G2

(I +G2G1)
−1G2G1 (I +G2G1)

−1G2

] [

r1
r2

]

. (12)

11

M.J. McCourt and P.J. Antsaklis, “Passivity Index for Switched System Design,” ISIS Technical Report, 
University of Notre Dame, ISIS-2009-002, May 2009. (http://www.nd.edu/~isis/tech.html)



The transfer function for the transformed system G̃ is

[

y1

y2

]

=

[

(I +G1G2)
−1G1 −(I +G1G2)

−1G1(G2 + kI)
(I +G2G1)

−1(G2 + kI)G1 (I +G2G1)
−1(G2 + kI)(I − kG1)

] [

r1
r2

]

. (13)

These two interconnections have the same poles but different zeros. This implies that G is
stable if and only if G̃ is stable. As stated previously, the transformed system G̃ is stable which
implies that the original interconnection G is also stable.

This result covers the most practical control design cases when dealing with linear switched
systems. For a more general result, the nonlinear framework in the next section can be used.

There is a notable special case when the passivity indexes can be used to show that the feedback
loop is passive even when one of the systems in the loop is unstable. For this case, it is considered
a control design example where G1 is an unstable plant and G2 is controller designed to passivate
the loop. When G2 is a designed controller it is assumed that there isn’t a second reference input
r2. Note that the problem formulation of this theorem is a special case of the previous theorem,
but a stronger result is shown.

Theorem 2. Consider the feedback interconnection (Fig. 4) when G1 is a linear switched system
with a shortage of OFP. Assume that G1 is OFP(ρ1(t)) and IFP(ν1(t)) where ρ1(t) < 0 across any
time interval and ν1(t) ≥ 0,∀t. G2 is designed to be passive with IFP(ν2(t)). This interconnection
is passive if, ∀t, ρ1(t) + ν2(t) ≥ 0.

Proof. By the first theorem, it is given that the system is stable. We are able to show the
stronger result, passivity, in this case. Again, define G as the feedback interconnection of G1 and
G2,

G = (I +G1G2)
−1G1. (14)

By the condition in the theorem, there exists a set of functions k(t) such that −ρ1(t) ≤ k(t) ≤
ν2(t),∀t. Consider the feedback interconnection G̃ of G̃1 and G̃2 which is a loop transformation of
G (Fig. 6). By the choice of k(t), G̃1 is passivated while G̃2 remains passive. This implies that the
interconnection G̃ is passive.

Figure 6: The loop transformation to compensate for a shortage of OFP in G1.
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It can be shown that the mapping from r1 to y1 is preserved under this transformation:

G̃ = (I + G̃1G̃2)
−1G̃1

= [I + (I + kG1)
−1G1(G2 − kI)]−1(I + kG1)

−1G1

= [(I + kG1) +G1(G2 − kI)]−1G1

= (I +G1G2)
−1G1

= G.

By this demonstration, G is passive if and only if G̃ is passive. By the range of k(t) chosen
previously, G̃1 is passivated while G̃2 remains passive. Now G̃ is the feedback interconnection of
two passive systems so it is likewise passive. This implies that G is passive.

Although both of these theorems are able to show stability of the interconnection, the second
shows the stronger result that the loop is passive. This is because, in the second theorem, the
loop transformation is identical to the original system whereas the loop transformation of the
first theorem has different zero dynamics. The different zero dynamics are not guaranteed to be
minimum phase so the interconnection is not passive in general.

4.2 Nonlinear Control Design

The final results in this paper can be applied to general nonlinear switched systems that may or
may not be passive. This modeling framework is very general and guaranteeing stability of a control
loop is very powerful. The main restriction with using these methods is that the two indexes must
exist for each of the subsystems in the switched system. For more detail on nonlinear passive
systems refer to [5],[7].

The following theorem will be given as an example of how to use the indexes when the switched
system is unknown and unmeasurable. It is a special case of the final theorem in this paper where
the gains are allowed to be time varying. Because it is a special case, only the final theorem will
be proven.

Theorem 3. Consider the interconnection of two switched systems (Fig. 4) where each subsystem
has the following dynamics:

ẋi = fij(xi, ui)
yi = hij(xi, ui).

(15)

Note that i = 1, 2 indexes the two systems in the interconnection while j = 1, ..,m indexes the
active subsystem for each switched system. Assume that the systems are OFP(ρi) and IFP(νi)
where ρi = min{ρij} and νi = min{νij}. The interconnection is L2 stable if the following two
conditions hold:

1. ρ1 + ν2 > 0 and

2. ρ2 + ν1 > 0.

Theorem 4. Consider the interconnection of two switched systems (Fig. 4) where each subsystem
has the dynamics previously given (15). Assume that the systems are OFP(ρi(t)) and IFP(νi(t)).
The interconnection is L2 stable if the following two conditions hold ∀t:
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1. ρ1(t) + ν2(t) > 0 and

2. ρ2(t) + ν1(t) > 0.

Proof. By the relationships OFP has to output strictly passive and IFP has to input strictly
passive, the following dissipative inequalities hold for G1 and G2, respectively:

uT
1 y1 ≥ V̇1(x1) + ρ1y

T
1 y1 + ν1u

T
1 u1 and

uT
2 y2 ≥ V̇2(x2) + ρ2y

T
2 y2 + ν2u

T
2 u2.

A new energy storage function is defined to be the sum of the two given energy storage functions,

V (x) = V1(x) + V2(x).

Consider the following signal relationships from the loop given:

uT
1 u1 = (r1 − y2)

T (r1 − y2) = rT
1 r1 − 2rT

1 y2 + yT
2 y2,

uT
2 u2 = (r2 + y1)

T (r2 + y1) = rT
2 r2 + 2rT

2 y1 + yT
1 y1, and

uT y = (rT
1 − yT

2 )y1 + (yT
1 + rT

2 )y2 = rT y.

Define the following combined signals:

r =

[

r1
r2

]

, u =

[

u1

u2

]

, y =

[

y1

y2

]

, and x =

[

x1

x2

]

.

Summing the two dissipative inequalities and using the relationships given above, it can be shown
that V̇ (x) is bounded:

uT y ≥ V̇1(x1) + V̇2(x2) + ρ1y
T
1 y1 + ρ2y

T
2 y2 + ν1u

T
1 u1 + ν2u

T
2 u2 (16)

rT y ≥ V̇ (x) + (ρ1 + ν2)y
T
1 y1 + (ρ2 + ν1)y

T
2 y2 + ν1r

T
1 r1 − 2ν1r

T
1 y2 + 2ν2r

T
2 y1 + ν2r

T
2 r2. (17)

This inequality can be written in a compact form,

V̇ (x) ≤ −yTAy + rTBy − rTCr,

with the matrices defined as follows:

A =

[

(ρ1 + ν2)I 0
0 (ρ2 + ν1)I

]

, B =

[

I 2ν1I

−2ν2I I

]

, and C =

[

ν1I 0
0 ν2I

]

.

The following definitions can be made to bound this expression:

a = min{ρ1 + ν2, ρ2 + ν1}, b = ||B||2 , and c = ||C||2 ,

where ||·||2 denotes the largest singular value of the matrix. Now, a more simplified upper bound
can be given:

V̇ (x) ≤ −a ||y||22 + b ||r||2 ||y||2 + c ||r||22

= −
1

2a
(a ||y||2 − b ||r||2)

2 +
k2

2a
||r||22 −

a

2
||y||22

≤
k2

2a
||r||22 −

a

2
||y||22 ,
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where k2 = b2 + 2ac. The remaining steps are to integrate from time zero to arbitrary time T and
to take the square root.

V (x(T )) − V (x(0)) ≤
k2

2a
||rT ||

2
L2

−
a

2
||yT ||

2
L2

||yT ||L2
≤
k

a
||rT ||L2

+

√

2

a
V (x(0)).

This shows that the loop interconnection is L2 stable with gain less than or equal to k
a
.

5 Conclusion

The concept of a passivity index is quite powerful. Rather than simply having a binary charac-
terization of whether a system is passive or not, an index can provide significant detail without
requiring the full dynamic system description. For general design purposes, two indexes are used.
One characterizes the level of stability of the system and the other characterizs the extent to which
the system is minimum phase. These values represent the level of passivity in a system and are
easily used in designing stable control loops. This paper presented a few results on using the indexes
to design stable feedback loops. Two result are very general and apply whenever the indexes exist
for both systems in the loop. The other two results apply to linear switched systems and show
Lyapunov stability or passivity in special cases.

There are two main forms of passivity indexes presented based on the assumptions made on
the switched system. One is a simple generalization where the indexes are required to be constant.
This one is straightforward but quite restrictive as the system indexes may be much smaller than
the indexes of the particular active system. This one does carry the benefit that it can be applied
without considering the particular switching sequence. In second generalization, when the switching
sequence is known or measurable, the indexes can be time varying. These are much less restrictive
than the constant indexes but require this additional information. For either set of assumptions,
the definitions presented in this paper are the least restrictive. This allows for a large class of
controllers to stabilize the system.
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Appendix A - Index Examples

In order to provide some intuition for the passivity indexes, simple linear examples are given
below. These examples illustrate both excess and shortage of output feedback passivity and input
feedforward passivity. The necessary conditions for each index to exist will also be reviewed.
Passivity is an input-output property of systems so the following examples will be given in transfer
function form.

The first two examples are cases of excess and a shortage of output feedback passivity (OFP).
The index is based on the level of stability of the system in question (Fig. 1). A positive index
indicates that the system is stable while a negative index indicates instability.

Example 1. Consider the passive system,

G =
1

s+ 1
. (A-1)
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When the system has a feedback gain k applied, the combined system G̃ remains passive for any k
less than 1.

G̃ =
G

1 −Gk
=

1

s+ 1 − k

This excess OFP passivity is denoted as OFP(1).

Example 2. Consider the non-passive system,

G =
1

s− 2
. (A-2)

This unstable system can be made passive with feedback gain k less than −2.

G̃ =
G

1 −Gk
=

1

s− 2 − k

This shortage of OFP passivity is denoted as OFP(−2).

An unstable system can be made passive with output feedback only if the system is minimum
phase and has relative degree of zero or one. If these conditions are not met, the OFP index doesn’t
exist. It will be seen that the IFP also doesn’t exist in this case.

The next two examples are of systems that have excess or a shortage of input feedforward
passivity (IFP). This index is based on the extent to which a system is minimum phase (Fig. 2).
A positive index indicates that the system is minimum phase and has relative degree zero or one.
A negative index indicates the system is not minimum phase.

Example 3. Consider the passive system,

G =
2s+ 3

s+ 1
=

1

s+ 1
+ 2. (A-3)

When the system has a negative feedforward gain k applied, the combined system G̃ remains passive
for any gain less than 2.

G̃ = G− k =
1

s+ 1
+ 2 − k

This excess IFP passivity is denoted as IFP(2).

Example 4. Consider the non-passive system,

G =
1 − s

s+ 1
=

2

s+ 1
− 1. (A-4)

This non-minimum phase system can be made passive with a feedforward gain less than −1.

G̃ = G− k =
2

s+ 1
− 1 − k

This shortage of IFP passivity is denoted as IFP(−1).

A system that is non-minimum phase or has relative degree higher than two can be made
passive with positive feedforward only if the system is stable. This means that a system that is
both unstable and nonminimum phase cannot be made passive with any combination of feedforward
and feedback gains. In this case neither index exists.
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Appendix B - Passive Switched Systems Review

This section provides a summary of recent results from passive switched system (PSS) theory. This
includes significant works towards a comprehensive definition of PSS. It should be noted that there
were a few papers that came out prior to these that discussed passivity applied to switched and
hybrid systems when there exists a single storage function for the overall system. This framework
is quite restrictive. The works covered here provide a more general definition that makes use of
multiple storage functions to demonstrate passivity. This mirrors the developments of stability for
switched systems using multiple Lyapunov functions. The three papers discussed here use different
assumptions to show similar results. For each work, the main definition and results will be covered,
and then the merits of the formulation will be discussed.

All three formulations have a few technical assumptions in common. The switched system is in
the following form with a finite number of switches during any finite time interval:

ẋ = fi(x, u)
y = hi(x, u).

(B-1)

To ensure that the origin is an equilibrium, assume that for each subsystem fi(0, 0) = 0. In order
to apply passivity, it is crucial that the input and output are of the same dimension. In addition
to these technical assumptions, each paper makes two main assumptions. The first is the same
throughout, that the active system is passive. The second assumption is much different between
the three papers.

First Formulation

The first paper covering passive theory applied to switched systems was by Zefran, et. al. [9]. They
were the first to define passive switched systems (PSS) using multiple storage functions. They used
this definition to show stability of PSS and stability of the feedback interconnection.

Definition B-1. The overall system is passive if for every subsystem i there exists a continuously
differentiable storage function Vi(x) such that the following conditions hold for nonnegative δ and
ǫ and positive semidefinite ψ(x).

1. The system is instantaneously passive while each subsystem is active,

uT y ≥
dVi

dt
+ δuTu+ ǫyT y + ψ(x). (B-2)

2. When switching to each subsystem the energy that subsystem accumulated while inactive is
bounded by the energy supplied during that time interval,

∫ tk

tk−1

uT (t)y(t)dt ≥ Vi(x(tk)) − Vi(x(tk−1)). (B-3)

This definition can be extended to strictly passive by making ψ(x) positive definite. Likewise it
can be extended to input strictly passive by making δ strictly positive or to output strictly passive
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by making ǫ strictly positive. The authors then show that PSS with storage functions that satisfy
Vi(0) = 0 are Lyapunov stable and that the interconection of two PSS is once again a PSS.

This paper presents a very clear definition of passivity for switched systems and uses this
definition to show the results expected of a passive system. However, the second condition of the
definition is that each subsystem is passive “on average” while inactive. This condition could be
made much more general. Although the given definition is sufficient to guarantee the expected
results for a PSS, there are many other systems that would be considered passive by a more general
definition.

Second Formulation

This formulation by Zhao and Hill [10] is more general than the previous work of Zefran, et al. In
this paper, they introduce a new definition of passivity with a relaxed set of assumptions. With
these assumptions they are still able show stability. However, they do not discuss passivity of the
negative feedback interconnection. Overall, their presentation is clear and their proof techniques
are precise.

The modification they made from previous work is to count energy accumulated while a sub-
system is inactive at a different, typically reduced, rate than when the subsystem is active. While
the system is inactive, the energy storage function varies based on the state dynamics which are
defined by the active subsystem. This amounts to each inactive system having a reduced “imported
energy” from the active system. With this adjustment, each subsystem can tolerate a larger en-
ergy supply uT y and still maintain passivity. To define this reduced storage rate, they introduce
two sets of functions. One set of functions αji(t, s) : R

+ × R
+ → R

+ are such that each αji(t, s)
is nondecreasing with respect to the second variable and αjj(t, s) = s. These functions are also
denoted αjit(s). The second set of functions γj(s) must satisfy γj(0) = 0. With these functions,
they present their definition.

Definition B-2. A switched system is passive with a set of storage functions Vi(x) and functions
αijt, γj such that the following statements are true.

1. The energy a system has accumulated while inactive is bounded,

Vi(x(t2)) ≤ αji(t2−t1)(Vi(x(t1))) +

∫ t2

t1

uT ydt. (B-4)

2. The composition of these functions αjit is bounded,

αji1τ1 ◦ αji2τ2 ◦ ... ◦ αjikτk
(t) ≤ γj(t). (B-5)

It is explicitly shown that when the system stays in a single subsystem, the first condition reduces
to the traditional definition of passivity (1). Using this definition, the authors show that passive
switched systems with storage functions such that Vi(0) = 0 have a Lyapunov stable equilibrium
point.

Although the presentation of the definitions, theorems, and proofs is clear, the authors don’t
discuss the significance of the functions defined. There doesn’t appear to be any method to deter-
mine the functions or to determine if they even exist. These issues cause this formulation to be
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difficult to apply. An additional issue is that this paper doesn’t cover whether this definition of
passivity is preserved under parallel or negative feedback interconnection. If this property doesn’t
hold, this definition is only valid to show stability of a PSS which could have already have been
shown by Lyapunov stability results for switched systems. These weaknesses are addressed in the
authors’ later work.

Third Formulation

This last formulation, also by Zhao and Hill [11], is more general than the one proposed by Zefran,
et. al. and is conceptually equivalent to the previous formulation of Zhao and Hill. They still show
stability of PSS with a different set of relaxed assumptions. The main difference is that, while the
previous formulation defined an “exported energy” from the active subsystem to each of the inactive
subsystems, this formulation defines two different supply rates for each subsystem. One rate is the
traditional passive supply rate uT y that is valid while the subsystem is active and the other is a
general dissipative rate that is valid when the subsystem is inactive. This dissipative energy supply
rate is typically reduced while a system is inactive. Conceptually, reducing the energy supplied is
equivalent to reducing the energy stored when the system is inactive.

The paper first introduces the generalized notion of passivity, dissipativity. This takes the same
form as passivity, but rather than using the supply rate uT y it uses any function ω of the input
and output,

ω(u, y) ≥
dVi

dt
+ δuTu+ ǫyT y, (B-6)

where the constants δ and ǫ are nonnegative.

This notion is more general than passivity but a dissipative system is only stable for a certain
class of allowable inputs which may not include the input, u = 0, which would imply Lyapunov
stability. The definition of passivity given for switched systems uses this definition of dissipative
systems.

Definition B-3. A switched system is passive if there exists storage functions Vi(x) such that the
following conditions hold for nonnegative δ and ǫ.

1. The system is passive while each subsystem is active,

uT y ≥
dVi

dt
+ δuTu+ ǫyT y. (B-7)

2. Each subsystem is dissipative during its inactive time,

ω(u, y) ≥
dVi

dt
+ δuTu+ ǫyT y. (B-8)

3. There exist functions φi
j for each cross supply rate that are absolutely summable and such that

ωi
j(u, y, x, t) ≤ φi

j(t), ∀j 6= i. (B-9)
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With this new definition of passivity, the authors show that PSS with all storage functions
satisfying Vi(0) = 0 are Lyapunov stable and that the feedback interconnection of two passive
systems is again passive.

Of the formulations covered, this one is the most comprehensive. It includes a new definition of
PSS and shows stability of the system and the negative feedback interconnection of two systems.
However, the proof that passivity is preserved when two systems are connected in feedback is
omitted. With more work with this definition, this could be shown to be the most general definition
of PSS.

Other than the technical assumptions, all three formulations share one of two main conditions
in the definition of PSS. This assumption is that each active subsystem must be passive. The main
differences between the definitions are in the form that the second condition takes. This condition is
how the energy accumulated while inactive is bounded at switching instances. The first formulation
provides a bound on the energy that is not tight. It reduces to a statement that all subsystems
must be, on average, passive when the subsystems are inactive. The second formulation provides
a much tighter bound on this energy. However, the definition is far from intuitive and appears to
be very difficult to apply. The third formulation keeps a tight bound on the energy and does so
without sacrificing the intuition and applicability of passivity. The definition statement based on
passive and dissipative theory is clear, and examples were provided of simple systems have clear
energy supply rates to meet the definition.

Appendix C - Interconnection Proofs

This appendix will provide theorems and proofs that show that passivity is a property that is
preserved when two systems are interconnected in feedback or in parallel. This is the case when the
two systems in the interconnection are both passive and not just that the passivity indexes exist.
For both interconnections the result is intuitive since the energy stored in the interconnection is
simply the sum of the energies stored in each of the systems. These are powerful results since they
allow for the design of large scale stable systems by ensuring that each component of the system is
passive and that these simple interconnection rules are satisfied. The first interconection to consider
is the negative feedback interconnection of two passive systems.

Theorem C-1. The negative feedback interconnection (Fig. C-1) of two passive systems is passive.

Figure C-1: The feedback interconnection of two passive systems.
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Proof. The interconnection has the following loop relations.

u1 = r1 − y2 and
u2 = r2 + y1.

(C-1)

Each system being passive implies that there exist storage functions V1 and V2 such that

∫ t2

t1

uT
1 (t)y1(t)dt ≥ V1(x1(t2)) − V1(x1(t1)) and

∫ t2

t1

uT
2 (t)y2(t)dt ≥ V2(x2(t2)) − V2(x2(t1)).

(C-2)

Define a new storage function for the interconnection,

V (x) = V1(x1) + V2(x2). (C-3)

Now sum the two passive inequalities above to show that the interconnected system is passive:

∫ t2

t1

uT
1 y1dt+

∫ t2

t1

uT
2 y2dt ≥ V1(x1(t2)) − V1(x1(t1)) + V2(x2(t2)) − V2(x2(t1))

∫ t2

t1

[(r1 − y2)
T y1 + (r2 + y1)

T y2]dt ≥ V (x(t2)) − V (x(t1))

∫ t2

t1

rT ydt ≥ V (x(t2)) − V (x(t1)).

This shows that the mapping from r to y is passive so the interconnection is passive.

The next interconnection to consider is the parallel interconnection of two passive systems (Fig.
C-2).

Figure C-2: The parallel interconnection of two passive systems.

Theorem C-2. The parallel interconnection of two passive system is passive.

Proof. Note that the system outputs satisfy the following relation y = y1+y2. Each system being
passive implies that there exist storage functions V1 and V2 to satisfy (C-2), where u = u1 = u2. The
interconnected system has the same storage function (C-3). Now sum the two passive inequalities
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above to show that the interconnected system is passive:

∫ t2

t1

uT y1dt+

∫ t2

t1

uT y2dt ≥ V1(x1(t2)) − V1(x1(t1)) + V2(x2(t2)) − V2(x2(t1))

∫ t2

t1

[uT y1 + uT y2]dt ≥ V (x(t2)) − V (x(t1))

∫ t2

t1

uT ydt ≥ V (x(t2)) − V (x(t1)).

This shows that the mapping from u to y is passive so the interconnection is passive.

These two theorems are valid when combining passive systems. Systems are passive when both
passivity indexes are positive. These theorems do not apply if either system has either index
negative. The more general design cases where the indexes are allowed to be negative are covered
in the control design section of this paper. In these cases, a feedback interconnection may still
be passive even if one or both systems are not passive, assuming that the indexes exist for all
subsystems of a switched system. The passivity index does not provide additional stability results
when combining systems in parallel. In fact, if either system in the parallel interconnection is
unstable, the connection is unstable.
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