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Fundamental Characteristics of
Feedback Mechanisms

1 Introduction and Summary of Results

Feedback is everywhere. Feedback is ubiquitous. Feedback is all around us
and inside us.

It would be truly interesting to find out how old feedback is. How far
back in time can we trace feedback mechanisms? Since the beginning of
life? Certainly even single cell creatures react to sensory inputs, they change
direction, are attracted to light. The purpose of having sensors is to use the
information and act upon it to feed, to avoid danger, to find shelter. This is
feedback control. Single cell creatures in addition to using feedback to react
to external stimuli they also have feedback to regulate automatically internal
functions. Is there life without feedback? In my opinion it is doubtful! Life
functions and feedback go hand in hand! But even before the beginning of
life, one could imagine feedback playing a central role in physical phenomena
helping settle processes to equilibrium points. But this discussion is probably
for another time and place.

In the area of Systems and Control theory, the emphasis has been on
designing feedback controllers given a model of the process to be controlled.
Many powerful methodologies have been introduced in the past half century
to design controllers, decision mechanisms, that stabilize and achieve desired
performance in a robust way, being tolerant to certain class of plant param-
eter variations and external disturbances. Feedback or closed loop control
is used, instead of feedforward or open loop control, because of uncertain-
ties in the plant and its environment. Methods that optimize performance
(LQR/LQG, Hinf) have also been used successfully for certain classes of
systems. The models are typically ordinary differential or difference equa-
tions mostly linear and time-invariant but also time-varying, and nonlinear.
Less often the behavior of interest is described by partial differential equa-
tions. Discrete event systems such as manufacturing systems are typically
described by automata and Petri nets.

Significantly less effort has been spent in the past half century on un-
derstanding exactly how and why feedback works so well not only in the
control of engineered systems, but in natural systems as well. What are the
fundamental principles, the fundamental mechanisms which make feedback
control so powerfully effective? These fundamental mechanisms should be
independent of the particular type of mathematical models used, that is the
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system may be described by differential equations, by automata, by logic ex-
pressions, by natural language since we do know that feedback is ubiquitous
and works! What are these fundamental properties that are present every-
where? Deeper understanding would make it possible to understand better
the mechanisms at work in natural systems and would lead to designing
better controllers.

So the question is whether there are intrinsic properties of feedback that
transcend particular applications and models and are present in electrical,
mechanical, physical, biological, social, economic systems. Is there a funda-
mental, ever-present, feedback property?

1.1 Feedback

Feedback is a mechanism, ubiquitous in nature that drastically and dramat-
ically changes the behavior of the system (of the plant, the process to be
controlled). By behavior we mean the observed response of the system to
external stimulus such as an input or initial condition. Examples of feed-
back abound. Here a familiar situation every car driver has experienced is
described.

When driving and the slope of the road starts increasing, the car speed
starts decreasing. Typically the driver detects this by looking at the
speedometer and presses the gas pedal a bit more to increase the fuel rate
and bring the speed up again to the previous level. The driver detects-via
the speedometer-the difference between the desired and actual speeds (the
error). When the error is positive-meaning that the actual speed is less than
the desired-the driver increases the fuel to the engine; if negative-that is the
actual speed is higher than the desired speed (going downhill for example)-
the driver decreases the fuel input and the car slows down. Cruise (speed)
controlers in cars do the same thing but automatically.

In what way does feedback alter the behavior of a system? Consider
the system consisting of the car and the control fuel input set at certain
level corresponding to the desired speed (here the output) when the road is
horizontal. When there is a positive road incline and no corrective action
is applied the car normally will start slowing down, as its normal behavior
dictates. Consider now having as input the desired speed with its corre-
sponding fuel rate and adding to this an appropriate additional positive fuel
rate when the incline is positive (and the error is positive). Now the system
can be seen as having the same reference input (desired speed ) as before
but with feedback it exhibits a different behavior since now the car does
not slow down. So with the same desired speed as input, feedback makes it
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possible for the car to have a different dynamic behavior!
Can this be done without feedback? If we do know the details of the

incline and have an accurate model of the response of the car when the
fuel rate is increased, then the driver, or a machine, can apply just the right
additional fuel to do the job. However this implies knowledge we do not have.
How for example can we have such accurate knowledge so to tell exactly-
without using sensor information-when the incline starts and the car slows
down? How do we know that there will not be a sudden gust of headwind,
a disturbance, that will slow us down? In fact both such uncertainties in
the plant model and in disturbances are rather common in practice and so
open loop control typically does not work except in special cases.

The amazing thing is that with feedback the change of behavior is au-
tomatic. When feedback information is available the driver maintains the
desired speed, without intimate knowledge of the slope of the incline or of
the engine of the car, by just observing the speedometer and adding fuel
when the error is positive, and reducing fuel when the error is negative.
(Note that a more sophisticated controller may consider not only the error
in speed but also the rate of change of the actual speed so to react faster).

1.2 Feedback’s Fundamental Properties

In view of the above discusion, it appears that feedback is a way to change
behavior as if we were changing the plant itself but without actually doing
so. How is feedback changing the plant behavior?

What are feedback’s most fundamental intrinsic properties? Is it its
ability to reduce sensitivity of the behavior to uncertainties in the plant pa-
rameters and external disturbances? This is appealing because the reasons
for using feedback instead of open loop control are these uncertainties. Un-
fortunately this is not so. Low sensitivity depends on the particular choice
for the controller and the choice may decrease or increase sensitivity.

For example the sensitivity S of a plant G = 1
s+1 in a unity (negative)

feedback configuration with a static controller Gc = k is S = (1+GGc)−1 =
s+1

s+1+k . Note that the plant is stable for 1+k > 0 or −1 < k. For −1 < k < 0
the sensitivity to parameter variations is greater than 1 that is the sensitivity
of the closed loop is worse than that of an open loop (see also Appendix).

So reducing sensitivity cannot be a property that is present independently
of the particular controller used. Is then stabilization the most fundamen-
tal feedback property? Similarly the choice of controller may stabilize or
destabilize the system and so stabilization cannot be an intrinsic feedback
property. So what is it?
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Automatically Changing the Dynamics
A key feedback property that transcends all applications and all choices

for the controller appears to be the ability of feedback to completely alter the
plant dynamic behavior no matter what the particular plant dynamics are.
This property is independent and distinct and separate from the ability to
assign new dynamics by selecting the controller appropriately for stabiliza-
tion or performance. Note that in the open loop non-feedback case we also
have the ability to easily assign new dynamics, the problem being that to
cancel existing dynamics is not always possible.

Even small feedback gains can change the dynamic behavior. Consider
for example the root-locus of a LTI SISO plant. As the gain k increases
from 0, even by a very small amount, the closed loop poles are not the open
loop poles any longer-the open loop poles seem to vanish (similarly when k
decreases from 0).

For example consider the plant G(s) = 1
s(s+1)(s+2) and its root locus for

k ≥ 0 (see Appendix 11). For k = 0 the closed loop poles are at the open
loop pole locations and for small positive k the closed loop poles are different
from the open loop pole locations.

As k goes towards infinity the closed loop poles move towards the finite
zeros of the plant and to points at infinity along the asymptotes. For very
large gains k the plant dynamics seem to cancel out completely. These are
well known phenomena in the controls literature and provide the clues for
the fundamental mechanisms of feedback.
Automatically Changing the Gains

A second fundamental characteristic of feedback is change in gain. It
should be noted however that in contrast to the previous property of chang-
ing the dynamics, this property is dependent on the selection of the feedback
gain and strictly speaking it may not qualify as a fundamental property.
Never the less, as it will be shown, it is directly related to a fundamental
property of feedback, namely the ability to reduce the sensitivity to param-
eter variations in the plant. As it is discussed below, large gain variations
inside the loop typically can only cause small gain variations outside the
loop and so the effect of uncertainties may be much reduced. The auto-
matic change in the plant dynamics when closing the loop is essential in the
resulting ability of appropriately changing the feedback gains to stabilize the
system in a robust way. In an analogous fashion, the automatic change in
the gain is essential to the ability of appropriately choosing the feedback gain
to reduce the dependence of the system to uncertainties. So, in feedback,
the automatic change of the plant dynamics is related to stabilization, while
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the automatic change in the plant gain is related to reduction of sensitivity
to uncertainties.

Changing the dynamics is more complicated and so the next sections
will be devoted to explaining the mechanisms involved. The mechanism of
changing the gain can be easily seen from a simple feedback loop involving
only static gains. Let the plant be an amplifier of gain A, i.e. G(s) = A,
and consider a unity feedback control configuration with controller Gc = k,
a static gain (see Fig. 1.6).

Here the output of the closed loop system is given by

Y =
kA

1 + kA
R = TR (1)

with
U =

k

1 + kA
R, E =

1
1 + kA

R (2)

while the open loop gain is
Y = AU. (3)

Sensitivity to plant parameter variations can be studied in detail using
the sensitivity function S = 1

1+kA and the relation

∆T
T
≈ S∆G

G
(4)

where G is the plant and T is the closed loop transfer function.
The R to Y gain remains the same, equal to the plant’s gain A only

when k = 1
1−A ; in general the closed loop gain will be different from A. The

absolute value of the closed loop gain will be less than 1 for −1
2 < kA and

will be greater than 1 for kA < −1
2 . The sensitivity function S = 1

1+kA will
have absolute value |S| < 1 for kA > 0 and for kA < −2; it will have |S| > 1
only for −2 < kA < 0. That is, the open loop gain kA maps the sensitivity
S to −1...1 range and the closed loop gain T to 0...1 range for all kA > 0.
A consequence of this is that variations in A (uncertainties) will not affect
as much the overall R to Y gain, that is feedback reduces the sensitivity
to parameter variations at the expense of reducing the gain. As a specific
example, consider k = 1 and A = 10000. In this case the R to Y gain is

A

1 +A
=

10000
1 + 10000

≈ 1 (5)

which represents a great reduction in gain. The benefit is that if A changes
say by 20% then

A+ .2A
1 +A+ .2A

=
1.2A

1 + 1.2A
=

1.2
1
A + 1.2

≈ 1. (6)
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That is, the overall gain is insensitive to variations in the open loop gain A.
Similar results may be seen in the more general case.
Here

Y =
GGc

1 +GGc
R = TR (7)

with
U =

Gc

1 +GGc
R, E =

1
1 +GGc

R (8)

For specific frequencies, when GGc > −1
2 the closed loop gain has ab-

solute value less than 1. When GGc > 0 or GGc < −2, the absolute value
of the sensitivity S is less than 1. Feedback reduces automatically the sen-
sitivity function to less than 1 (for a large class of feedback gains). For
example, here for any GGc > 0 |S| < 1. Not that also |T | < 1. So the
sensitivity function S maps all positive loop gains to the 0...1 range for |S|
at the expense of reducing the closed loop gain |T | to the 0...1 range as well.
This reduction of the overall R to Y gain of the compensated system is the
price to pay for low sensitivity.
The Return Difference

The return difference in a feedback loop is the difference between the
transmitted (measured) and returned signals at the output of the plant; see
section 1.10. Both feedback fundamental characteristics, automatic change
of dynamcis (poles) and gains, are caused by the feedback interconnection,
which can be expressed in terms of the return difference. Specifically, in
the unity feedback configuration, the output Y = −GGcY +GGcR or (1 +
GGC)Y = GGcR where (1 +GGc) is the return difference; see Section 1.10.

Sidebar: The reason for not having a clear explanation of the feedback
mechanisms at work after many decades of impressive developments in the
mathematical theory of control may perhaps be due to the fact that modern
systems and control theories typically consider feedback to be already part of
the setup and study the behavior of the whole system. So the actual feedback
mechanisms have not been explored nearly as well as the effects of feedback
on the compensated systems, where selection of appropriate feedback gains
are of importance and of main interest. In the earlier era of classical control
where control specialists typically were closer to applications, it was clearly
seen that the control law is there to manipulate the input u and produce the
desired effect. The plant dynamics cannot be changed. So understanding
exactly how u acts on the plant would have been of great interest, but the
understanding brought forth by internal system descriptions was not readily
available then. Today we can look at this problem having the benefit of the
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insights developed over many years since the classical era of control in the
1950s.

In the following sections the focus will be on simple LTI plants under
open and closed loop control. We focus on the automatic changes of dy-
namics when closing the loop. Some basic concepts will be reviewed and
presented in a way that sheds light into the basic fundamental mechanisms
of feedback control. The Appendix contain discussion on several related top-
ics including pole/zero cancellations, sampled data, and nonlinear systems.
The effect of high gains is discussed in Section 2, open loop control in Sec-
tion 3, and closed loop control in Sections 4 and 5. In Section 6, state space
representations are discussed, and the two degrees of freedom configurations
are discussed in Sections 7 and 8. In section 9, open and closed loop control
are compared and in Section 10 the role of the return difference is discussed.

2 High Gains in the Feedback Loop—A First Glimpse
at the Feedback Mechanism

It is well known that feedback control can be seen as a mechanism that
approximately inverts the plant dynamics, producing an “approximate” in-
verse of the plant at its control input. This can be seen for example using
the simple error feedback control systems in Figure 1. When H = 1, the
transfer functions are

Y

R
= T =

GGc

1 +GGc
and

U

R
= M =

Gc

1 +GGc
. (9)

–

YUE
G

H

R
Gc

Figure 1:

If |GGc| >> 1 then

Y

R
= T ∼= 1 and

U

R
= M ∼=

1
G
. (10)

That is, at the control input u of the plant, the external input r acts through
an inverse of the plant G (U ∼= 1

GR) , so to cancel all plant dynamics and
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produce an output y, which is approximately equal to the reference input r
(Y = GU ∼= G 1

GR
∼= R). In other words, the input to the plant u, generated

by the external input r, is such that when applied to the plant G causes the
plant output y to be (approximately) equal to the externally applied input
r.

Note that in the case when Gc = k, a real gain, this effect can also be
seen from the Root Locus where as the gain increases the closed-loop poles
go towards the open-loop finite and infinite zeros along the asymptotes and
so for high gain, pole-zero cancellations do occur and the overall transfer
function is approximately 1.

If in addition there is a controller H ( 6= 1) in the feedback path, then
again the plant and its inverse cancel, however the overall gain in this case
is (approximately) independent of the plant and equals 1

H :

Y

R
= T ∼=

1
H

and
U

R
= M ∼=

1
GH

. (11)

H is selected to have a precise value (typically less than 1) so the compen-
sated system has the desirable gain, while it remains robust to parameter
variations in GcG.

Similar results can be shown in the nonlinear case (see for example [1]–
pp. 29-36 and Appendix A.6). Again in this case, when high gains are applied
the external input acts through an inverse of the plant on the plant’s input.

Remark: High gains of course can have undesirable effects such as
amplification of measurement noise and even worse, can cause instability.
The latter can be easily seen, for example, via the Root-Locus in the case of
non-minimum phase plants where the closed-loop poles approach right-half
plane zeros for high gains and so the closed-loop system becomes unstable.

Discussion: Can it then be said that the feedback mechanism always
acts by generating a plant “inverse” and canceling somehow the plant dy-
namics, as it was shown to be true in the case of high-loop gains?

Although our intuition based conjecture is basically correct, it is not
very exact. Explaining exactly how feedback acts on the plant is the goal of
the present work. Clear understanding of the feedback mechanism is very
important especially today when feedback is identified and used to explain
the development of a variety of processes found in diverse areas from biology,
to physics, to finance.

If we understand clearly how the feedback control produces all these
wonderful results, it will perhaps be easier to understand the cases when
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feedback information is not readily available as it is the case, for example,
in networked control systems, where the plant may have to operate often in
an open-loop configuration.

In view of this, the closely related open-loop control versus closed-loop
control topic is discussed in detail in the folowing. Furthermore, as it was
discussed above, at the plant input u, for high gains the external input
r acts through an inverse of the plant that can be seen as an open-loop
“equivalent” to feedback configuration, and these mechanisms will also be
discussed below. Note that in the Appendix A.1 a review of pole/zero can-
cellation mechanisms (in both frequency and time domains) are given for
completeness.

3 Open-loop Control (Feed-forward Control)—A
Simple Example

We are interested in obtaining a desired transfer function (desired response
to any allowed input) from a given plant, the input of which is controlled
by a controller in series with the plant. We shall start with a simple case
which nevertheless contains the important salient features.

Consider a plant to be controlled described by the first-order differential
equation a(dy/dt) + y = u with initial condition y(0). If Y (s) and U(s) are
the Laplace transforms of the output and the input respectively, the transfer
function is

Y (s)/U(s) = G(s) =
1

as+ 1
. (12)

Let the output disturbance be d(t), so that

Y(s)U(s)
G(s)

D(s)

Figure 2:

From the differential equation it is easy to see that a(sYp(s)−y(0))+Yp(s) =
U(s) from which

Y (s) =
a

as+ 1
y(0) +

1
as+ 1

U(s) +D(s). (13)

If we consider the open-loop controller in Figure 1.3,
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U(s)R(s)
G (s)c

Figure 3:

where

U(s)/R(s) = Gc(s) =
bs+ 1
cs+ 1

(c(du/dt) + u = b(dr/dt) + r), (14)

it can be shown that

U(s) =
cu(0)− br(0)

cs+ 1
+
bs+ 1
cs+ 1

R(s). (15)

The output of the compensated system, in Figure 1.4,

Y(s)U(s)R(s)
G(s)

D(s)

G (s)c

Figure 4:

is then

Y (s) =
(cs+ 1)ay(0) + cu(0)− br(0)

(as+ 1)(cs+ 1)
+

bs+ 1
(as+ 1)(cs+ 1)

R(s) +D(s). (16)

The behavior may be changed by canceling undesirable plant dynamics via
pole-zero cancellations. As it can be seen in Appendix 1, in the time do-
main, these cancellations correspond to making the coefficients of the corre-
sponding modes equal to zero (or making the modes uncontrollable and/or
unobservable).

Consider the part of the output that is due solely to the input R(s),

YR(s) = GGc(s) =
bs+ 1

(as+ 1)(cs+ 1)
R(s). (17)

If we select b = a then the pole of the plant G at −1/a cancels out with
the zero of the controller Gc and the overall pole dynamics are completely
characterized by the pole of the controller at −1/c which can be chosen to
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our liking. To illustrate, let r(t) = 1(t) the unit step; then R(s) = 1
s and

(let a 6= c for simplicity)

yR(t) = L−1
{

bs+1
(as+1)(cs+1)

1
s

}
= L−1

{
−a a−b

a−c

as+1 +
−c c−b

c−a

cs+1 + 1
s

}
=

[
b−a
a−ce

− t
a + c−b

a−ce
− t

c + 1
]

1(t).

(18)

When b = a then
yR(t) =

[
1− e−

t
c

]
1(t). (19)

If however, a is not known exactly (i.e. the exact location of the pole of
the plant is not known exactly) and b is not taken to be exactly equal to a,
but b = a+ ε, then

yR(t) =
[

ε

a− c
e−

t
a +

[
1−

(
1 +

ε

a− c

)
e−

t
c

]]
1(t) (20)

where it can be seen that the plant pole at −1/a has not been cancelled.
If −1/a is positive (unstable pole) then the corresponding mode will grow
with time and the system will be unstable.

The part of the response due to initial condition is YI(s), and in the time
domain is (let a 6= c for simplicity)

yI(t) = L−1

{
a

as+ 1
y(0) +

cu(0)− br(0)
a− c

(
a

as+ 1
− c

cs+ 1

)}
=

[[
y(0) +

cu(0)− br(0)
a− c

]
e−

t
a − cu(0)− br(0)

a− c
e−

t
c

]
1(t).

(21)

When b, c, u(0), and r(0) are such that the coefficient of e−
t
a is zero, then

the plant dynamics are suppressed from the response. This happens when

(a− c)y(0) + cu(0)− br(0) = 0 (22)

which is exactly the condition in YI(s) for the factor as+1 in the denominator
to cancel with the numerator (the numerator should be zero for s = −1/a
which is the pole to be cancelled). Again, as in the yR(t) case above, if a and
y(0) are not exactly known then the unstable mode will not be eliminated
from yI(t).
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For completeness let us also find the expression for the input to the plant.
The control input u(t) to the plant when R(s) = 1/s is

u(t) = L−1 {U(s)} = L−1

{
cu(0)− br(0)

cs+ 1
+
bs+ 1
cs+ 1

1
s

}
=

[
(u(0)− b

c
r(0))e−

t
c + (b− c)e−

t
c + 1

]
1(t).

(23)

Note that when b = a and u(0), r(0) are chosen to satisfy 22, then

u(t) =
[
−y(0)

c
(a− c)e−

t
c + (a− c)e−

t
c + 1

]
1(t) (24)

In view of the above analysis it is clear that in open loop control, in or-
der to change the plant poles and therefore the plant dynamic behavior one
needs exact knowledge of the pole location (−1/a) and of the initial condi-
tion (y(0)). Furthermore, the disturbance d(t) can only be suppressed if it
is measured directly. Uncertainties in the plant model and the environment
are part of almost every design and so −1/a, y(0), and d(t) are typically
not known exactly. So it is impossible to stabilize an unstable system using
open-loop control.

Note: The open loop control has high “fragility.” It is very sensitive to
the location of the poles and of the initial conditions. The effect of such
errors in the location of unstable poles can be catastrophic.

4 Closed-loop Control (Feedback Control)—A Sim-
ple Example

Consider now the unity (error) feedback configuration, in Figure 1.5, where
the plant is described again by a(dy/dt) + y = u with initial condition y(0).
The transfer function is G(s) = 1/(as+ 1) as before.
Here again

Y (s) =
a

as+ 1
y(0) +

1
as+ 1

U(s) +D(s) (25)

The control input U is now generated via a feedback mechanism. Specifically

U(s) = k(R(s)− Y (s)) = kR(s)− ka

as+ 1
y(0)− k

as+ 1
U(s)− kD(s) (26)

from which

U(s) = − kay(0)
as+ 1 + k

+
k(as+ 1)
as+ 1 + k

R(s)− k(as+ 1)
as+ 1 + k

D(s) (27)
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–

U(s)E(s)
G(s)

R(s)
K

Y(s)

D(s)

Figure 5:

When this input is applied to the plant

Y (s) =
[

a

as+ 1
y(0)− kay(0)

(as+ 1)(as+ 1 + k)

]
+

k(as+ 1)
(as+ 1)(as+ 1 + k)

R(s)

− k(as+ 1)
(as+ 1)(as+ 1 + k)

D(s) +D(s)

=
a(as+ 1)y(0)

(as+ 1)(as+ 1 + k)
+

k(as+ 1)
(as+ 1)(as+ 1 + k)

R(s)

(as+ 1)2

(as+ 1)(as+ 1 + k)
D(s)

or
Y (s) =

ay(0)
as+ 1 + k

+
k

as+ 1 + k
R(s) +

as+ 1
as+ 1 + k

D(s) (28)

Observe that the factor (as+ 1) that corresponds to the undesirable open-
loop dynamics was cancelled in all the terms. The denominator (as+ 1 + k)
that represents the desirable dynamics appears in all the terms. Note that
the system is stable for all k such that 1+k

a > 0. (When a > 0 (stable
plant) for k > −1 the closed-loop is stable; when a < 0 (unstable plant) the
closed-loop is stable for k < −1.

The range of the acceptable values for the gain k for stability or the
stability robustness of the system is remarkable and it is achieved with
feedback. In the case of the unstable plant for example, the gain k can be
selected within a very wide range (−∞ < k < −1) and the system will
be stable even when the exact pole location (− 1

a) and the initial condition
(y(0)) are not known. This is not the case when open-loop control is used
as it was shown above.

The above examples suggest that feedback acts in two distinct steps. In
the first step the plant dynamics are cancelled automatically. In the sec-
ond step new desirable dynamics are assigned by appropriately choosing the
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feedback control law. In the following, these two fundamental feedback ac-
tions are discussed at length with the cancellation of plant dynamics shown
initially for a more general case and for the general two degrees of freedom
controllers in the next section. The exact feedback mechanism that cancels
the plant dynamics is shown.

5 Open and Closed-loop Control—A More Gen-
eral Analysis

Similar results can be derived in the more general case when G(s) = n(s)
d(s) and

Gc(s) = nc(s)
dc(s)

, where n(s) and d(s) are polynomials with real coefficients and
G, Gc are rational proper transfer functions. Consider first the open-loop
control case of Figure 4. Here the plant output is

Y =
no

d
+
n

d
U +D (29)

where no is a polynomial term involving the initial conditions of the plant;
when the initial conditions are zero, no = 0. Similarly, the controller output
is

U =
nco

dc
+
nc

dc
R (30)

Therefore the overall system output in the open loop control case (in Fig-
ure 4) is

Y =
nodc + nnco

ddc
+
nnc

ddc
R+D. (31)

To change the plant behavior, all undesirable plant dynamics in the plant
denominator d must be cancelled via pole/zero cancellations. This can be
accomplished by selecting nc and also the initial conditions in nco (for can-
cellation between d and nodc + nnco). It is clear that when there are un-
certainties in the undesirable plant pole locations and initial conditions, it
is not possible to select the open loop controller to cancel the undesirable
plant dynamics. So similar results as in the previous section are derived for
the open loop control case as expected.

Consider now the feedback case. Again, let G = n
d and Gc = nc

dc
and

consider the feedback interconnection of Figure 6, where D is the disturbance
(in the Laplace transform domain).
Then

Y =
no

d
+
n

d
U +D (32)

14



–
G

D

YUER
Gc

Figure 6:

and U = nco
dc

+ Gc(R − Y ) = nco
dc

+ nc
dc
R − nc

dc

(
no
d + n

dU +D
)

from which(
1 + ncn

dcd

)
U = ncod−ncno

dcd + nc
dc
R− nc

dc
D or

U =
ncod− ncno

ddc + nnc
+

ncd

ddc + nnc
R− ncd

ddc + nnc
D. (33)

Also

Y =
[
no

d
+
n(ncod− ncno)
d(ddc + nnc)

]
+

ncdn

d(ddc + nnc)
R+

[
1− ncdn

d(ddc + nnc)

]
D

=
d(nodc + nnco)
d(ddc + nnc)

+
dncn

d(ddc + nnc)
R+

dddc

d(ddc + nnc)
D

or
Y =

nodc + nnco

dk
+
ncn

dk
R+

ddc

dk
D (34)

where
dk ,= ddc + nnc. (35)

Here d, the denominator of the plant, was cancelled in all three terms. Note
that for internal stability dk must be a Hurwitz polynomial (all roots must
have strictly negative real parts). If d−1

k is stable, stability is guaranteed
independently of the initial conditions. Selecting nc and dc (with Gc = nc/dc

proper) to assign the closed-loop poles is straightforward. See the formulas
that characterize all solutions of the Diophantine equation (See for example
[2] section 7.2E).

Again here it is seen that all the plant poles in d are automatically can-
celled when the loop is closed. That is, when feedback is applied and the loop
is closed, the input to the plant u is such that all the plant modes change
automatically. The closed loop characteristic polynomial has roots (closed
loop eigenvalues) that are different from the poles (eigenvalues) of the plant
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G for almost any Gc (unless poles of G or Gc cancel in the loop gain GGc in
which case there are uncontrollable and/or unobservable modes that cannot
be altered via output feedback.)

Remarks:

i From (34) it can also be seen how to compensate for disturbances such
as step disturbances D(s) = 1

s while preserving internal stability. Select
ddc = s(·) for the numerator in the D term with dk remaining Hurwitz.
Clearly n should not have an s and this is a condition on the plant for
regulation with internal stability.

ii The error

E = R− Y = −nodc + nnco

dk
+
ddc

dk
R− ddc

dk
D

For zero steady-state error to a step input we must have ddc = sk(·)
k ≥ 1. (That is the system Type should be 1 or greater, a well known
result.)

iii If the disturbance D enters at the plant input instead of plant output,
then it can be seen that the disturbance term in (34) will be (ndc/dk)D.
Here, again, if D(s) = 1

s then the numerator should be chosen as ndc =
s(·) with dk remaining Hurwitz.

iv Also present is the corresponding analogous property that all the con-
troller poles in Gc are automatically cancelled when the loop is closed.
This can be seen from the expression for U in (33) where dc was cancelled
in similar fashion as d was cancelled in the expression for Y in (34).

6 State Variable Representations

In this section state variable representations are used and similar results
are shown. In particular, it is shown that the plant dynamics cancel out
automatically when linear state feedback is used.

Consider the plant,
ẋ = Ax+Bu. (36)

Let the linear state feedback control law be given by

u = −Kx+ r. (37)
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The closed loop system is given by

ẋ = (A−BK)x+Br. (38)

In the Laplace Transform domain, this becomes

X(s) = (sI − (A−BK))−1x0 + (sI − (A−BK))−1BR(s) (39)

where x0 is the initial state.
The control input to the plant can be shown to be [2] (p. 327)

U(s) = −K(sI − (A−BK))−1x0 + (I +K(sI −A)−1B)−1R(s). (40)

In order to show how the control acts on the plant, consider the open
loop plant given by

X(s) = (sI −A)−1x0 + (sI −A)−1BU(s) (41)

Substituting the value of U(s) from (40) in the above equation, after
some manipulation we obtain

X(s) = (sI −A)−1
[
(sI −A)(sI − (A−BK))−1

]
x0

+
[
(sI − (A−BK))−1(sI −A)

]
(sI −A)−1BR(s)

= (sI − (A−BK))−1x0 + (sI − (A−BK))−1BR(s)
(42)

(which is exactly the result in 39). This derivation shows that the open
loop dynamics included in (sI − A) cancel when feedback is applied. In
particular, at the input U(s), the factor (sI −A) is introduced and cancels
with (sI −A)−1 when X(s) is generated.

The same result can be shown quite easily using polynomial matrix de-
scriptions. In particular, consider the plant Dz = u where z is the “par-
tial state”, and u = Fz + r is the linear state feedback control law (here
Fz = −Kx; D and F are polynomial matrices). The control input in the
Laplace domain is

U = D(D − F )−1R = DD−1
F R. (43)

When this control input is applied to the system, we obtain

Z = D−1U = D−1
[
D(D − F )−1R

]
= (D − F )−1R = D−1

F R. (44)

D, which represents the open loop dynamics, cancels out. The control input
U always contains the factor D which cancels with D−1 of the plant. D is
the inverse of the map from input U to partial state Z given by Z = D−1U .
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Remark: The linear state feedback gain may be chosen to satisfy addi-
tional requirements beyond stabilization. Such requirements may impose the
restrictions that certain open loop eigenvalues should become unobservable,
by canceling them with zeros (as for example is the case in the disturbance
decoupling problem). In this case, some of the closed loop eigenvalues are
equal to the open loop ones and so they are fixed.

Here, again, U is given by (43) and

Y = ND−1U = (ND−1)(DD−1
F R) = ND−1

F R. (45)

Then if DF = D̂FNg where N = N̂Ng,

Y = N̂Ng(D̂FNg)−1R = N̂D̂F
−1
R. (46)

That is, the eigenvalues in Ng (in DF ) are unobservable and cancel out in
the transfer function.

7 Two Degrees of Freedom Feedback Control

Consider a general 2-degrees of freedom feedback controller

u = [Cy, Cr]
[
y
r

]
= C

[
y
r

]
and the diagram in Figure 7 (see [2]-pp. 626). Note that in this and following
sections lower case symbols are used for the Laplace transformed variables;
this is clear from the context and hopefully no confusion arises.

Dy

G

D

YUR
C

ydu

η

oY

Figure 7:

Here

u = [Cy, Cr]
[
y + dy + η

r

]
+ du. (47)
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Then

y = G(I − CyG)−1 [Crr + Cydy + Cyη + du] (48)

u = (I − CyG)−1 [Crr + Cydy + Cyη + du] (49)

or

y = Tr + (So − I)dy +GQη +GSidu (50)
u = Mr +Qdy +Qη + Sidu (51)

where, for G = ND−1

T = G(I − CyG)−1Cr = GM = NX

M = (I − CyG)−1Cr = DX

Q = (I − CyG)−1Cy = DL

So = (I −GCy)−1 = I +GQ

Si = (I − CyG)−1 = I +QG

(52)

Si and So are the input and output comparison sensitivity matrices. Si

is the transfer function between u and du, and So is the transfer function
between yo and dy as it can be seen from

yo = y + dy = Tr + Sody +GQη +GSidu. (53)

M is the transfer function between u and r; Q is the transfer function
between u and dy or η.

M and Q can be seen as design parameters. M is chosen primarily
to satisfy response requirements between r and y, while Q is selected to
satisfy feedback properties such as low sensitivity to parameter uncertainties,
disturbance attenuation, etc. In the 2-degrees of freedom controller, M and
Q maybe selected independently. This is not the case in more restricted
configuration (see [2]–pp. 629–632) when M and Q are related. For example,
in the unity feedback configuration M = Q.

M andQ can always be written asM = DX andQ = DL, whereD is the
denominator of the plant (G = ND−1, where D, N are co-prime polynomial
matrices) and X, L are design parameters (stable rational functions for
internal stability). The part of u that is due to the external input r is
ur = Mr = DXr or D−1ur = Xr, and in view of the plant description
Dz = u, y = Nz, zr = Xr. That is X determines the effect of r on the
plant’s state z. Similarly, from ud = Qdy = DLdy, zdy = Ldy that is L
determines the effect of dy (or η) on z.
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The expressions for u and y can be written as

u = D
[
Xr + Ldy + Lη + (I + LN)D−1du

]
(54)

y = N
[
Xr + Ldy + Lη + (I + LN)D−1du

]
. (55)

This shows that no matter what r, dy, η, du, Cr, and Cy are, u can always
be written as

u = D
[
X,L,L, (I + LN)D−1

] 
r
dy

η
du

 = Dξ (56)

where ξ is a signal generated by filtered combination of r, dy, η, and du

(note that all the filters are stable for internal stability, see also Appendix
A.2).

The feedback mechanism always generates a signal u the behavior of
which is modified by D, the inverse of the map D−1 which is the trans-
fer function between z and u (z = D−1u) in the plant. D appears in the
numerator of the transfer function between u and r and it has the effect that
for such u the behavior of the plant state z = D−1u = D−1DXr = Xr is
completely freed from behavior determined by the plant modes.

So feedback does not really generate the inverse of the plant
y = Gu (or of the map between y and u)—which may or may not
be proper (causal) after all—but it generates the inverse of the
map between z and u, namely of z = D−1u, which always exists.

More specifically, the expression (54) points out the fact that the po-
tential is there for the feedback to generate the whole D at u. However,
depending on the choices for X and L cancellations may take place between
D and the denominators of X and L.

To illustrate, consider the case when r is the only external input (dy, du,
and η are taken to be zero). If now Cy and Cr are chosen to stabilize the
system (see [2], p. 623, Theorem 4.21 and Appendix A.2) then X is stable
and can be chosen to cancel all stable poles of D. That is under stability,
if D = DbDg where Db contains all the unstable (bad) dynamics and Dg

contains all the stable (good) dynamics, X = D−1
g X̂ will produce

u = Mr = DXr = DbDgD
−1
g X̂r = DbX̂r (57)

i.e. only Db (the inverse of D−1
b ) will need to appear in u.
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On the other hand, if the system G = ND−1 is stable, for stability one
can select X = D−1X̂ in which case

u = Mr = DXr = DD−1X̂r = X̂r (58)

and no inverse map of D need to be generated at u. So for stability u need
contain only all the bad poles of the plant as zeros.

Note that in the case when G−1 = DN−1 exists and is stable, then if
X = N−1X̂

u = Mr = DXr = DN−1X̂r = G−1X̂r (59)

that is the inverse of the plant is generated.
So, the inverse of D−1 is generated in u as u = Dξ, as in (56),

always. In special cases G−1 is generated (assuming that the in-
verse of G exists and is stable). When in addition specific goals
are to be satisfied, such as preserving the stable open loop poles
in Dg, Db must be generated; see (57).

In Appendix A.2 the fundamental theorems for internal stability in the
2-degrees of freedom case are given for completeness. It is also shown there
that in the most general LTI case u = Mr = DXr and y = Tr = NXr
that is control implies the cancellation of the plant dynamics (poles). This
is done automatically via feedback when the loop is closed.

In summary, when the loop is closed, an inverse map is gen-
erated automatically to cancel all the pole dynamics of the plant.
The particular selection of Cy, Cr will determine properties such
as stability, and sensitivity, by generating new pole-zero dynamics
(via X and L).

Feedback has the truly remarkable property of generating the
inverse of the actual plant dynamics (of D−1) exactly. In LTI,
this corresponds to generating zeros (in the map from R to U) at
the exact pole locations of the plant. The particular values of the
feedback gains will determine the new dynamics introduced (recall
that u = DXr and X is stable for stability but otherwise (almost)
arbitrarily chosen; see Appendix a.2); DX = M must be proper.

8 Two Degree of Freedom Controllers—A Sum-
mary of the Analysis

Given a model of the process dynamics y = Gu, where G is the transfer
function, and u = Mr is the control input, then y = G(Mr) = Tr where
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T = GM is the desired input r-output y response map. We typically choose
T and M to be stable.

Let now G = ND−1 a coprime fractional polynomial matrix represen-
tation that corresponds to the internal description Dz = u, y = Nz with
z the partial state. It is known that to obtain the maps T and M with
internal stability, T = NX and M = DX where X is stable (see Appendix
A.2). Note that the desired dynamics are introduced via X and the existing
dynamics are cancelled via D.

The input u = Mr = DXr can certainly be implemented via open-loop.
In fact the two-degrees of freedom controller formulation allows that. The
examples in previous sections show the difficulties associated with open-loop
control when uncertainties in the process parameters and in the exogenous
influences—initial conditions, external disturbances—are present. Note also
the amount of dynamics in M = DX that are necessary to be generated,
include all the plant dynamics in the denominator of M (D) in addition to
all desired dynamics (in X).

The control action u = Mr can be generated via a combination of feed-
forward and feedback actions. It corresponds to appropriately selecting the
design parameters L and X, see Appendix A.2.

Now, the amazing fact is that feedback generates automatically abso-
lutely exact models of the existing dynamics in D. This was shown using
the two degree of freedom controller configuration above that contains dis-
turbances and noise signals. Note that as it is well known internal stability
in the closed-loop system may be guaranteed by requiring that certain maps
between appropriate signals be stable; in view of this we omit the initial
conditions in the expressions without loss of generality.

In the expressions for u and y in (54) and (55), first notice that u = D(.),
that is D−1u = z =(.) a function of the external inputs and disturbances. In
(.), the stable design parameter X = D−1M contains the desired dynamics
of the r to y response as discussed above, while L = D−1Q and also (I +
LN)D−1 must be stable for internal stability (in [2]–p. 625). Additional loop
properties such as sensitivity may be addressed by selecting L. Furthermore
by selecting L we can reduce the effect of the disturbances from the output
y and other signals in the loop.

It can be shown that Xr = z and so Tr = NXr = Nz = y and
Mr = DXr = Dz = u. A moment’s reflection reveals that the control
input u = Dz(= Mr), implements the inverse of the u to z (in-
put to state) map D−1 (z = D−1u). Certainly, there are cases where
u can insert an (exact or approximate) inverse of the plant that is of the
u, y map G. To see this, assume G is invertible, and let X = N−1XN .
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Then, u = DXr = DN−1XNr = G−1XNr. Clearly inverting the plant
is a special case that requires conditions on G and a specially chosen X.
What u always implements is the inverse of z = D−1u which contains
all needed information about the plant important dynamics. Recall that the
poles produce the dominant characteristics of the response—they appear as
exponents of the exponential terms in the modes—while the zeros play an
important but secondary role, that of characterizing the coefficients in the
modes. So the zeros cannot introduce new exponential terms but they can
only reduce the effect or eliminate the effect of existing ones via pole-zero
cancellations (see Appendix A.1). So control focuses on the poles, which are
included in D. In the figure, u = Mr with M = DX where D is generated

Figure 8:

automatically as soon as the loop closes while X is chosen to assign new
desired dynamics.

9 Discussion

FACT: Any arbitrary feedback will result into a closed-loop
system with dynamics (poles) different from the open-loop dynam-
ics (poles). This is true under the assumptions of controllability
and observability and for any initial conditions. This was demon-
strated in the previous sections of this paper using internal polynomial de-
scriptions and transfer function factorizations. It can also be demonstrated
as well (although not as easily) via state space representations as it was done
in section 1.6 and via other methods as it is briefly shown below.

Given
ẋ = Ax+Bu, y = Cx+Du.

Consider a linear state feedback control law

u = −Kx+ r
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or a constant output feedback control

u = −HCx+ r.

Then A−BK or A−BHC define the closed-loop dynamics.
It is known that the eigenvalues of A−BHC will be different from the

eigenvalues of A for almost any H; in fact the set of gain H that preserve
the eigenvalues of A in A − BHC has measure zero (they are roots of a
multivariate polynomial in the gains in H). This is under the assumptions
that (A,B) and (A,C) are controllable and observable respectively. If they
are not, it is known that the uncontrollable and/or unobservable eigenvalues
of the system cannot be altered and they will appear as eigenvalues of A−
BHC. Corresponding results exist for A−BK where assuming that (A,B)
is controllable its eigenvalues are different from the eigenvalues of A for
almost any K.

This fact can also be seen from the Root Locus where any feedback gain
other than zero assigns the closed-loop poles at locations different from the
open-loop pole locations.

In the Diophantine equation under the assumptions of controllability
and observability controllers will assign the closed-loop poles to different
locations from the open-loop poles almost always. In fact, in the multi-input
multi-output case, one can characterize all the controllers that will result to
a closed-loop system with poles that contain all the open-loop poles. This
can be done for example using the methodology in (see [2]–Appendix) which
is based on Polynomial Matrix Interpolation.

So it is a fact that when the loop closes the dynamics are com-
pletely reassigned for almost any feedback gains, that is the plant
behavior drastically changes.

Remark: It is worth mentioning at this point that when H has a
special structure—for example some (block) diagonal structure as is the case
in decentralized control even in the case of the system being controllable and
observable the characteristic polynomial of A−BHC may contain some fixed
zeros which do not change with H.

9.1 Open vs Closed Loop Control

Summarizing, a comparison of open and closed loop control is given and
their characteristics are briefly described.
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9.1.1 Change of Plant Dynamics

To control a plant, the input u should be so that the undesirable dynamics
are somehow cancelled. The mechanism can be seen as a pole/zero can-
cellation mechanism which takes place automatically in feedback control.
In the open-loop case, for the changes to take place the controller needs to
know the exact pole locations and the exact initial conditions of the plant so
that exact cancellation of dynamics can take place. Although in the closed-
loop case all the plant dynamics are changed for almost all controllers, in
the open-loop case is the exact opposite and the plant dynamics do NOT
change for almost any controller.

So, the complete change of plant dynamics happens

a. almost always in closed-loop feedback control

b. almost never in open-loop feedforward control.

9.1.2 Assigning Desirable Dynamics to the Compensated System

The reason for using control is to the make the plant behave in a desir-
able manner. So one needs more than just closing the loop, an action that
can send the poles in an undesirable region (unstable region for example)
with disastrous consequences. If the undesirable plant dynamics have been
cancelled, the assignment of new dynamics is much easier in the open-loop
case.

The complete change of the dynamics of the compensated sys-
tem to desirable dynamics is

a. easier in the open-loop feedforward control case

b. relatively harder in the closed-loop feedback case, although typ-
ically there is a large range of controller choices that satisfy
the requirements for desirable dynamics (control specifica-
tions) as one must consider the trade-offs.

In the open-loop after the current plant dynamics have been cancelled
out (which is the difficult part) one can simply choose the compensated
system dynamics by assigning them to the controller. So the open-loop
controller should contain all the desirable dynamics.

In the closed-loop control the choice of the appropriate controller is a
nontrivial matter and the field of control theory has been studying this
problem intensively for at least the past 50 years. Certainly it is a topic
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that requires deep understanding. The following table summarizes the above
comments.

Easier Harder
Open Loop Assign New Cancel Existing

Dynamics Dynamics
Closed Loop Cancel Existing Assign New

Dynamics Dynamics

10 On the Role of the Return Difference

The return difference relation forces the cancellation of all plant (and con-
troller) poles. It can be seen as the underlying cause of the fundamental
feedback property of canceling automatically the open loop plant dynamics.

Consider the unity feedback configuration as discussed in the section,
Open- and Closed-loop Control.

When the initial conditions and the external inputs are zero then, by
considering the signals at the output of the plant, the return difference
relation is Y = −GGcY or (1 +GGc)Y = 0.

Considering initial conditions and the external input R, with Gc = nc
dc

,
G = n

d then:

Y =
n0

d
+GU,U =

nc0

dc
+Gc(R− Y )

from which the return difference relation now becomes

Y =
n0

d
+G

[
nc0

dc
+Gc(R− Y )

]
or

Y = −GGcY +GGcR+
[
n0

d
+G

nc0

dc

]
Then

(1 +GGc)Y =
n0dc + nnc0

ddc
+GGcR

Y =
ddc

ddc + nnc

n0dc + nnc0

ddc
+

ddcnnc

ddc(ddc + nnc)
R
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This last relation shows that ddc cancels throughout to obtain

Y =
n0dc + nnc0

ddc + nnc
+

nnc

ddc + nnc
R

That is, in order to satisfy the conditions on Y imposed by the feedback
interconnection and expressed in terms of the return difference relations, ddc

must cancel and the new closed loop system has new dynamics imposed by
ddc + nnc (a Diophantine equation) instead of d (and dc).

Imposing the conditions of the return difference also causes an automatic
change in the gain as discussed in the introduction. Consider Fig. 1.5 with
k = 1 and G(s) = A.

Here the return difference relations for the signals in the loop are

U = −AU +R, Y = −AY +AR

The term −AY in the Y equation represents the feedback signal. For any
input R the signal Y in the output must equal the feedback signal −AY and
the signal R through the plant, AR. For large A this can only happen when
Y ≈ R since the left hand side (Y ) is much smaller than AY . In general,
from (1+A)Y = AR one can see that Y < R or the gain from R to Y is less
than 1 (since A > 0, A

1+A < 1 always). So the conditions imposed by the
return difference relations cause the overall gain to be less than 1. Similarly,
they cause the sensitivity S = 1

1+A to be less than 1 as well for any A > 0.
This automatic reduction in gain is the cause of lower sensitivity in the

feedback loop as opposed to the open loop. This is caused by the return
difference conditions imposed on the closed loop system by the feedback
interconnection.
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Appendix

A The Pole/Zero Cancellation Mechanism: A Re-
view

The simplest way to describe the effect of the pole-zero cancellation mecha-
nism on the system response is to start with a transfer function or polynomial
description of the system. This is done first and then the results are also
seen directly in the time domain using state variable descriptions. A specific
example is used for clarity. The same principles apply to the general case.

Let the plant and the controller be given by

G(s) =
1

s+ 1
, Gc(s) =

k(as+ 1)
s+ 10

(60)

connected in series as in Fig. 9. The transfer function between Y and R is

G
YUR

Gc

Figure 9:

Y/R = GGc =
k(as+ 1)

(s+ 1)(s+ 10)
(61)

Its inverse Laplace transform, which is the impulse response of the closed-
loop system, is given by

h(t) =
[
k

9
(1− a)e−t − k

9
(1− 10a)e−10t

]
1(t) (62)

where 1(t) denotes the unit step function. Note that the position of the zero
(at −1/a) affects the behavior, not directly, but via the coefficients of the
modes.

Now as a approaches 1 the coefficient of the e−t mode becomes smaller
and the effect of the mode e−t on h(t) diminishes. When a = 1, a pole/zero
(zero at −1) cancellation occurs and the e−t mode disappears from h(t); in
that case h(t) =

[
ke−10t

]
1(t). Similarly when a = ·1 a pole/zero cancellation

(zero at −10) occurs and h(t) =
[
·1ke−t

]
1(t).

In the above, if R is a constant ro, that is r(t) = roδ(t), then U = GcR =
Gcro can be seen as a signal u(t) = kro

[
aδ(t) + (1− 10a)e−10t

]
1(t) acting
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on the system G(s) and producing the pole/zero cancellation or the zeroing
of the mode coefficient effects.

If R(s) = 1/s (for example), a unit step input r(t) = 1(t) then the plant
output will be

y(t) =
[
−k(1− a)

9
e−t +

k(1− 10a)
90

e−10t +
k

10

]
1(t) (63)

and similar effects are observed when pole/zero cancellations occur, in the
cases when a = 1 and a = ·1.

These effects can be seen rather easily using polynomial descriptions for
the plant (q , d/dt, the differential operator)

(q + 1)z(t) = u(t), y(t) = z(t) (64)

and the controller

(q + 10)zc(t) = r(t), u(t) = k(aq + 1)zc(t). (65)

The overall system description is then[
q + 10 , 0

−k(aq + 1) , q + 1

] [
zc(t)
z(t)

]
=
[

1
0

]
r(t)

y =
[

0 1
] [ zc(t)

z(t)

] (66)

from which when a = 1 the −1 eigenvalue is uncontrollable and when a = ·1
the −10 eigenvalue is unobservable (see [1], Sect. 3.4). Whether an eigen-
value is uncontrollable or unobservable depends on the polynomial realiza-
tions selected. They were chosen here to match the state space development
below where controllable realizations are used.

The interpretation of pole/zero cancellations using state variable descrip-
tions is as follows:

The plant G(s) = 1
s+1 is described by

ẋ = −x+ u, y = x (67)

and the controller Gc(s) = k(as+1)
s+10 is described by

ẋc = −10xc + r, u = k(1− 10a)xc + kar. (68)
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The description of the overall system {A,B,C,D} is then[
ẋc

ẋ

]
=
[

−10 0
k(1− 10a) −1

] [
xc

x

]
+
[

1
ka

]
r

y = [0 1]
[
xc

x

] (69)

From the controllability matrix

C = [B, AB] =
[

1 −10
ka k − 11ka

]
(70)

|C| = k(1−11a)+10ka = k(1−a). So for a = 1 the system is uncontrollable.
In fact, the uncontrollable eigenvalue is at −1 (see [2]–Sect. 3.4). From the
observability matrix

O =
[

C
CA

]
=
[

0 1
k(1− 10a) −1

]
(71)

|O| = −k(1 − 10a). So for a = ·1 the system is unobservable. In fact, the
unobservable eigenvalue is at −10 (see [2]–Sect. 3.4). Again here in the state
space setting, pole/zero cancellations can be seen as cancellations between
eigenvalues and input or output decoupling zeros see (see [2]–Sect. 3.4) when
the cancelled eigenvalues (modes) become uncontrollable or unobservable.

In summary, what we conveniently describe as pole/zero cancellation (in
the frequency domain) is a fundamental mechanism of drastically altering
the behavior of a system by zeroing the coefficient of the corresponding
mode (in the time domain). The internal description interpretation is that a
pole/zero cancellation is making the mode (or the corresponding eigenvalue)
uncontrollable from an input or unobservable from an output and so invisible
from an input/output point of view.

A.0.3 The Effects of Uncertainties in Pole Locations

If the pole of the plant is not exactly at −1 but at −(1 + ε) then the term
in (63) that involves this pole of the plant becomes

y1(t) = − k(1− a+ aε)
(9− ε)(1 + ε)

e−(1+ε)t. (72)

It is then clear that if a = 1 the coefficient will not become zero but will
be −k(aε)/(9− ε)(1 + ε). For ε very small the effect of this mode will still
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be almost negligible. If, however, the pole of the plant were unstable, say
at +1 instead of −1, then the mode in this case would be (·)e(1+ε)t and no
matter how small the coefficient is, given enough time the term will grow
and so the system is unstable.

In summary, pole/zero cancellation of unstable poles will not work be-
cause of the inherent uncertainties in the pole location of the system. Even
if the location of the unstable poles were known exactly pole/zero cancella-
tion would not typically produce a stable system because of uncertainties in
the initial conditions since the cancelled unstable poles become uncontrol-
lable/unobservable modes (they do not really disappear) and they can be
excited by initial conditions.

B Fundamental Theorems for Internal Stability

Let G = ND−1 be the proper transfer function of the plant; N and D are
right coprime polynomial matrices. Let a desirable stable transfer funcion be
T , y = Tr, obtained using control u = Mr, where M is also stable. Proofs
for the following theorems may be found in ([2]–Chapter 7 pp. 627-629).

Theorem 1. The stable rational function matrices T and M are realizable
via a two degrees of freedom control configuration with internal stability if
and only if there exists stable X so that[

T
M

]
=
[
N
D

]
X (73)

Theorem 2. T , M ∈ RH∞ are realizable with internal stability by means
of a two degrees of freedom control configuration if and only if there exists
X ′ ∈ RH∞ so that [

T
M

]
=
[
N ′

D′

]
X ′ (74)

Here RH∞ denotes the set of proper and stable rational function matri-
ces. Let also S denote the desired stable sensitivity matrix (it is So in (1.52)
in section 1.7).

Theorem 3. T , M , S ∈ RH∞ are realizable with internal stability by a
two degrees of freedom control configuration if and only if there exists X ′,
L′ ∈ RH∞ so that T

M
S

 =

 N ′ 0
D′ 0
0 N ′

[ X ′
L′

]
+

 0
0
I

 , (75)
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where (I + L′N ′)D′−1 ∈ RH∞. Similarly, T , M , Q ∈ RH∞ (see section
1.7) are realizable if and only if there exists X ′, L′ ∈ RH∞ so that T

M
Q

 =

 N ′ 0
D′ 0
0 D′

[ X ′
L′

]
, (76)

where (I + L′N ′)D′−1 ∈ RH∞.
D in u = DXr introduces zeros in the transfer function which cancel out

to produce a desired response as in:

T = GMR = ND−1DXr = NXr. (77)

The following two theorems are the basic internal stability theorems for
feedback control (see [2]–pp. 623-625). They give parameterizations of all
stabilizing controllers and show that via two design parameters X,L (or
M ,Q) the feedforward and feedback control actions can be appropriately
assigned.

Theorem 4. Let the plant y = Gu have a proper transfer function and let

u = C

[
y
r

]
= [Cy Cr]

[
ŷ
r̂

]
(78)

be a proper 2-degrees of freedom controller. Let det(I − CyG) 6= 0. The
closed-loop system in internally stable if and only if

1. û = Cyŷ internally stabilizes the system ŷ = Gû,

2. Cr is such that the rational matrix M = (I − CyG)−1Cr satisfies
D−1M = X, a stable rational matrix, where Cy satisfies (1) and
G = ND−1 is a right coprime polynomial matrix factorization.

Theorem 5. Given that the plant y = Gu is proper with G = ND−1 =
D̃−1Ñ doubly coprime polynomial MFDs, all internally stabilizing proper

controllers C in u = C

[
y
r

]
are given by:

C = (I +QH)−1[Q,M ] = [(I + LN)D−1]−1[L,X], (79)

where Q = KD and M = DX are proper with L, X, and D−1(I + QH) =
(I + LN)D−1 stable, so that (I +QH)−1 exists and is proper; or by

C = (X1 −KÑ)−1[−X2 +KD̃,X], (80)
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where K and X are stable so that (X1 −KÑ)−1 exists and C is proper.
Also X1 and X2 are determined from

UU−1 =
[

X1 X2

−Ñ D̃

] [
D −X2

N X1

]
=
[
I 0
0 I

]
with U unimodular.
If G = N ′D′−1 = D̃′−1Ñ ′ are doubly coprime MFDs in RH∞, then all

stabilizing proper C are given by

C = (X ′1 −K ′Ñ ′)−1[−X ′2 +K ′D̃′1), X ′], (81)

where K ′, X ′ ∈ RH∞ so that (X ′1 −K ′Ñ ′)−1 exists and is proper. Also

U ′U ′−1 =
[

X ′1 X ′2
−Ñ ′ D̃′

] [
D′ −X ′2
N ′ X ′1

]
=
[
I 0
0 I

]
with U ′, U ′−1 ∈ RH∞; or by

C = (I +QH)−1[Q,M ] = [(I + L′N ′)D′−1]−1[L′, X ′], (82)

where Q = D′L′, M = D′X ′ ∈ RH∞ with L′, X ′, and D′−1(I +QH) =
(I +L′N ′)D′−1 ∈ RH∞ and so that (I +QH)−1 or (I +L′N ′)−1 exists and
is proper.

C Comments on Stability Robustness

Given a plant G(s) there is an infinite number of controllers Gc(s) that
stabilize the system in a feedback configuration. They are all given by the
Youla parameterization (see [2]–p. 615). To get a sense of how robust the
stability of a system is, note that all plants G(s) that are stabilized by a
fixed constant gain controller Gc = k in a feedback configuration is given by

G = Q(1− kQ)−1 (83)

where Q is any proper and stable matrix, which is a large class of plants.
The closed loop transfer function Y/R in Fig. 5 is then given by

Y/R = T =
kG

1 + kG
=

kQ

(1− kQ) + kQ
= kQ (84)

and
U/R = M =

k

1 + kG
=

k(1− kQ)
(1− kQ) + kQ

= k(1− kQ). (85)
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Note that the sensitivity S to parameter variations is

S =
1

1 + kG
=

1− kQ
(1− kQ) + kQ

= 1− kQ. (86)

The poles of Q are the closed-loop poles. If, for example, Q is selected
to be Q = 1/(as + 1 + k) then (83) becomes G = 1

as+1 which was used
above, in sections 1.3 and 1.4. If Q is chosen to be stable (that is as+ 1 + k
Hurwitz or (1 + k)/a > 0) then the closed-loop is stable as before. (In this
case S = as+1

as+1+k which for all k > 0 is less than 1 as desired.)

D DRAFT - Internal Models–Stability and Regu-
lation

D.1 Review of Stability in Unity Feedback Configuration

Given a plant P and a controller C, a unity feedback control system is
internally stable if and only if (1+PC)−1, (1+PC)−1P and C(1+PC)−1 are
stable (see [2]–p. 584). Having only (1 + PC)−1 stable does not guarantee
that cancellation of unstable P and C poles will not take place, and so
we need all conditions. If P and C are stable then internal stability is
guaranteed iff (I + PC)−1 is stable.

The closed loop characteristic polynomial is d(1+PC)dc and so a system
internally stable if and only if (d(1+PC)dc)−1 is stable. Going from internal
polynomial matrices descriptions is the best way to prove these results for
the MIMO case as well.

Internal Models: It can be shown that when (1 + PC)−1 is stable, (1 +
PC)−1P is stable if and only if no bad poles of P cancel in 1 +PC. This in
turn is true if and only if 1 + PC has an internal model of P .

We will say (not very precisely) that B has an internal model of A if all
the bad (undesirable) poles of A are poles of B. For a careful definition (see
[13]). So if A = s+1

(s+2)(s−1) then B = 1
(s−1)(s+4) has an internal model of A.

The system is internally stable iff the following 3 conditions hold:

1. (1 + PC)−1 is stable or the zeros of (1 + PC) are stable

2. (1 + PC)−1P is stable or no cancellations of unstable poles of P take
place in (1+PC) , or (1 + PC) has an internal model of P

3. C(1 + PC)−1 is stable or no cancellations of unstable poles of C take
place in (1 + PC) , or (1 + PC) has an internal model of C.
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Remarks: In 1 above, (1 + PC)−1 stable is not difficult to satisfy. Use
the loop gain PC(jw) and Nyquist to stabilize the system. In 2 above, it is
easy to guarantee that no cancellations of bad poles of P occur in the loop
gain PC. In 3 above, it is easy to guarantee that no cancellations of bad
poles of C occur in the loop gain PC.

Note that u = Mr = C(1 + PC)−1r. When (1 + PC)−1 is stable and
(1 + PC) has an internal model of P then M is has as zeros the unstable
poles of P and if (1 +PC) has an internal model of C then M is stable and
PM is stable.

Regulation: Conditions are best shown using factorizations and internal
descriptions. Here Dw is an external disturbance (1 + PC)−1Dw must be
stable. When (1+PC)−1 is stable (which it is when the system is internally
stable) then regulation takes place iff (1+PC) has an internal model of Dw.

In [12],[13] it is made very clear that an internal model always exists in
the transfer function between the measured output and the plant output.
In the unity feedback case this is the return difference (1 + PC)!

Open Loop: In open loop, we must have PM stable, that is D−1M
stable or M−1 should have an internal model of P (or PM does not have
an internal model of P ). So stability iff M stable and M−1 has an internal
model of P .

Remarks: M stable is easy to satisfy. M−1 having an internal model
of P is almost impossible to satisfy since the unstable poles of P are rarely
known exactly.

The controller M has two roles to play. First it must cancel out all
unstable (bad) poles of P in PM -by having these bad poles of P as its
zeros, or having M−1 have an internal model of P ( when M comes for
feedback control this part is guaranteed from (1 + PC) having an internal
model of P ). Secondly M must introduce the desirable dynamics (when M
comes from feedback M is stable if (1 + PC) has an internal model of C-so
no unstable poles of C appear in M−1 and (1 + PC)−1 is stable).

Open vs Closed Loop Control
We cannot stabilize via open loop control because of our inability to

create an exact internal model of P in the open loop controller. This is
very easy to do in closed loop as it corresponds to simply not allowing
cancellations of unstable poles of P in PC.

What about initial conditions? From (42) the expression

(sI −A)−1
[
(sI −A)(sI − (A−BK))−1

]
x0

has an internal model of the plant, which is generated automatically.
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E Connections to Internal Feedback of a Given
Plant (FIR and IIR) and to Recursive Relations

In this section, we examine feedback structures internal to given plants.
Consider the system

ẋ = Ax+Bu

1
sB

A

MU X

Figure 10:

with initial conditions x0. From the figure, it is clear that

M = BU +AX = BU +A(
1
s
M +

1
s
x0)

where U denotes the Laplace transform of u. This is so, because ẋ = m
from which sX − x0 = M and X = 1

sM + 1
sx0. Then

(I −A1
s

)M = BU +A
1
s
x0.

Note that (I −A1
s ) is the return difference. Then

M = (I−A1
s

)−1BU + (I−A1
s

)−1A
1
s
x0 = s(sI−A)−1BU + (sI−A)−1Ax0

Substituting in X = 1
sM + 1

sx0, we obtain

X =
1
s

[
s(sI −A)−1BU + (sI −A)−1Ax0

]
+

1
s
x0

=
1
s

[
s(sI −A)−1BU

]
+

1
s

(sI −A)−1 [A+ sI −A]x0

= (sI −A)−1BU + (sI −A)−1x0.

So, sI, which is introduced in the last relation by the term that depends
on U and the term that depends on x0, cancels with the pole of 1

sI as
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expected (X = 1
sM is the transfer function in the forward path). The new

eigenvalues (eigenvalues of A) are (almost always) completely different from
the eigenvalues of ẋ = m at zero. That is, in this internal feedback case, A
plays the role of feedback gain and similar results to the results derived for
external feedback are obtained. Specifically, the input M to the open loop
plant 1

sI is such that the open loop poles (at the origin) cancel automatically.

F Nonlinear Systems

The fundamental feedback property discussed above is applicable to more
general systems as well, for example to nonlinear systems: ẋ = f(x, u).
When feedback u = h(x, r) is applied, the closed loop system is ẋ =
f(x, h(x, r)) which almost always, for almost all h, has different behavior
from the open-loop system ẋ = f(x, u) assuming the plant is controllable
(see [1]–pp. 29-36).

G Sampled Data Systems

The plant poles also cancel in the case of sampled data systems as the
following example illustrates

Example 1 Consider the plant G(s) = 1
s in a feedback configuration.

k

Figure 11:

The overall transfer function is found from

Y = GU = GkE = kG(R− Y )

from which
(1 + kG)Y = kGR

and
Y

R
=

kG

1 + kG
=

k

s+ k
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The closed-loop system has a pole at −k and it is stable for all k > 0.
Now if a ZOH and an ideal sampler are used,

G Samplerk ZOH

Figure 12:

then

H(z) = (1− z−1)Z{[L−1(
G(s)
s

)]t=kT }

= (1− z−1)Z{[L−1(
1
s2

)]t=kT }

= (1− z−1)Z{(kT )}

= (1− z−1)
Tz

(z − 1)2
=

T

z − 1

The closed-loop transfer function is kT
z−1+kT , and so the system is stable

when

|1− kT | < 1
−1 < 1− kT < 1
−2 < −kT < 0

0 < k <
2
T

which is much more restrictive than before (k > 0). As T becomes larger,
the range for acceptable K becomes smaller as expected.

The control input is

U(z) =
k

1 + kH(z)
R(z) =

k(z − 1)
z − 1 + kT

R(z)

and

Y (z) = H(z)U(z) =
T

z − 1
k(z − 1)
z − 1 + kT

R(z) =
kT

z − 1 + kT
R(z)
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Notice that U(z) as it acts on the plant H(z) cancels the plant dynamics
by the pole/zero cancellation of z − 1. The remarkable fact is that this
cancellation happens independently of the sampling period T . Even when
T is large, as long as T is finite, the feedback cancels the plant dynamics.

Example 2 consider
G(s) =

a

s+ a

in a unity feedback configuration with gain k. For a > 0, the closed loop
is stable when k > −1. When a < 0 (G(s) is unstable), the closed loop is
stable for k < −1. The corresponding sampled data system with T as the
sampling period is given by

H(z) =
1− e−aT

z − e−aT
.

The closed loop system is then stable for

−1 < k <
1 + e−aT

1− e−aT

when a > 0 (case when open loop is stable). As T becomes larger the right
hand side goes to 1. When a < 0 (open loop is unstable), the closed loop
system is stable when k satisfies

1 + e−aT

1− e−aT
≤ k < −1.

As T becomes larger, the left hand side goes to −1 and clearly the range of
k for stability is much reduced.

The examples illustrate what happens in the discrete time case with
respect to the effect of feeedback; they also show how the stability range for
k is reduced in the sampled data case compared to the continuous case. In
the discrete time case, every instant of time k, k + 1,K = 2, ... the input to
the plant is such that the plant dynamics cancel out automatically. This can
also be shown directly using the transfer function H(z) and the numerator
and denominator polynomials (polynomial matrices) N(z), D(z) or via the
state variable description x(k+1) = Ax(k)+Bu(k) in a manner completely
analogous to the continuous case.

In the sampled data case, the cancelations happen every T units of time.
In between time instants T, 2T, ... the continuous plant is running open loop
and no plant pole cancelations are taking place. As T becomes larger, the
plant is running open loop for longer time and so it is harder to stabilize it
by applying feedback at such infrequent instants in time.
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H Systems With Delays

Similar results can be shown for systems with delays. Note that the delay

e−Ts can be approximated by (first order approximations) 1−T
2

s

1+T
2

s
and if this

is done it is clear that similar results regarding open loop pole cancelations,
when feedback is used, can be derived. These results can be shown directly.

As an example, consider

G(s) =
1

s+ 1
(87)

in a unity feedback configuration with gain k. Without delay, if k satisfies
−1 < k, the system is stable. With delay T , k must approximately satisfy
−1 < k < 1 + 2

T for stability. As T becomes larger, the range of k becomes
smaller.

I Discrete Event Systems

Discrete Event Systems (DES) are typically modeled using automata or
Petri Nets (also logic, if-then statements, etc.). In the control literature,
supervisory control is typically used to control the behavior of DES which
restricts possible behaviors but it does not force a specific action. Although,
similar results may be shown for automata, below the discussion focuses on
supervisory control of DES using Petri Nets.

In the supervisory control of DES described by Petri Nets, the feedback
supervisory controller restricts the plant behavior so to satisfy desired con-
straints. Specifically, appropriate place invariants are generated and a set
of initial conditions are specified that restrict the dynamic behavior of the
plant in such a way so to satisfy the control specifications which are given
here in terms of inequalities on the markings.

Similar ideas apply when feedback is used and the process dynamics
are described by automata or Petri nets. In the Petri net case, specifica-
tions described by linear inequalities are imposed by introducing new place
invariants (new behaviors) and restricting the starting points (suppressing
existing behaviors)—place invariants restrict system behaviors, for example
if the system starts with its state (markings) in an invariant set it stays
there. In standard Supervisory Control feedback information is used to re-
strict the behavior and not to completely alter it. New dynamics are added
(in the PN case via additional control places) and the class in initial con-
ditions is restricted. The mechanism here corresponds to changing some of
the modes of the LTI system but not all.
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J Sensitivity Considerations

Reduction of uncertainties is the primary reason for using feedback. This
is expressed very conveniently using the sensitivity function S(s) = (1 +
GcG(s))−1. The percentage change in the total transfer function gain T (s)
is determined by multiplying the percentage change of the loop gain GcG(s)
by S(s) all evaluated at the frequencies of interest s = jω. Recall that

∆Y
Y
≈ S(

∆G
G

).

So when the sensitivity of the loop is low, large variations in the plant
gain, due to plant parameter variations, translate into small variations in
the overall gain of the compensated system.

Sensitivity reduction (and stability) are not automatic when closing the
loop but they depend on the choice of the controller. If the controller is not
selected appropriately, undesireable effects such as an increase in sensitivity
or even destabilization may occur.

It is well known that that the main reason for using closed loop feedback
control is the uncertainties in the plant and environment. Open loop control
cannot compensate for plant parameter variations or disturbances (unless
they can be measured directly).

Closing the loop, however, does not guarantee automatic benefits. In
fact, feedback can also be harmful as the following simple examples remind
us. Consider

–
G

D

YUER
Gc

Figure 13:

Note that
E =

1
1 +GGc

R− 1
1 +GGc

D

U =
Gc

1 +GGc
R− Gc

1 +GGc
D
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Y =
GGc

1 +GGc
R+

1
1 +GGc

D

The sensitivity function (to parameter variations) is

S =
1

1 +GGc
.

Example 1. Let Gc = k, G = A, both static gains, with k to be chosen.
The sensitivity to parameter variations should be less than 1, so to derive
benefits when closing the loop. That is, −1 < S < 1 or −1 < 1

1+kA < 1.
From which kA should satisfy kA > 0 or kA < −2. For −2 < kA < 0 the
sensitivity is greater than 1 (|S| > 1) and so the closed loop performs worse
than the open loop.
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Figure 14:

So sensitivity reduction is not automatic when closing the loop but it
depends on appropriately selecting the controller.

Example 2. Let Gc = k, G = 1
s+1 . The closed loop characteristic

equation is s + 1 + k = 0 and so when 1 + k > 0 or k > −1 the system
remains stable. When k < −1, the system becomes unstable. That is the
feedback controller here destabilizes the stable plant.
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The sensitivity function is

S =
s+ 1

s+ 1 + k
.

It can be seen that when k satisfies −1 < k < 0, the sensitivity magnitude
is greater than 1 for all frequencies. For example, for k = 0.5 the bode plot
is given in Fig. A.6 where it can be seen that S is always greater than 1.

Similarly, if Gc = k and G = 1
s−1 , the closed loop characteristic equation

is s− 1 + k = 0 and so, when −1 + k > 0 or k > 1 the system is stabilized.
However, if k < 1 the system remains unstable. So stability is not automat-
ically guaranteed when closing the loop, but it depends on appropriately
selecting the controller.

K Root Locus

Consider G(s) = 1
s(s+1)(s+2) , Gc = k, in the unity feedback configuration.

The root locus for k > 0 is given below. It can be seen that even for small
values of k, the closed loop poles are different from the open loop ones,
that is any nonzero feedback gain ompletely changes the open loop poles as
expected.
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L On Symmetries

It appears that symmetries are intimately related to the fundamental prop-
erties of feedback. In particular, it was seen that feedback automatically
generates an inverse (D) of the plant dynamics (D−1) so to cancel them
out. This can be seen as creating automatically symmetric mirror images
of the undesirable dynamics, implying that feedback is based on creating
symmetries. Symmetries are exact when feedback is used since exact copies
of the inverse dynamics are generated. Furthermore, note that to reject un-
desirable dynamics introduced to the loop by external disturbances, copies
of the undesirable dynamics should be inserted in appropriate maps (inter-
nal models). This, again, is done by creating symmetric mirror images of
the undesirable dynamics that need to be cancelled. When the loop gain is
high, approximate symmetric mirror images of the zeros are also created,
in addition to the symmetric mirror images of the poles, so the whole plant
cancels out and the trnsfer function between R and Y is approximately one.
In optimal control (LQR) the choice of optimal gains leads to symmetric
mirror images as well. Further details and additional connections between
feedback and symmetries will be discussed in future versions of this paper.

M Feedbacck Configuration

In the figure below, a standard feedback plant/controller configuration is
given for completeness. The cancellation of G1 and G2 poles may be easily
seen from the expressions describing the relations among the various signals
when using polynomial matrix fractional descriptions (see [2]–Chapter 7 pp.
584-586).
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U
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Figure 16:
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