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Abstract

In this paper we study performance-related aspects for

plants in a networked control setting, employing an ap-

proach known as Model-Based Networked Control Sys-

tems (MB-NCS) with Intermittent Feedback. Model-

Based Networked Control Systems use an explicit model

of the plant in order to reduce the network traffic while

attempting to prevent excessive performance degrada-

tion. Intermittent Feedback consists of the loop remain-

ing closed for some time interval, then open for another

interval. We begin by investigating the behavior of the

system while tracking a reference input. We provide the

full response of the system and a condition for stabil-

ity. We then shift our attention to controller design for

MB-NCS. We use dynamic programming techniques to

design an optimal controller to optimize an LQ-like per-

formance index.

1. Introduction

A networked control system (NCS) is a control sys-

tem in which a data network is used as feedback me-

dia. NCS is an important area in control, see for ex-

ample recent surveys such as [2] and [11], as well as

[23], [27], and [28]. The use of networks as media to

interconnect the different components of an industrial

system is rapidly increasing. However, the use of NCSs

poses some challenges. One of the main problems to

be addressed when considering an NCS is the size of

the bandwidth required by each subsystem. A partic-

ular class of NCSs is model-based networked control

systems (MB-NCS), introduced in [17]. The MB-NCS

architecture makes explicit use of the knowledge of the

plant dynamics to enhance the performance of the sys-

tem. Here we extend this work by taking advantage of

the concept of intermittent feedback. In the previous

work done in MB-NCS, the updates given to the model
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of the plant state were performed in instantaneous fash-

ion, but with intermittent feedback the system remains

in closed loop control mode for more extended inter-

vals. This notion makes sense as it is a good repre-

sentation of what occurs in both nature and industry.

For example, when driving a car, when approaching a

curve or hilly terrain, we pay attention to the road for

a longer time, which is equivalent to staying in closed-

loop mode, and we only reduce our attention -switch to

open loop control- when the road is once again straight.

It is worth noting that while the application of intermit-

tent feedback to MB-NCS is novel, the concept has been

studied in a variety of fields such as [13], [23],[26], [14],

[21]. While intermittent control is a very intuitive no-

tion, its combination with the MB-NCS architecture al-

lows for obtaining important results and opening new

paths in controlling NCSs effectively.

In previous work [6, 7, 8], we have provided sta-

bility results for both the continuous and discrete set-

ting. In this paper we shift our attention towards per-

formance related aspects. We begin by considering an

MB-NCS architecture with a reference input. In this

architecture, the model receives its input directly from

the controller, which is different from the plant’s input.

We provide a full description of the state response of

the system and a condition for stability. The results are

derived for instantaneous feedback, but by taking τ = 0

they apply for the instantaneous feedback case as well.

We then consider a discrete time MB-NCS without ref-

erence input and design an optimal controller to meet a

linear quadratic-like performance index. Our method-

ology is based on the dynamic programming approach

and is similar to that presented in [24] and [25].

The rest of the paper is organized as follows. In

Section 2, we investigate the behavior of MB-NCS

model-based for the first architecture. We present the

problem formulation in detail, derive the complete de-

scription of the state response and present a stability

condition. In Section 3, we provide a method to de-

sign an optimal controller for an MB-NCS, by using

dynamic programming techniques. Finally, in Section

4, we provide conclusions and propose future work.
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2. Discrete-time MB-NCS with Intermit-

tent feedback and Reference Input

We will presently study the behavior of an MB-

NCS with instantaneous feedback, introducing a refer-

ence input signal r. We will consider two cases, differ-

ing from each other in the implementation of the input

to the model. The first one is depicted in the following

figure.

Figure 1. Basic MB-NCS architecture

In this architecture, the model receives its input di-

rectly from the controller, which is different from the

plant’s input. This corresponds to a situation where the

model is collocated with the controller and set in a re-

mote access location.

2.1. State response of the system

The plant is given by x(n+1) = Ax(n)+Bu(n), the

plant model by x̂(n + 1) = Âx̂ (n) + B̂û(n). The con-

troller is linear state feedback, with the difference that

while the input to the controller is still û(n) = Kx̂(n) ,
the input to the plant is now given by u(n) = Kx̂(n)−
r (n).

The state error is defined as e = x− x̂ and represents

the difference between plant state and the model state.

The modeling error matrices Ã = A− Â and B̃ = B− B̂

represent the plant and the model. We also define the

vector z(n) = [xT eT ]T .

We will now proceed to derive the response and

later summarize the result in a proposition.

As in the case without reference input studied in

[6], the error is reset every h seconds, the loop remains

closed for τ seconds, and the system runs open loop for

a period of τ − h seconds. Recall that in the discrete

time case, τ and h are both integers.

Let us first consider what happens during the open

loop interval, that is, when n ∈ [nk + τ,nk+1). For this

interval, we have that

u = Kx̂− r (1)

so
[

x(n + 1)
x̂(n + 1)

]

=

[

A BK

0 Â+ B̂K

][

x(n)
x̂(n)

]

(2)

+

[

−B

−B̂

]

r

with initial conditions x̂(nk + τ) = x(nk + τ).
Rewriting in terms of x and e, that is, of the vector

z :

z(n) =

[

x(n + 1)
e(n + 1)

]

=

[

A + BK −BK

Ã+ B̃K Â− B̃K

][

x(n)
e(n)

]

+

[

−B

−B

]

r (3)

z(nk) =

[

x(nk)
e(nk)

]

=

[

x(nk
−)

0

]

, ∀n ∈ [nk + τ,nk+1)

Thus, we have

z(n + 1) = Λoz(n)+ Ψr (n) , (4)

where Λo =

[

A + BK −BK

Ã + B̃K Â− B̃K

]

and Ψ =

[

−B

−B

]

, ∀n ∈ [nk + τ,nk+1)

For the closed loop case, similarly we obtain

z(n + 1) = Λcz(n)+ Ψr (n) , (5)

where Λc =

[

A + BK −BK

0 0

]

and Ψ =

[

−B

−B

]

, ∀n ∈ [nk,nk + τ)

From this, it should be quite clear (by solving the

difference equation) that given an initial condition z(n =
0)= z0, then after a certain time n∈ [0,τ), during which

the system has been running in close loop, the solution

of the trajectory of the vector is given by

z(n) = Λn
cz0 +

n−1

∑
j=0

Λn
cz j+1Ψr ( j) , n ∈ [0,τ). (6)

Notice that this evidently can be expressed as the

sum of two terms, a ”zero-input response” and a ”zero-

state response”.
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Similarly, for the first open loop interval, the solu-

tion of the trajectory is given by

z(n) = Λn−τ
o z(τ)+

n−1

∑
j=τ

Λn−τ
o z j+1Ψr ( j) , n ∈ [τ,h) (7)

Notice that this, too, can be expressed as the sum

of a ”zero-input response” and a ”zero-state response”.

We will thus continue the derivation by focusing first

on what happens to the zero-input response, then to the

zero-state response.

The zero-input response is identical to that which

we had in the case without reference input, described in

[8].

After k cycles, going through this analysis yields a

solution

z(nk) =

([

I 0

0 0

]

Λo (h− τ)Λc (τ)

[

I 0

0 0

])k

z0

= Σkz0 ,

where Σ =

[

I 0

0 0

]

Λo (h− τ)Λc (τ)

[

I 0

0 0

]

.

The final step is to consider the last (partial) cy-

cle that the system goes through, that is, the time

n ∈ [nk,nk+1). If the system is in closed loop, that

is, n ∈ [nk,nk + τ), then the solution can be achieved

merely by pre-multiplying z(nk) by Λc (n−nk) . In the

case of the system being in open loop, that is, n ∈
[nk + τ,nk+1), then clearly we must pre-multiply by

Λo (n− (nk + τ))Λc (τ) .
Now, the zero-state term will experience a similar

evolution.

At time τ, the value of the zero-state part will be

∑
τ−1
j=0 Λτ

cz j+1Ψr ( j) .
Unlike the case with the zero-input case, the por-

tion from the next time interval, rather than pre-

multiplied, will rather be added to this term. So

at time h, the value of the zero-state part wil be

∑
h−1
j=τ Λh−τ

o z j+1Ψr ( j)+ ∑
τ−1
j=0 Λτ

cz j+1Ψr ( j) .
Notice that the error portion of the term will have

to be reset at each nk, which corresponds to pre-

multiplying by

[

I 0

0 0

]

.

We continue the add the portion from the next time

interval and do so again for k cycles to obtain:

z(n) =
k−1

∑
j=0

Λn−nk
c z j+1Ψr ( j)

+
k−1

∑
l=0

[

I 0

0 0

]

(

∑
nl+h−1
j=nl+τ Λh−τ

o z j+1Ψr ( j)

+∑
nl+τ−1
j=nl

Λτ
cz j+1Ψr ( j)

)

,

for n ∈ [nk,nk + τ),with nk+1 −nk = h, k = 1,2,3...

and similarly for for n ∈ [nk,nk + τ).

We can combine what we have developed for zero-

state and zero-input and summarize the results in the

following proposition.

Proposition 1 The system described by (4) with initial

conditions z(t0) =

[

x(t0)
0

]

= z0 has the following re-

sponse:

z(n) =

Λc (n−nk)

([

I 0

0 0

]

Λo (h− τ)Λc (τ)

[

I 0

0 0

])k

z0

+
k−1

∑
j=0

Λn−nk
c z j+1Ψr ( j) (8)

+
k−1

∑
l=0

(

[

I 0

0 0

]

(

∑
nl+h−1
j=nl+τ Λh−τ

o z j+1Ψr ( j)

+∑
nl+τ−1
j=nl

Λτ
c z j+1Ψr ( j)

))

for n ∈ [nk,nk + τ),with nk+1 − nk = h, k = 1,2,3...,

where Λo =

[

A + BK −BK

Ã + B̃K Â− B̃K

]

, and Ψ =

[

−B

−B

]

.

The result is similar for n ∈ [nk + τ,nk + 1) and is

omitted for reasons of space.

2.2. BIBO stability condition

Having written the state response of the system, we

can easily see that we can arrive at a BIBO stability con-

dition. This condition would be the same as the condi-

tion for global exponential stability in the case without

reference input. This can be clearly seen from the fact

that by bounding the input, the zero-state part of the so-

lution will also be bounded, so we need only that the

stability of the zero-input part be stable, and this has

been done in previous work. We include the theorem

here for completeness.

Theorem 2 The system described by above is BIBO

stable around the solution z =

[

x

e

]

if and only if the

eigenvalues of

[

I 0

0 0

]

Σ

[

I 0

0 0

]

are strictly inside

the unit circle, where Σ = Λo (h− τ)Λc (τ).

The proof can be found in [8]. The results can be

extended to other reference input architectures, as in [9].

Also, while we have considered intermittent feedback,

the results also apply to the instantaneous feedback case

by specifying τ = 0. In the next section, we will fo-

cus on the instantaneous feedback case to design a con-

troller for a discrete time MB-NCS.
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3. Controller design of MB-NCS using op-

timal control techniques

Let us now consider a system with a discrete-time

linear time-invariant plant, where the full information of

the state of the plant is only available with probability v̄.

We will consider the case without a reference input in

this section. When the state of the plant is not available,

the model is used to compute the control action. Our

main objective is to find a controller that will optimize

an LQ-based performance criterion for this system and

to compute this optimal cost as well.

The setup is as follows. We will consider the

discrete-time plant governed by:

xk+1 = Axk + Buk (9)

The equations of the model are given by:

x̂k+1 = Âx̂k + B̂uk (10)

and the control input is given by

uk = Kx̂k + vkKek (11)

where the probability of having access to the full state

of the plant is governed by the stochastic variable vk,
with

vk =

{

1 , with probability v̄

0 , with probability 1− v̄
(12)

and where A,B are the plant matrices, Â, B̂, are the

model matrices, uk is the input, x is the state of the plant,

x is the state of the model, and K is the controller. Also,

ek = xk − x̂k denotes the error between the plant state

and model state.

Notice that the above expressions capture a situa-

tion where, if the actual state of the plant is available,

that value is used to calculate the control law, but, if it

is not available, then the control input is calculated by

using the state of the model. Notice also that this corre-

sponds to the case τ = 0, as we might have cases where

we have access to the plant for a single clock instant

only.

We use the expected total cost as our performance

index:

J∞ = E

[

∞

∑
k=0

xT
k Qxk + uT

k Ruk

]

(13)

We will design an optimal controller K to optimize

this performance index. The matrices Q and R are se-

lected by the user according to the performance objec-

tive desired, with Q penalizing the system for high val-

ues in the state of the plant and R doing so for using

excessive control effort.

Our procedure follows that of (24) in that we de-

fine a cost-to-go function and calculate it iteratively. To

begin, observe that the equations of the system can be

rewritten as:

xk+1 = (A + vkBK)xk +(1− vk)BKx̂k (14)

x̂k+1 = vkB̂Kxk +[Â+(1− vk)B̂K]x̂k

uk = vkKxk +(1− vk)Kx̂k

Let us define z =
[

xT
k x̂T

k

]T
. We can thus write the equa-

tions concerning the plant and model state as zk+1 =
F (νk) z, where:

F (νk) =

[

(A + vkBK) (1− vk)BK

vkB̂K [Â +(1− vk)B̂K]

]

(15)

The cost-to-go function Ck is defined as follows:

CN
k (zk) = E

[

N

∑
h=k

xT
k Qxk + uT

k Ruk

]

(16)

where Qk = Q and Rk = R except for the terminal cost

RN = 0. Following the standard procedure in these

cases, we make the claim that this function can be writ-

ten as

CN
k (zk) = E [zkSkzk|zk] , (17)

which is clearly true for k = N and SN = Q. Then, by

induction, we show this is true for all k. Suppose it is

true for k + 1, then:

CN
k (zk) = E

[

N

∑
h=k

xT
k Qxk + uT

k Ruk|zk

]

(18)

= E
[

xT
k Qxk + uT

k Ruk +CN
k+1|zk

]

= E

[xT
k Qxk+

(

vkKxk+
(1− vk)Kx̂k

)T

R(vkKxk +(1− vk)Kx̂k)

+CN
k+1|zk]

= E

[zT
k

[

Q+ v2
kKT RK (1− vk)vkKT RK

(1− vk)vkKT RK (1− vk)
2KT RK

]

zk

+zT
k FT (vk)Sk+1F (vk) zk|zk]

= E

[zT
k

[

Q+ v̄KT RK 0

0 v̄KT RK

]

zk

+v̄zT
k FT (0)Sk+1F (0)zk

+(1− v̄)zT
k FT (1)Sk+1F (1)zk|zk]

(19)

Therefore, the above claim is true, and, moreover, we
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can write that

Sk (20)

=

[

Q+ v̄KT RK 0

0 v̄KT RK

]

+ (21)

+ v̄

[

AT 0

KT BT Â+ KT B̂T

]

Sk+1

[

A BK

0 Â+ B̂K

]

+(1− v̄)

[

(A + BK)T KT B̂T

0 ÂT

]

Sk+1

[

A + BK 0

B̂K Â

]

= F (Sk+1,K) ,

where the operator F (Sk+1,K) is affine in S for fixed

K, and quadratic in K for fixed S.
To obtain the infinite horizon cost, we take the limit

as time goes to infinity of the cost-to-go function.

J∞(K) = lim
N→∞

CN
0 (x0) = xT

0 S∞x0 (22)

where S∞ is the solution of the Lyapunov-like equation

S∞ = F (S∞,K) , if the solution exists.

Let us now partition the matrix S∞ as follows

S∞ =

[

S1 S12

ST
1 S2

]

. (23)

Then the Lyapunov-like equation S∞ = F (S∞,K)
can be expanded as:

S1 = Q+ vKT RK + vAT S1A+ (24)

(1− v)





(A + BK)T S1(A + BK)+
KT B̂T ST

12(A + BK)+
(A + BK)T S12BK + KT B̂T S2BK



 ,

S12 = v
[

AT S1BK + AT S12Â + AT S12B̂K
]

+ (25)

(1− v)
[

(A + BK)T S12A + KT B̂T
2 SA

]

,

S2 = vKT RK+

v





KT BT S1BK +(ÂT + KT B̂T )ST
12BK

+KT BT S12(Â + BK)+

(Â + B̂K)T S2(A + BK)



+

(1− v)ÂT S2Â . (26)

Via algebraic manipulations, we can express all of

the above in terms of S1. Furthermore, the resulting S1

equation is the only one that depends on the control gain

K and can be written as:

S1 = P1 + PT
12K + KT P12 + KT P2K = L (K,S1)

with P1, P12, P2 all linear functions of the matrix S1

for fixed K. We can also write

L (K,S1) = P1 −PT
12P−1

2 P12

+(K + P−1
2 P12)

T P2(K + P−1
2 P12)

= Ψ(S1)+ (K −KS)
T P2(K −KS)

with

Ψ(S1) = P1 −PT
12P−1

2 P12 (27)

KS = −P−1
2 P12 (28)

If P2 > 0, then

Ψ(S1) ≤ L (K,S1) , ∀K

where the operator Ψ(S1) is nonlinear in S1. The con-

dition P2 > 0 is necessary for stability because, were it

not met, we could select K such that it would yield a

nonpositive definite S1, which is not feasible. The pre-

vious inequality can be used to find an optimal gain K

that minimizes the matrix S1.

Theorem 3 Consider the system defined by (10)-(12)

and the infinite horizon cost defined in (13). Assume

that the pairs (A,B) and (AT ,Q1/2) are stabilizable.

Then the optimal infinite horizon cost J∞ = minL J∞ (K)
is given by J∗∞ = xT

0 T ∗
∞x0 where T∞ is the unique strictly

positive solution of the equation:

T ∗
∞ = Ψ(T ∗

∞)

where Ψ(T ) is defined in (6.34) and the optimal gain is

given by

K∗ = KT ∗
∞

with KS as defined in (28). The equation T ∗
∞ = Ψ(T ∗

∞)
has a positive definite solution if and only if v̄ > vc,

where vc is a critical probability of having access to the

channel, which depends on the pairs (A,B) and (Â, B̂).
The T ∗

∞ can be obtained as the limit of the sequence

Tk+1 = Ψ(Tk), that is, limk→∞ Tk = T∞.

4. Conclusions and future work

In this paper, we investigated the behavior of the

system while following a reference input. We provided

the full response of the system and a stability condition.

We then designed an optimal controller for MB-NCS to

meet an LQ-like performance index, by using dynamic

programming techniques. Some extensions of these re-

sults can be found in [9] and will continue to be devel-

oped in future work.

Additionally, we will seek to use intermittent feed-

back to improve performance, by updating the model

during the times when the system is running closed

loop, with the aim of enabling the user to run the system

closed loop for progressively shorter intervals.
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