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Abstract— In this paper, we study the output synchronization
problem of networked Euler-Lagrange(EL) systems subject to
nonholonomic constraints. An EL system subject to nonholo-
nomic constraints can be input-output linearized if a proper
decoupling matrix can be found, and the linearized form is
equivalent to a double integrator. Although a double integrator
is not a passive system, with proper design of the control law
and some coordinate transformation, we are able to obtain a
new state-space representation of the EL system which is a
linear passive system. The underlying assumption is that the
communication graph is bidirectional and strongly connected.
To deal with time-varying communication delays among the
interconnected agents, we embed the scattering transformation
into our proposed setup and show that output synchronization
can be achieved in this case as well.

I. Introduction

Recent advances in computing, communication, sensing

and actuation have made it feasible to have large numbers

of autonomous vehicles (air, ground, and water) working

cooperatively to accomplish an objective. The problem of

communication and control in multi-agent systems becomes

more and more important in numerous practical applications,

such as sensor networks, unmanned aerial vehicles, and robot

networks. In most of these applications, we need a team

of agents to communicate with neighbors and agree on key

pieces of information that enable them to work together in a

coordinated fashion. The problem is particularly challenging

because communication channels have limited capacity and

experience fading and dropout.

In the past 10 years, many papers have been published

that study information flow, group consensus, multi-agent

coordination and formation problems, see [14]-[27]. Many

of the existing results in the literature model the agents as

velocity-controlled particles, i.e., first order integrators, or

model the agents as Lagrangian and Hamiltonian systems,

such as n-degree-of-freedom robots. One should notice that

most of these models satisfy a natural and well-studied

passivity property. Group coordination and output synchro-

nization problem based on passivity design framework and

passivity based stability analysis have also be addressed

in [1]-[5]. The reason why passivity has been used in the

design and analysis of networked control system is that

it allows one to analyze the system from a input-output

perspective, which does not require detailed knowledge of

the system behavior, and is therefore particularly well-suited

to applications displaying high uncertainty on parameters and
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structure. However, by restricting ourself to systems that are

passive, we are restricted ourself to systems that are stable

and minimum phase and of low relative degree [13]. This

is a serious drawback of some of the existing work in the

literature which uses passivity framework to study networked

control systems.

In this paper, we study the output synchronization problem

of networked Euler-Lagrange (EL) systems subject to non-

holonomic constraints, where the goal is to make the outputs

of the agents converge to a common trajectory. An EL system

subject to nonholonomic constraints can be input-output

linearized if a proper decoupling matrix can be found, and

the linearized form is equivalent to a double integrator, which

is not a passive system. The results presented in the current

paper solves the output synchronization problem with respect

to particular outputs of networked non-passive systems by

using passivity based analysis. The results developed not

only suggest a way to solve real application problems but

also suggest how to apply the passivity-based analysis to

networked control systems where the subsystems are not

passive.

The paper is organized as follows: Section II.A introduces

some basic concepts of passivity, Section II.B provides some

background on EL systems and nonholonomic constraints;

Section III discusses how to derive state-space representation

of an EL system subject to nonholonomic constraints which

is used in this paper. Our proposed setup and the main

results are given in Section IV, where we first address

the output synchronization problem without considering the

time-varying communication delays in the networks; then we

employ scattering transformation and embed it in our setup

to deal with the delays. In section V, an example of the path-

following problem for a group of car-like robots is provided.

Finally, conclusions are given in Section VI.

II. Background

A. Passivity

Definition 1 (Passive System, [13]) The dynamic system⎧⎪⎨⎪⎩ ẋ = f (x,u)

y = h(x,u)
(1)

where x ∈Rnand u,y ∈Rp, is said to be passive if there exists
a C1 storage function V(x) ≥ 0 such that

V̇ = �V(x)T f (x,u) ≤ −S (x)+uT y (2)

for some function S (x) ≥ 0, where x is the state in (1). We
say it is strictly passive if S (x) > 0.
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Theorem 1 (Feedback Interconnection, [29]) The negative
feedback interconnection of two passive systems is passive.

B. EL Systems and Nonholonomic Constraints

Euler-Lagrange (EL) systems are systems whose motion is

described by Euler-Lagrange equations, such as robotics and

mobile vehicles. Most of the physical systems, while they

can be modeled by Euler-Lagrange equations, are subject to

certain nonholonomic constraints, where the constraints are

involving both the state x (i.e., position) and its derivative

ẋ (i.e., velocity). For example, a wheeled mobile vehicle is

a nonholonomic system since its state (position) depends on

the path and its velocity taken to achieve it.

Consider a mechanical system with n generalized co-

ordinates q subject to k nonholonomic constraints whose

equations of motion are described by the constrained EL

equations [8]:

d
dt
∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q
= AT (q)λ+Q

A(q)q̇ = 0,

(3)

where q,Q ∈ Rn are the generalized coordinates and the ex-

ternal forces respectively; L(q, q̇) is the Lagrangian function

and λ is the Lagrange multiplier. The first equation in (3) is

the EL equation which describes the motion of the system,

while the second equation in (3) defines the equations of

nonholonomic constraints, which impose restrictions on q
and q̇ in the EL equation; A(q) is a k×n matrix.

An EL system subject to nonholonomic constraints (3) can

be transformed into the following state-space representation

(refer to [8] for detailed derivations):⎧⎪⎨⎪⎩ q̇ =G(q)ν

ν̇ = β
(4)

where the columns of G(q) are a basis for ker(A(q)). Let

x = [qT νT ]T , then we can rewrite (4) as⎧⎪⎨⎪⎩ ẋ = f (x)+g(x)β

y = ν = h(x)
(5)

where f (x)= [νT GT (q) 0]T , g(x)= [0 Im×m]T and h(x)= ν. It

has been shown that a system with nonholonomic constraints

in general is not input-state linearizable, but it is input-

output linearizable if a proper set of output equations are

chosen. The necessary and sufficient condition for input-

output linearization is that the “decoupling matrix”below has

full rank [9]. Suppose that the motion of the dynamic system

is subject to k nonholonomic constraints, then we may have

at most n− k independent position output equations:

y = h(q) = [h1(q), . . . ,hn−k(q)]T (6)

the decoupling matrix Φ(q) for the nonlinear system (5) is

the (n− k)× (n− k) matrix given by [8]:

Φ(q) = Jh(q)G(q) (7)

where Jh(q) is the (n− k)× n Jacobian matrix of h(q). To

characterize the zero dynamics and achieve input-output

linearization, we can introduce a new state vector defined

as [8]:

Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
z1

z2

z3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(q)

L f h(q)

h̃(q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(q)

Φ(q)ν
h̃(q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8)

where L f h(q) = [ f ,h] = ∂h∂x f − ∂ f
∂x h, and h̃(q) is an m-

dimensional function such that [ ∂h∂q
T ∂h̃(q)

∂q

T
] has full rank.

The system under the new state Z is characterized by

ż1 =
∂h
∂q

q̇ = z2

ż2 = Φ̇(q)ν+Φ(q)β

ż3 =
∂h̃(q)

∂q
G(q)ν =

∂h̃
∂q

(
∂h
∂q

)−1z2.

(9)

If we use the following state feedback with Φ−1(q) exists

β = Φ−1(q)(μ− Φ̇(q)ν) (10)

then we could achieve the input-output linearization:

ż1 = z2 ż2 = μ y = z1 (11)

where the unobservable zero dynamics of the system is

ż3 = 0. (12)

One should notice that (11) can be re-written as

z̈1 = μ y = z1 (13)

which is a double integrator.

III. State-Space Representation Of Agents

Up to this point, it has been shown that a single Euler-

Lagrange system with nonholonomic constraints could be

input-output linearized into a linear system which is equiva-

lent to a double integrator . Now assume there is a network

of N agents where each agent is described by:

z̈i(t) = μi(t) yi(t) = zi(t), i = 1, . . . ,N, (14)

where zi(t),μi,yi(t) ∈ Rn. Consider the control law given by

[1]:

μi(t) = −αi[żi(t)−υi(t)]+ υ̇i(t)+ui(t), αi > 0, (15)

where υi(t) ∈Rn is some external reference point, ui(t) ∈Rn is

the control input. Let ξi(t) = żi(t)−υi(t), then the state-space

representation in terms of new variable ξi(t) is given by:

Hi :

⎧⎪⎨⎪⎩ ξ̇i(t) = −αiξi(t)+ui(t)

pi(t) = ξi(t)
(16)

where pi(t)= ξi(t) ∈Rn is the new outputs for the transformed

system. One can verify that the transformed system (16) is

passive. We will use this state-space representation for our

subsystems in the following sections.

IV. Proposed Setup AndMain Theorems

We first present our output synchronization results without

considering time-varying communication delays in Section
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A; our results for the case with delays are presented in

Section B.

A. Synchronization in absence of communication delays

Theorem 2 . Consider the feedback configuration shown in
Figure 1, where υ(t) ∈Rn denotes the bounded and piecewise
continuous external reference input to each agent, and υi(t)=
υ(t), for i = 1, . . . ,N; Hi is the state-space representation of
agent i as given in (16); L ∈ RN×N is the graph Laplacian
that represents the underlying communication graph of the
interconnected agents; P = [pT

1
, . . . , pT

N]T is the concate-
nation vector, where pi ∈ Rn are the outputs of agent i;
Z = [zT

1
, . . . ,zT

N]T and Ż = [żT
1
, . . . , żT

N]T , where żi = υ(t)+ pi;
U = (L⊗ In)Z) = [uT

1
, . . . ,uT

N]T , where ui is the control input
to agent i. Assume that the underlying communication graph
is bidirectional and strongly connected and υ(t)=0. Then as
t→∞, zi(t) = z j(t), ∀i, j = 1, . . . ,N.

Fig. 1: Feedback Configuration

Proof. 1) Consider the storage function for the feed-forward

path from Ż to −U given by:

V f (Z) =
1

2
ZT (L⊗ Ip)Z, (17)

we have

V̇ f (Z) = ((L⊗ Ip)Z)T Ż = (−U)T Ż (18)

which implies that the feedforward path from Ż to −U is

passive. Moreover, since

Ż = 1N ⊗υ(t)+P (19)

we have

V̇ f (Z) = ((L⊗ Ip)Z)T Ż = ZT (LT ⊗ Ip)(1N ⊗υ(t)+P)

= ZT (LT ⊗ Ip)P = (−U)T P.
(20)

Here (LT ⊗ Ip)(1N ⊗ υ(t)) = 0 follows from L being graph

Laplacian, and since we assume that the underlying commu-

nication graph is bidirectional and strongly connected, L is

symmetric with zero row sums and zero column sums. So

(20) shows that the feed-forward path from P to -U is also

passive.

2) We can also prove that the feedback path from U to P
is passive. First we need to show that each subsystem Hi
is passive. Consider the storage function for each subsystem

given by:

Vbi(pi) =
1

2
pT

i pi (21)

then we have

V̇bi(pi) = pT
i ṗi = pT

i (−αi pi+ui) = −αi pT
i pi+ pT

i ui ≤ uT
i pi

(22)

This shows that each subsystem Hi is passive. Let the storage

function for the feedback path be given by:

Vb =

N∑
i=1

Vbi. (23)

It follows that

V̇b =

N∑
i=1

V̇bi = −PTΓP+UT P ≤ UT P, (24)

where Γ = diag{α1, . . . ,αN} > 0. This shows that the feedback

path from U to P is passive.

3) Now if we choose the storage function V(Z,P) = V f (Z)+

Vb(P) as the candidate Lyapunov like function for the closed

loop system, we can obtain

V̇(Z,P) = V̇ f (Z)+ V̇b(P) = −PTΓP < 0, (25)

according to LaSalle’s principle[28], the largest invariant set

for V̇(Z,P) = 0 is given by P = 0, and this implies that as

t→∞, P(t)→ 0, or limt→∞ ṗi(t) = 0, for i = 1, . . . ,N. In view

of (19), since υ(t) = 0, we can conclude that limt→∞ Ż(t) = 0.

Since U(t) = (L⊗ In)Z(t), we can obtain limt→∞ U̇(t) = 0, or

limt→∞ u̇i(t) = 0, for i = 1, . . . ,N. Let’s re-examine the state-

space representation for Hi:

ṗi(t) = −αi pi(t)+ui(t), (26)

and thus p̈i(t) = −αi ṗi(t)+ u̇i(t). Since limt→∞ u̇i(t) = 0 and

αi > 0 we can obtain that limt→∞ ṗi(t) = 0, and in view

of (26), limt→∞ ṗi(t) = 0 and limt→∞ pi(t) = 0 indicate that

limt→∞ ui(t) = 0, for i = 1, . . . ,N. Since U(t) = −(L⊗ In)Z(t),
it follows that limt→∞(L ⊗ In)Z(t) = 0, this implies that

limt→∞ zi(t) = limt→∞ z j(t), ∀(i, j) ∈ ε(G), where ε denotes

the set of edges of the underlying communication graph

G. So as long as the underlying communication graph is

strongly connected, we will have limt→∞ zi(t) = limt→∞ z j(t),
∀i, j = 1, . . . ,N. �

B. Scattering Transformation and Passivation Scheme

In the case of time-varying communication delays, the

interconnected systems may not be able to preserve the

passivity property because of the extra energy produced by

communication due to increasing time delays in the com-

munication network [10]. One way to solve this problem is

by using the scattering transformation(wave variables)[30]as

the passivation scheme, which has been reported in [2] and

[10]-[12]. In this section, we propose a way to achieve output

synchronization in the presence of time-varying communi-

cation delays by embedding a scattering transformation into

each communication link.

The passivation configuration for agent i and agent j is

illustrated schematically in Figure 2: the symbol “ST”denotes

the scattering transformation; the superscript +,- for the

scattering variables is a convention for the direction of
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the power flow; Ti j(t) denotes the delay from agent i to

agent j while T ji(t) denotes the delay from agent j to

agent i. Each agent transmits its scattering variables in the

communication channel, for example, agent i transmits its

scattering variable S +i j(t) to agent j, who receives it as the

scattering variable fi jS d+
i j (t), where S d+

i j (t) = S +i j(t − Ti j(t)).
The scattering transformation is given by:

S +i j =
1
2 [−K(z js− zi)+ p js] fi jS d+

i j =
1
2 [K(zis− z j)+ pis]

S −ji =
1
2 [K(zis− z j)− pis] f jiS d−

ji =
1
2 [−K(z js− zi)− p js],

(27)

where K > 0 is a constant, p js = ż js, pis = żis, S d−
ji (t) = S −ji(t−

T ji(t)) and S d+
i j (t) = S +i j(t−Ti j(t)).

Fig. 2: Scattering Transformation

We can calculate the energy stored in the communication

channel between agent i and agent j for any time interval:

Vi j(t) =
1

4

∫ t

t0

(
‖ S +i j(τ) ‖2 − f 2

i j ‖ S d+
i j (τ) ‖2

+ ‖ S −ji(τ) ‖2 − f 2
ji ‖ S d−

ji (τ) ‖2
)
dτ

=
1

4

(∫ t

t−Ti j(t)
‖ S +i j(τ) ‖2 dτ+

∫ t

t−T ji(t)
‖ S −ji(τ) ‖2 dτ

+

∫ t−Ti j(t)

t0
‖ S +i j(τ) ‖2 dτ+

∫ t−T ji(t)

t0
‖ S −ji(τ) ‖2 dτ

−
∫ t

t0
f 2
i j ‖ S +i j(τ−Ti j(τ)) ‖2 dτ

−
∫ t

t0
f 2

ji ‖ S −ji(τ−T ji(τ)) ‖2 dτ
)

=
1

4

(∫ t

t−Ti j(t)
‖ S +i j(τ) ‖2 dτ+

∫ t

t−T ji(t)
‖ S −ji(τ) ‖2 dτ

+

∫ t−Ti j(t)

t0

1−T
′
i j(σ1)− f 2

i j

1−T ′i j(σ1)
‖ S +i j(σ1) ‖2 dσ1

+

∫ t−T ji(t)

t0

1−T
′
ji(σ2)− f 2

ji

1−T ′ji(σ2)
‖ S −ji(σ2) ‖2 dσ2

)

(28)

where σ1 = τ−Ti j(τ),σ2 = τ−T ji(τ). From (28) we can see

that as long as
1−T

′
i j(t)− f 2

i j

1−T ′i j(t)
≥ 0, ∀(i, j), we will have Vi j(t) ≥ 0.

Also it is easy to verify that

V̇ i j(t) = −K(z js− zi)
T p js−K(zis− z j)

T pis. (29)

After introducing the proposed scattering transformation

setup, we are ready to present the following theorem.

Theorem 3. Consider a group of N networked agents
{H1, . . . ,HN}, where each agent’s state-space representation
is given by (16). Assume that:

1) the underlying communication graph is bidirectional
and strongly connected;

2) the scattering transformation is embedded into each
communication link as shown in Figure 2;

3)
1−T

′
i j(t)− f 2

i j

1−T ′i j(t)
≥ 0, ∀(i, j) ∈ ε(G);

4) the external reference υi(t) to each agent i is equal to
zero.

Then under the control law given by:

ui =
∑

∀(i, j)∈ε(G)

K(z js− zi) i = 1, . . . ,N, (30)

where z js = z j(t−T ji(t)), limt→∞ zi(t) = limt→∞ z j(t), for i, j =
1, . . . ,N.

Proof. Since
1−T

′
i j(t)− f 2

i j

1−T ′i j(t)
≥ 0, we have Vi j(t) ≥ 0, ∀(i, j) ∈ ε(G),

so we can choose the following storage function for the entire

interconnection:

V =
N∑

i=1

Vbi +
∑

∀(i, j)∈ε(G)

Vi j+
1

2

N∑
i=1

∑
∀(i, j)∈ε(G)

K(z js−zi)
T (z js−zi),

(31)

where Vbi is given in (21). Then we have

V̇ =
N∑

i=1

V̇bi +
∑

∀(i, j)∈ε(G)

V̇ i j+

N∑
i=1

∑
∀(i, j)∈ε(G)

K(z js− zi)
T (p js− pi)

= −PTΓP+UT P+
∑

∀(i, j)∈ε(G)

V̇i j

+

N∑
i=1

∑
∀(i, j)∈ε(G)

K(z js− zi)
T (p js− pi).

(32)

Since∑
∀(i, j)∈ε(G)

V̇ i j =
∑

∀(i, j)∈ε(G)

[−K(z js− zi)
T p js−K(zis− z j)

T pis],

(33)

UT P =
N∑

i=1

∑
∀(i, j)∈ε(G)

K(z js− zi)
T pi, (34)

and the underlying communication graph is bidirectional, it

is easy to verify that

UT P+
∑

∀(i, j)∈ε(G)

V̇ i j+

N∑
i=1

∑
∀(i, j)∈ε(G)

K(z js− zi)
T (p js− pi) = 0.

(35)

So again we can get

V̇ = −PTΓP < 0, (36)

and by using LaSalle’s principle, we can conclude that

limt→∞ pi(t) = 0 for i = 1, . . . ,N. Since żi(t) = υi(t)+ pi(t) and

υi(t)= 0, we can obtain limt→∞ żi(t)= 0, ∀i, and since zis(t)=
zi(t− Ti j(t)), we can conclude that limt→∞ żis(t) = 0, ∀i. In

view of (30), this implies that limt→∞ u̇i(t) = 0, ∀i; and since
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p̈i(t) = −αi ṗi(t)+ u̇i(t), limt→∞ u̇i(t) = 0 and αi > 0, we can

obtain that limt→∞ ṗi(t) = 0, and again with limt→∞ pi(t) = 0,

we can get limt→∞ ui(t) = 0, ∀i. In view of (30), we have

lim
t→∞z js(t) = lim

t→∞zi(t), ∀(i, j) ∈ ε(G). (37)

Since z js(t) = z j(t − T ji(t)), ∀ j, then as long as the un-

derlying communication graph is bidirectional and strongly

connected, limt→∞ zi(t) = limt→∞ z j(t), for i, j = 1, . . . ,N. �

V. Example

To illustrate the results above, we solve the path-following

problem for a group of car-like robots.

Fig. 3: (a) Car-Like Robot subject to Nonholonomic Constraints;
(b) Underlying Communication Graph.

• here, the generalized coordinates are q = (x,y, θ,φ),
where θ is the heading angle, φ is the steering angle

and (x,y) denotes the position of the real-wheal at the

axle midpoint ;

• nonholonomic constraints are:

ẋ f sin(θ+φ)− ẏ f cos(θ+φ) = 0 ( f ront wheel)

ẋsin(θ)− ẏcos(θ) = 0 (rear wheel)
(38)

• where the front wheel position is:

x f = x+ lcos(θ) y f = y+ lsin(θ) (39)

From (38) and (39), we can see that the constraint matrix is:

AT (q) =

(
sin(θ+φ) −cos(θ+φ) −lcos(φ) 0

sin(θ) −cos(θ) 0 0

)
(40)

If we choose

G(q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos(θ)cos(φ) 0

sin(θ)sin(φ) 0
1
l sin(φ) 0

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = [g1(q) g2(q)] (41)

then according to (4), we can get

q̇ = g1(q)ν1+g2(q)ν2 (42)

where ν1 = forward velocity, ν2 = steering velocity. The

state-space representation for the closed-loop system can be

written as:

Ẋ =
(
q̇
ν̇

)
=

(
G(q)ν

0

)
+

(
0

I

)
β

y = ν
(43)

where ν = [νT
1
, νT

2
]T . In our case, in order to use the input-

output linearization technique, we need to define two new in-

dependent outputs since the robot has 2 degrees of freedom.

We can define any point (x̂, ŷ) with an arbitrarily distance d
away from the position of the front wheel of the robot as

the new independent outputs. Then the equation of (x̂, ŷ) is

given by:

h(q) = [hT
1 (q) hT

2 (q)]T =

(
x̂
ŷ

)
=

(
x+ lcos(θ)+dcos(θ+φ)
y+ lsin(θ)+dsin(θ+φ)

)

(44)

and we obtain

Jh(q) =

⎛⎜⎜⎜⎜⎜⎝
∂x̂
∂q
∂ŷ
∂q

⎞⎟⎟⎟⎟⎟⎠ =
(
1 0 −lsin(θ)−dsin(θ+φ) −dsin(θ+φ)
0 1 lcos(θ)+dcos(θ+φ) dcos(θ+φ)

)

(45)

The decoupling matrix Φ(q)is

Φ(q) =

(
cos(θ+φ)− d

l sin(θ+φ)sin(φ) −dsin(θ+φ)

sin(θ+φ)+ d
l cos(θ+φ)sin(φ) dcos(θ+φ)

)
(46)

and according to (8)-(11), we obtain the new state-space

representation for the car-like robot :

ż1 = z2 ż2 = μ p = z1 (47)

where z1 = [x̂T ŷT ]T .

Now assume that we have three car-like robots to complete

the task, and the underlying communication graph is bidirec-

tional and strongly connected as shown in Fig.3(b)(for the

path-following task, we assign a virtual-leader to one of these

agents, i.e., agent 1). We embed scattering transformation

into each communication link as shown in Fig.2. Assume

that the change rate of time-varying delays are bounded

by T
′
i j(t) ≤ 0.2, ∀(i, j) ∈ ε(G), and we set υi(t) = [0,0]T , for

i= 1, . . . ,3. The simulations which verify our results for path-

following of a circle are shown in Figure 4-5.

VI. Conclusions

In this paper, we have shown how to use passivity as

the design and analysis tool for the output synchronization

problem of networked EL systems subject to nonholonomic

constraints. We also propose a scattering transformation set-

up to solve the outputs synchronization problem in the

presence of time-varying communication delays.
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