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E m n u  

To dustrate using identification  for  fault  detection consider the first- 
order digital filter 

For AIH[e'"r]l =0.1, the  acceptable region for  the filter coefficients  is 
shown in  Fig. 2. The identifier  response to the filter is shown in Fig. 3 as 
b, changes from 0.85 to 0.4. Initially the identifier  tracks  the correct 
coefficients. When b,  changes  the error signal  changes  rapidly and 
converges to zero. The coefficient  estimates  converge to  the new values 
and the b, coefficient of 0.4 does  not allow  satisfactory performance 
through  use of the region  shown  in  Fig. 2. A redundant filter would  then 
be  set into  operation. 

In  the example, a noise-free  simulation, the  output of the  identifier  can 
be  used  directly to determine acceptable performance. Note  that the 
error criterion of (7) is  only  valid for small coefficient  changes.  However, 
for large  deviations, the  performance is obviously not acceptable. In  a 
stochastic  environment, the statistics of the i? vector  must  be UW to 
determine  acceptable performance. 
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Some New Bounds Related  to  Output 
Feedback Pole Placement 

P. J. ANTSAKLIS AKD W. A. WOLOVICH 

Abstract-A number of new results  regarding linear output feedback 
Compensation are presented. In particular, it is shown that the rank of an 
appropriately  defined  real matrix St represents an upper  bound on the 
number of closed-loop  poles  which can be completely  and  arbitrarily 
assigned via constant gain output  feedback. A new bound on the minimum 
number of dynamical  elements  required for complete and arbitrary  closed- 
loop  pole  placement is also defied in  terms of the observability  index of a 
certain single-input  system. 

1. ~NTRODUC-TION 

The primary purpose of this  correspondence is to study the effect 
which  linear output feedback compensation  has on the closed-loop  poles 
of linear  multivariable  systems.  Unlike the majority of previous reports 
which  have dealt with this question,  the approach  taken here will not be 
directly concerned with the development of any constructive procedure 
for  arbitranly assigning a  certain  number of closed-loop  poles. Rather,  a 
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new  matrix rank test will be  outlined for determining an upper  bound  on 
the  number of closed-loop  poles  which can be arbitrarily positioned  via 
linear output feedback  compensation. 

In Section 11, we d show that  the rank of a real  matrix Q represents 
a measure of the maximum number of poles  which  can be  arbitrarily 
assigned  via output feedback.  We further illustrate conditions  under 
which one  cannot  arbitrarily assign a  number of closed-loop  poles equal 
to the  number of independent  and  arbitrary gain parameters when this 
latter  number  does  not exceed the system order. 

In Section 111, we consider the employment of dynamic compensation 
in conjunction with  linear output feedback  in order to enhance closed- 
loop pole  placement  when output feedback alone is inadequate.  Here we 
employ our earlier  results to show that the  observability  index of an 
appropriately defined  single-input  system  represents a measure of the 
order of dynamic  compensation which  is  required  for  complete and 
arbitrary pole  placement. A number of examples are provided 
throughout  to illustrate and clarify  the  presentations, and  a  summation 
of the main  results  is  given  in the final  section. 

11. LIPIW O ~ P W  FEEDBACK COMPENSATION 

We will consider the class of all nth-order minimal (controllable  and 
observable)  state-space  systems  whose dynamical behavior can be  repre- 
sented as 

i ( t ) = A x ( t ) + B u ( r ) ,  y ( t ) = C x ( r )  (1) 

with  m-dimensional input u(t) ,  p-dimensional  output y( t ) ,  and A ,  B ,  and 
C real  matrices of the  appropriate dimensions. Rather  than working 
directly  with (l), we find it convenient to deal  with a  particular  factored 
form of the strictly  proper  transfer  matrix T ( s )  associated  with (1); i.e., it 
is  well  known 111 that  under  the assumptions  noted, 

T ( r ) = C ( d - A ) - ' B = R ( s ) P - ' ( s )  (2) 

with R (s) and P (s) relatively  right  prime  polynomial  matrices  in s, the 
Laplace operator, of dimensions p X rn and m X m. respectively. It should 
be  noted  that  the (open-loop)  poles of (1) are  equal to the  zeros of 

~ ( s )  Isl-Al=IP(s)l=s"+a, +u,s+uo (3) 

Furthermore, in  view of (2), it is  clear that if D d/dt ,  then 

P ( D ) t ( r ) = u ( r ) ;  y ( t ) = R ( D ) z ( t )  (4) 

represents a differential operator realization [I]  of T ( s )  with partial  state 
r ( l ) .  Since (1) and (4) are  both minimal and realize  the same  transfer 
matrix, we finally note  that  the two representations are equivalent [ 11. 

If linear output feedback (Ion is  now  defined  by the  control law 

~ ( t ) =  -Hy(r )+c(r ) ,  (5) 

it follows that under lof compensation, the closed-loop  poles of the 
system (1) or (4) are  equal  to  the zeros of 

A&)& I s l - A + B H C I = I P ( s ) + H R ( s ) l  

= s n + a  n - , s " - ' + . . .  +a,s+ao (6) 

We  realize, of course, that it is of considerable  practical  importance  to 
determine  the effect  which H has on  the zeros of AN(s),  and numerous 
recent papers have addressed this question with  varying  degrees of 
success [2)-[ 131. 

TO begin our discussion  here, we  will require  some notation  from 
Gantmacher [14]; Le.. if gLj denotes  the  ith-row,jth-column element of a 
matrix G=[g,,] ,  then 
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represents the appropriate  kth-order minor of G .  We next note  that 
A,(s)=IP(s)+ HR(s)l, as given by (6), can  be  written as 

or, in view  of the Binet-Cauchy formula [ 141, as 

In  other words, A&)= IF‘(,)+ HR (s)l can be expressed as a sum of 
products of the mth-order  minors of [H:Zm] and the mth-order  minors of [-:{:! 1. Since [ H  iZm] has m rows and m + p  columns (or since - - - [::::I 

Remark I :  Since the coefficients of A,(s) represent independent 
functions of its zeros, it follows that no more  than q closed-loop  poles  can 
be arbitrarily assigned uia lof compensation? It is of interest  to note that 
this result offers insight with respect to  some “special cases”  discussed in 
[12] and [13]. 

As noted earlier, the results outlined in this correspondence are  not 
primarily concerned with  the development of any constructive proce- 
dures  for  arbitrarily assigning either q closed-loop poles or q coefficients 
of An(s), since such an assignment would generally involve the siinulta- 
neous solution of nonlinear algebraic equations:  Furthermore, as we 
itlustrate  in our next remarks, it is not always possible to  arbitrarily 
assign q coefficients of AH(s). 

Remark 2: Since 9 has n columns, w < n,  which  implies  thar q < n. 
The  condition q= n; i.e., w =  i’ and mp a n is therefore necessary for 
complete and  arbitrary closed-loop pole placement via lof. As noted in 
our prior remark, however, the  condition q = n  is not sufficient3 as we 
now illustrate. 

. L  

Example 1: If 

has m + p  rows and m columns) there will be  a  total  of r n  1 n n l  

products of minors in (9). Furthermore, mp of these products will involve 
the individual elements hi, of H alone, while g -  mp - 1 products will 
involve products of the hjj. On product term, namely, l Z m l  X IP(s)l= A(s), 
will not involve any elements of H .  
In view  of the above, we next note  that AH(s)-A(s)=AH(s)-IP(s)I 

can be expressed as the product of a g -  1-dimensional row vector MHI 
which consists of the elements of [H  lZm] . , . ), exclud- 

ing 1 = IZ,,,l, and  a g - 1-dimensional column vector M R p  which consists 
of an  appropriate  ordering (depending on the choice of MHI) of the 

mth-order minors of - - - , excluding IP(s)l =A(s); Le., 

( j l  j 2  

1 2 ... 
Jm 

[ PR:::] 
AH(s)   -A(s)= MHIMRP (11) 

for an appropriate, nonunique’ pair of vectors { M H I , ~ R p ) .  We  next 
note  that since T(s )  = R (s)P - I(s) is a strictly proper  transfer matrix, the 
elements of M R p  will be known polynomials in s of degree strictly less 
than n. It therefore follows that if &(s) [I,s;. . ,s”-I 1 ,then 

M R p  = (12) 

for some real ( g  - 1) X n-dimensional matrix Q.  If we  now set A(s) = s” + 
a;S,(s) and AH(s)=s”+GSn(s) ,  where ii=[aoaI;.-,a,-,]  and a= 
[ao,al; .  . ,a,,- ‘1, then (1 1) and (12) directly imply the relation 

a- a= MHIQ. (13) 

If  we finally let w denote the rank of 9; i.e., o=p[O] ,  and  define  q as the 
minimum of w and m p ;  i.e., 

q ’ min(w,mp),  ( 14) 

we can  state  and establish the main result of this section. 
Theorem I :  No more  than q coefficients of An(s) can  be  arbitrarily 

assigned via H. 
Proof: The proof of Theorem 1 is an immediate  consequence of (13) 

and the fact  that only mp elements of MHI, namely, the individual hi, 
terms, are  independent. In particular, in view  of (13) it is clear that the 
maximum  number of elements of CU which can  be  arbitrarily assigned  via 
H can exceed neither mp, which represents the  number of independent 
elements of MHI, nor w, which represents the  number of independent 
(and generally nonlinear) equations involving the hi,. Theorem I is 
therefore established. 

A number of remarks  are now  in order. 

their  ordering is not. Moreover,  a  particular ordering of the elements of one of the  vectors 
‘It should he noted that  the  individual elements of M,,, and MRp are unique, although 

implies  a  corresponding,  unique  ordering of the elements of  the other vector. 

then 

= R ( s )P  -’ (s). 
For example, 

and  one choice for MH, would  be 

with corresponding 

0 1  0 1 

M m = [ s 3 + ~ , ~ 2 + l , - s 2 1 - s 3 , s 2 - l I T  and Q = [  8 -; 1 !I; 
0 - 1  

-1  0 

i.e., for this example, (13) implies that 

[aO,al,a2-  1,a,l=[hll,h12, -h2 , ,  -h22,h,,h22-h,,h,,l 

.[ : -; -11 0 1  0 

0 0  
- 1  0 

or that h , , = a , ,  h22=a3-h l ,=a3-a , ,  and h 2 , = a o + a 2 - 1 - 2 h 1 2  with 
h, ,  the solutio% to the quadratic  equation 

2 h ~ 2 - ( a o + a 2 ) h 1 2 + a o + a l a 3 - a ~ = a h ~ 2 + b h , 2 + c = 0 .  

We therefore note  that if b2-4ac=(ao+a2)2 -8 (ao+aIa3-a~)  is a 
negative number, which it will be  for  certain choices of the ai,h12 will be 
a complex number. In other words, for  certain choices of all n = 4  

the inclusion of complex  conjugates. 
*It should be noted that the “arbitrary  assignment” of closed-Imp  poles always  implies 

sufficient  for arbitrary assignment o fp  (or m) coefficients of A,(s), due to the  presence of 
31n the case m= I (or p =  I), the condition q= w =p (or m) is both necessary  and 

only linear equations in (13). 
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closed-loop  poles, as well as choices “arbitrarily close” to these  choices, 
there will be no real  gain  matrix H to assign  these  poles. Of course,  for 
other choices of all n =4 closed-loop  poles, all of the  elements of H will 
be real. 

Remark 3: In view of the  above, it is  now natural to ask 1) whether or 
not  information  can be obtained regarding arbitrary lof pole  placement 
without first determining B and 2)  what can  be  done from the  point of 
view of both analysis and synthesis  when 52 is  not of rank n? We address 
the analysis part of the  latter question  here, and  the remaining  questions 
in our  subsequent discussions. 

In particular, if w < n we can readily obtain n - w independent  and 
linear  relations  which the coefficients of AH(s )  must  satisfy independent 
of a ~ y  choice for H .  More specifically, if p[B]=o < n, then  a nonsingular 
(n X n) matrix K can clearly be  found such that 

.QK=[.QK,! 01, (15) 

where K,  denotes the first w columns of K. In view of (13) it therefore 
follows  that 

(E-Z)K,-,=O (16) 

where Kn-u denotes &e final n - w  columns of K. We  now note  that the 
n - w  independent,  linear relations  given  by (16) must  be satisfied  regard- 
less of any lof control law, an observation  which often enables one  to 
assess the  ability or inability to stabilize a system  via lof compensation. 

Example 2: To illustrate in light  of our previous  example, suppose 

c=[o 0 1 0 1  
1 0 0 0  

instead of 

[ I  0 0 1 1  
0 1 1 0  

with A and B unchanged. Then 

and if MHz is as in  Example 1, 

We  next determine  that 

is  one  nonsingular  matrix  which  zeros the final n-w=2 columns of BK. 
Since IP(s)l=A(s)=s4+s2, LY-ii=[ao,al,aZ-l,a3],  and (16)  would 
therefore imply that aI=o3=O regardless of H. It is thus clear that in 
this  case,  asymptotic  stabilization via  lof alone is  impossible. 

Remark 4: If T ( s )  = C (SI - A ) -  ‘B = R ( s )P  - ‘(s) is a nonsingular, d~ 
agonal  transfer  matrix; i.e.,  if T ( s )  represents the transfer  matrix of a 
“dynamically  decoupled”  system,  then the  number of nonzero  mth-order 

minors of [ -:{:{] will be 2”. In such  cases,  therefore, all but  2”-  1 

elements of MRp will be  zero,  which  in  view of (12)  clearly  implies that 

111. DYNAhffC COhPEIU’SATTON 

In view  of Theorem I, we  now note  that if q <  n it would  be 
impossible tG arbitrarily assign all n coefficients of AH(s )  and, therefore, 
all n closed-loop  poles of a given  system  via lof alone. Under  the 
circumstances, it is well known that  “dynamic  compensation”  can  be 
used to  enhance closed-loop  pole  placement. The purpose of this  section 
will be to investigate the effect  which dynamic  compensation  has with 

respect to the pole  placement  question. To begin, we define  a ~$nam~c 
compensator of order k ,  in view  of (l), via the ( k )  additional  state 
equations. 

i , + ; ( f ) = u , + ; ( z ) ;  Y p + ; ( d = % + , ( f ) ,  (18) 

for i= 1,2; . . , k ,  noting  that  each  (ith)  additional  state  equation repre- 
sents  a new input-output  pair which  requires one  dynamical element 
(integrator) for physical implementation.  The origmal p X m open-loop 
transfer matrix, T ( s )  = R ( s ) P  - ‘ ( 5 ) ,  is  therefore augmented to become 
the “extended” ( p  + k )  x ( m  + k )  transfer  matrix, 

To investigate the effect  which dynamic compkat ion has  on the 
“closed-loop”  characteristics of the system, we first define dynamic h e m  
output feedback ( d o $ )  by (18) and  the  control law 

where 

and He is an (m + k )  X ( p  + k )  constant  but  arbitrary  gain matrix. Under 
dlof it now  follows that  the closed-loop  poles of the dynamically  com- 
pensated system are given  by the zeros of 

In view of the results  presented in the previous  section, and (11) in 
particular, we now  observe that A&)- IP,(s)l -A,(s)-sklP(s)I can 

be  represented as the  product of a  nonunique g, - 1 = ( m + k  )-l- 
dimensional  row  vector MHez, consisting of the ( m  + k)th-order minors 
of [He  I,,,+ k ]  and an appropriate column  vector MRp-,  consisting of the 

m + p + 2 k  

We further  note  that in view of the  diagonalized  extension of R ( s )  
and P ( s )  in (19), the nonzero  rows of MKpe will consist  entirely of ele- 
ments of the  form sJMRp for j = 0, 1,2.. . . . k ,  as well as 
A(s),sb(s); .  . ,sk-‘A(s): i.e., if a total of k parallel integrators is em- 
ployed,  then  for  some  nonsingular  matrix J .  

JM&P. = 

for some real (nonunique) matrix 3,. 
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If we now let vr denote  the obseruabili~ index [l]  of the single 
input-multiple output system  with transfer vector 

we can  state  and formally estabhh the  main result of this  section. 
Theorem 2: Consider the minimal  system ( I ) ,  with T ( s ) =  C ( d -  

A ) - L B = R ( s ) P - l ( s ) ,  which  directly  implies a single  system (24) with 
observability  index, vr. 
In order  to  arbitrarily assign all of the closed-loop  poles  via dynamic 

linear output feedback, at least A integrators must be employed,  when X 
is the least  integer  which  satisfies both 1) X > vr - 1 and 2) (m +X)(p +A) 
> n+A. 

Proof: We first note  that  the system  with t ( s )  given by (24) does 
have an observability  index vr since R ( s )  and P ( s )  were  assumed to  be 
relatively  right  prime.  Therefore,  in view of [ 1, theorem 7.3.301 it follows 
that Qe,  as given  by (23): has full (column)  rank n+ k if and  only if 
k > vr - 1. Finally,  in  view of Theorem 1, it follows that all of the 
coefficients of &(s)  can  be  arbitrarily assigned  only if 0, does  have full 
column rank which,  in  view of our previous  observation,  directly  estab- 
lishes condition 1). Condition 2) is a direct  consequence of the  fact  that 
the  number of independent  output gain parameters  cannot  be less than 
the  number of desired  closed-loop  poles. 

It should  be noted  that  Tbeorem 2 extends a well-known fact regard- 
ing  single-input  systems to  the multiinput  case. In particular, it is  well 
known [15] that all of the poles of a minimal  system  with  observability 
index Y and controllability  index p can be  arbitrarily assigned if one 
employs a  dynamic  compensator of dimension equal to min ( Y - 1,p - 1). 
We now  recall that in  view of Theorem 2, at  least vr - 1 integrators  must 
be employed to arbitrarily assign all of the poles of a minimal  system. 
Since vr < m i n ( ~ , p ) ~  in any minimal  system, it follows that dlof often 
requires  lower order dynamics for complete and arbitrary pole  place- 
ment  than  the  procedure  outlined in  [15],  although it  should be noted 
that the  employment of vr - 1 integrators does  not always  insure  com- 
plete and  arbitrary pole  placement. 

Iv. CONCLLDING REhlARKS 

A number of new  results  related to linear output feedback (lof) 
compensation have  now  been  presented. In particular, the  rank of a 
(g - 1) X n-dimensional  real  matrix 0 was shown to represent an upper 
bound on the  number of closed-loop  poles  which can  be completely and 
arbitrarily assigned via constant gain output feedback. Furthermore,  a 
new bound on the minimum number of dynamical elements  necessary to 
completely and  arbitrarily assign all of the closed-loop  poles of a system 
via dynamic  compensation was  given in terms of the observability  index 
of an appropriately defined  single-input  system. 
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More on the Conjecture by Siljak 

J.  J. MONTEMAYOR AND B. F. WOMACK 

Abstract-Let A be a special class of matrices with complgx  elements. 
This correspondence  considers  the  properties of any A E A wbi& wiU 
guarantee that if G = - ( A   * H  + HA), then  for  any  given  Hermitian posi- 
tive d e f i i  matrix H ,  there exists  a unique nonsingular Hermitian matrix 
G .  Properties of the  eigenvalues of A and G are established. 

M,m DEVELOPMEXT 

The results  presented  in [l]  on the specification of the conditions on 
n X n  matrix A must satisfy for  the existence of the real  symmetric 
positive  definite  matrices H and G are extended to include  the cases 
where A has complex  elements, H is Hermitian positive  definite, and G 
is either  nonsingular Hermitian  or  Hermitian positive  definite. 

The specification of the  conditions  the matrix A must  satisfy for the 
existence of the matrices G and H ,  as outlined above, is based on the 
following two results. 

Theorem 1 [2]: If all eigenvalues of A have  modulus less than 1 and 
G is a  Hermitian  matrix with 

G - A * G A = Q > O  (1) 

where Q >O denotes a positive defi&e Hermitian  matrix Q and A* 
denotes  the conjugate transpose of A ,  then G is positive  definite. 

Theorem 2 [2 ] :  If G is a Hermitian  solution of 

G - A * G A = Q ,   Q > O ,  (2) 

then G is  nonsingular and the  number of positive  (negative)  eigenvalues % 

of G is equal to the number of eigenvalues of A inside  (outside) the unit 
circle JAJ < 1. 

The  Lyapunov matrix equations arise in a  number of areas in the 
analysis and design of control systems, optimal  control problems, and 
quadratic.  performance evaluation. For a  constant  linear discrete  system 

X k + l ’ A X k  (3) 

where A is an n X n matrix  with  complex  elements, the equation is 

A * G A - G = - Q  (4) 

where Q is a Hermitian positive  definite  matrix. It is required to find  the 
n X n matrix G which  is  Hermitian. In particular, in the stability  analysis 
of (3), G is the matrix of a quadratic  Lyapunov matrix  equation. 

Moreover, if there  are no eigenvalues A., A, of A such  that 
- 

Ai+ = 1 (all ij) 

where  means  complex  conjugate, then  the solution of (4) is unique and 
the  numbers of eigenvalues A, inside and outside the unit  circle 1x1 < 1, 
are,  respectively, equal  to  the  numbers of positive and negative  eigenval- 
ues of G.  

From (5),  

G =   - ( A * H + H A ) ,  (5) 

we get 

G - A * G A = Q  ( 6 )  
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