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ABSTRACT

The general two degrees of freedom controller provides a unifying
framework in approaching complicated control problems involving multiple
objectives, in a manner independent of specific, and possibly restrictive,
control configurations. A stability theorem is used which clearly shows
the role of the feedback part of the controller and it allows the
introduction of alternative stabilizing controller perameterizations in a
natural way. The stable uncontrollable and/or unobservable hidden modes of
the control system are then characterized and expressed in terms of the
design parameters; this leads to strategies to avoid the hidden modes if so
desired and in general it leads to better, more efficient control design.

INTRODUCTION

The objective of any multivariable control design method is to
synthesize an appropriate control law, represented here by the
multivariable controller C. It was noted earlier [1,2] that, for
single~input, single-output plants, a single degree of freedom control
configuration, such as error (unity) feedback, imposes restrictions on the
attainable control properties. Not surprisingly, similar restrictions are
present in the multi-input, multi-output case (e.g. [3}). This is of
course to be expected, since an error feedback controller generates the
plant input u by processing only the error r-y, where r is the reference
(gset-point, command) externmal input and y the plant output (the sensor
output); that is, the two natural degrees of freedom, corresponding to the
availability of the signals r and y, are not fully utilized by a single
degree of freedom control configuration [4]. These two signals should be
processed independently if unnecessary constraints on the attainable
control objectives are to be avoided.

Our interest here is in linear plants P and linear controllers C. The
general linear controller can be written as u = -Cyy + C.r where [-Cy,
Cr] = C, with Cy, C, transfer matrices to be determined. This controller,
called two degrees of freedom controller, has been utilized by several
researchers [4-11] and recently, perametric characterizations of all
internally stabilizing controllers C have been derived and used in the
design ,of control systems [4,7,8,12-14]. The two degrees of freedom
controller provides a unifying framework in approaching complicated control
problems involving multiple objectives, in a manner which is independent of
specific, and possibly restrictive, control configurations. There is much
renewed interest in the two degrees of freedom controller mainly due to
more demanding control problems but also due to recent advances in
understanding and effectively utilizing such control laws.

In this peper, a stability theorem is introduced first. It separates
the effect of Cy, the feedback portion of the controller C, and it clearly
shows that stability in two degrees of freedom control design is based on
the stability of the well studied single degree of freedom configuration
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and it is an extemsion of previous results (due to C.#Cy) as expected.
Expressing the stability conditions in terms of (i) the single degree of
freedom (Cy) stability condition, and (ii) a condition on C, given Cy to
guarantee internal stability, naturally allows the use of any single degree
of freedom stabilizing feedback parameterization used in the literature.
In other words, we build upon the single degree of freedom stability
results to generate the two degrees of freedom results. Furthermore, this
theorem directly leads to parametric characterizations of all input-output
maps attainable with internal stability from r, the vector of request
inputs; also to controller configurations that attain these maps.

The hidden modes of a compensated system correspond to the compensated
system’s eigenvalues which are uncontrollable and/or uncbservable. The
hidden modes for single degree of freedom controllers have been studied in
the literature ([3,15-17}. On the other hand, the hidden modes for two
degrees of freedom controllers have not been studied in the literature
except for in special cases [15,16,18]. 1In this paper we consider the
hidden modes of the two degrees of freedom control system in Figure 1. It
is assumed that the plant and controller are controllable and observable.
In this way the hidden modes of the compensated system are due exclusively
to the system interconnection. Later this assumption is relaxed to
consider the implications of non-irreducible realizations of the
controller.

Observe that the controller C is designed to guarantee at least
internal stability of the system. Therefore the hidden modes of the
compensated system, if any, will be stable. Stable hidden modes need to be
studied because they can increase the necessary order of the controller and
they can degrade the performance. Consequently, a complete understanding
of stable hidden modes will lead to better control design algorithms.

STABILITY THEOREM. PARAMETERIZATIONS

The two degrees of freedom linear controller
h y

u=¢C = [-Cy C,] ) (1)
T r

where C = [-Cy, C,.] proper, transfer matrices, generates the plant input u

by independently processing the plant output y and the external reference
input r (Figure 1),

o{ S

c Sp y

Figure 1. The compensated system.
where Sp is the linear plant described by y = Pu with P its proper transfer

matrix and SC is the controller described in (1). Several researchers have

utilized C in a time domain state-space formulation (e.g. Bengtsson [5]).
Using a transform domain formulation, C has been incorporated by Pernebo
[6] and more recently, by Youla and Bongiorno [4], Descer and Gustafson
[7], Vidyasagar [8], Desoer and Gindes [10] and Sugie and Yoshikawa[11].
The pole-placement algorithm of Astrém in [9] also uses C but for SISO
plants only.

A significant step towards better understanding the role of C in plant
compensation was recently accomplished by parametrically characterizing all
stabilizing two degrees of freedom controllers C; thus extending the
results on parametric characterization of all feedback controllers Cy
[19-23,3,15,12-14] which have greatly contributed to control design methods



[19-20,24-28]. All internally stabilizing controllers C were
parametrically characterized in [4,7-8] using two independent proper and
stable parameters X and X as

C = (x, - KN)“*[-(x, + KD), XI], (2)

where ﬁ, 5, X,s X, are proper and stable transfer matrices, and they are
derived from coprime fractional representations of the plant

P = ND* = DN, (3)
and the associated Bezout-Diophantine equation
. x,D + x,N = 1, (4)

In [4], (2) involves polynomial matrices N, 5, X,, and x, with K and X
stable transfer matrices; x, and x, satisfy the Diophantine equation
x,D#x,N = D,, where D, N and D, are polynomial matrices. Note that the
development in {4] follows [19], while in [7-8] the development is based on
the seminal paper of Desocer, et. al. [22], which among other results, it
extends the results of [19,21] to more general (beyond polynomial) rings.
The parameter K in (2) is the well known parameter used in the
characterization of all stabilizing feedback controllers Cy in {19,22].
Note that the parameter X is actually the response parameter used by
Antsaklis and Sain [3] (and Liu and Sung [29]) to parametrically
characterize feedback controllers in an error feedback setting. If Dz = u,
¥y = Nz is an internal polynomial matrix representation of the plant P, then
it can be shown that

z = Xr, (5)
that is, X is the transfer matrix between the external input r and the
partial state z of the plant.

It is evident that if exogenous signals (such as disturbences, noise)
are assumed to be injected at various points in Figure 1, all possible
transfer functions and responses to all inputs can be derived in terms of K
and X by direct substitutions of (2); in this way all "admissible", under
internal stability responses can be characterized [4,7-8,14].

It is advantageous to study intermal stability of the system in Figure
1 in a novel alternative way [30].

Theorem 1. Consider a proper controller C as in (1) and the system in
Figure 1, and assume that [I + CyP| # 0. The compensated system is
internally stable if and only if
(i) u = -Cyy internally stabilizes the system y = Pu, and
(ii} C, is such that

M := (I + C,P)"'C, (6)
satisfies D”'M = X, a stable rational, where Cy satisfies (i) and P = ND"!
is a coprime polynomial factorization.

Theorem 1 provides some advantages over other stability theorems
presented so far for the sgystem in Figure 1. These advantages are
discussed below and are followed by a proof of Theorem 1.

This theorem separates the role of Cy, the feedback part of C, from C,
in achieving internal stability. Clearly if only feedback =action is
considered, only (i) is of interest; and if open loop control is desired,
Cy = 0, (i) implies that P must be stable, and C. = M must satisfy (ii).
In (ii) the parameter M (=DX) appears rather naturally and in (i) the way
is open to use any desired feedback parameterization, not necessarily K of
[4,7-8].

From Theorem 1 we can directly characterize the input-output maps
attainable from r with internal stability. In particular, consider the two

maps described by y = Tr and u = Mr. The characterization is done in
Theorem 2.



Theorem 2. A pair (T,M) is realizable with internal stability via a two
degrees of freedom configuration if and only if (T,M) = (NX,DX) with X
stable,

Proof of Theorem 2. Necessity. Assume (T,M) are realizable with internal
stability. Consider u = Mr, (5), and (7). Then Dz = Mr or z = Xr.
Internal stability implies that X is stable.

Sufficiency. If X is stable, then T and M are stable. The only thing left
to show is that a controller configuration exists to implement these maps.

Consider the two degrees of freedom controller in Figure 2 (Cr=ﬁ+C,,"l“).
A
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Figure 2. A two degrees of freedom controller.

This configuration implements the desired maps when l = M and © = T. Other
configurations to attain these maps are, of course, possible [14].
QoEan

Proof of Theorem 1. Consider an irreducible polynomial internal
description of the plant

Dz = u, y = Nz, (1)
and of the controller

¥
5czc = [Ny N.) [ r ], usz, (8)
where (N,D) and (‘ﬁc, [-Ny, N.]) are coprime polynomial factorizations.
With these definitions an internal description of the compensated system is

D,z = (BCD + 'ﬁgN)z = 'ﬁrr, ¥y = Nz. {9)

We say that if |I+CyP| # 0 then the compensated sytem is internally stable
if D,"* is stable.
Necessity: Assume that the compensated system is internally stable, that

is, D,”' is stable. Since Cy = 50"31", is not necessarily a coprime
polynomial factorization, there exists a polynomial matrix Gn so that

[Dc Nyg] = Ga [ch NC.,]’ {10)
where G, is a greatest common left divisor (g.c.l.d.) of (5C,ﬁ.,).
Comparing (9) and {(10) we notice that

fud fad - -1 .— [ d . f-d -l
B0+ Mo N = 6,7'D, := By, with § - stable, (11)

where ﬁk is a polynomial matrix. Observe that (11) also implies that Gn"

is stable. Hence (11) shows that u = -Cyy stabilizes y = Pu, that is, part
{i) of Theorem 1 is satisfied. To show (ii) write

M= (I +CyP)7iC, = DB B (B ;)

1]

DB, "G, "N,
DX, (12)
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where X := D,"'N. is a stable tranfer matrix. This shows that (ii) is
necessary too.

Sufficiency: Let C satisfy (i) and (ii) of Theorem 1, If C = 5c“[-ﬁ,,
Ny] is a coprime polynomial factorization and G, is a g.c.l.d. of (ﬁc, Ny),

then (10) is true for some left coprime matrices D.and N (Cy =

Cy Gy
= -1~ - . - . E—4 b - b4 - -4 -1 -
ch Ncg)_. Because (i) is satisfied, DC,,D + NC.,N = Dk is such that Dk is
stable, The expression for ﬁk can be premultiplied by Gll to obtain
DcD + NygN = GnDk. (13)

In view of the internal stability criterion (D,”! stable) and ﬁk" stable
it suffices to show that Gn" is stable. Note that (13) can be written as

Gn"D, = ﬁk or as Gn"ﬁ,. = ﬁkX with (G, N.) left coprime (if they were
not coprime, € = D -![-Ny, N;] would not bhave been a coprime

factorization). Therefore, D, = Gnﬁk in (13) satisfies D,"! stable.
Q.E.D.

There are many choices in parametrically characterizing all feedback
stabilizing controllers Cy and these are extensively discussed by Antsaklis
and Sain in {15]. Parameterizationa of all feedback stabilizing
multivariable controllers were first introduced by Youla, Jabr and
Bongiormo in [19]; also by Kucera [23]. Antsaklis {21] expressed the
- parameterization of Youla, et. al., over the polynomial ring, while Desocer,
Liu, Murray and Saeks ([22] extended the Youla parameterization over more
general rings. Zames in [20] (see also [31,32]) introduced the parameter Q
for the case of stable plants, and Antsaklis and Sain [3,33] discussed the
parameter X (=D"'Q, when an error feedback configuration is used) and
derived conditions on X for the unstable plant case. Alternative
parameterizations are discussed in [15]. The stabilizing controllers C can
therefore be expressed, in addition to (2) as (for example):

C=(I-am'[Q M]=({I-LND"*)"*'[-L X], (14)

where @ = DL, M = DX with L, X stable and D"!(I - QP) = (I - LN)D"! stable
(]I -QP| #Cor |I -1IN| #0), and P = ND™! a coprime polynomial matrix
factorization. (14) gives parametric characterizations of all stabilizing
controllers C, proper and nonproper. For C proper, M and Q are chosen
proper and such that (I - QP)"' is also proper; note that if P is strictly
proper, @ proper always implies that (I - QP)"! is proper. Notice that L
or Q@ in (i4) must satisfy certain conditions, in addition to being stable,
in contrast to K in (2); however, alternative to K parameterizations, such
as in (14), are very useful, since they do have certain additional
desirable properties (see [15]).



HIDDEN MODES

The interconnection of a controller C, implemented via a minimal
Kalman realization, controlling a minimal plant P as in Figure 1, might
cause unobservable, uncontrollable modes from ¥, r respectively. In
addition, when the controller C is put together by interconnecting
separately designed subcontrollers, the overall controller’s internal
description might not be controllable and observable, even though the
interconnected subcontrollers are assumed to be realized via minimal Kalman
realizations. The uncontrollable and/or unobservable hidden modes, if not
appropriately accounted for during the design, might lead to deterioration
of system properties and even the loas of internal stability [15]; they
could also lead to unnecessarily higher order of tie controller. The
hidden modes for certain controller configurations have been studied in
[3,15,16,18]. Here we study the hidden modes of the system in Figure 1. A

complete treatment is presented in [14]. Some of the results are outlined
below:

RecallthatDz:u,y:szdﬁczc=-ﬁgy+ﬁrr,u=zcare

irreducible descriptions of the plant and controller, respectively,
assuming {N,D) and (ﬁc, [-ﬁ‘,, ﬁ,.]) are coprime polynomial factorizations.

Combining these two descriptions gives the following internal description
of the feedback system in Figure 1
Npr
N
z, {15)
D

7]

where D, = BCD + NyN. The roots of the determinant of D, are the closed-

loop eigenvalues. The not necessarily irreducible internal description in
(15) leads directly to the following preliminary characterization of hidden
modes of the system in Figure 1: The uncontrollable wmodes from r

correspond to the poles of D,"' that cancel in D,"'N.. The unobservable
modes from y (u) correspond to the poles of D,~' that cancel in ND,~*
{DD,~'). The concept of cancellations in a product of transfer matrices
has been clarified in {34-36,14]; the cancellations should be taken as pole
cancellations rather than pole-zero cancellations.

A more useful characterization of hidden modes can be given in terms
of the transfer matrices. The characterization is done in this way as in
SISO systems because it gives insight into the mechanism of introducing
hidden modes. These characterizations are also proven using internal
descriptions. The unobservable modes from ¥y correspond to those poles of C
which cancel in the product PC, and the unobservable wmodes from u

correspond to those poles of P that cancel in ﬁ‘_.,P. The uncontrollable
modes from r correspond to the poles of (I+CyP)-' that cancel in
(I+CyP)“!C. and those poles of P that cancel in P and CyP.. For
comparison note that in the error feedback configuration Cy = Cr. In this
case, the unobservable modes from y are the poles of Cy which cancel in PCy
whereas the uncontrollable modes from r are the poles of P which cancel in
PCy [3,15].

These results can be more useful in the design of the controller if
they are written in terms of some of the design parameters, like L and X;
in this way insight will be gained and the designer will be able to deal
with the hidden modes using a variety of design tools and methodologies.
Note that L = D~*(I + CyP)"'Cy and X = D"} + CyP)~Cp.. The unobservable
modes from y correspond to the poles of [X, L] that cancel in N{X, L] and



the unobservable modes from u correspond to the poles of [X, L] that cancel

in D{X, L] and to the poles of P that cancel in D,~*[N,, ﬁ,-]. The
uncontrollable modes from r correspond to the poles of P that do not cancel
in (I-LN)D™! and to the poles of L which are not poles of X.

When a controller consists of the interconnection of separately
designed subcontrollers, typically additional hidden modes are introduced
because the resulting controller is not controllable and observable. The
subcontrollers are designed to handle a particular problem such as
stability and regulation. The hidden modes introduced depend on the
particular interconnection. For example, when an observer is implemented
with feedforward and feedback controllers, the poles of the observer appear
as stable poles of the feedback controller and as stable zeros of the
feedforward controller, and correspond to unobservable modes from y. It

can be shown that the uncontrollable modes from {yt, I‘t']t (t denctes

transpose) of the controller become uncontrollable modes from r of the
compensated system. Similarly, the uncbservable modes from u of the
controller become unobservable modes from y of the compensated system. It
is aiso possible for the hidden modes of the controller to lead to other
kinds of hidden modes of the compensated system. The characterization of
these additional hidden modes alsc reduces to the well known case when
Cy=C,..

The above discussion on hidden modes is necessarily short. The results
are based on well developed theory which is not presented here due to space
limitations. It is hoped that the example at the end of the paper
illustrates some of the main points.

The study of hidden modes and their classification as uncontrollable
and unobservable leads to better understanding of the phenomena which occur
in control design. For example, it can be shown that the hidden modes
which can result in undesirable "ringing" of the input u in digital control
(an example is given in {9]) are exactly those unobservable modes from y
which are observable from u. Understanding the hidden modes leads to
strategies on how to avoid them and in general it leads to better, more
efficient control designs.

EXAMPLE

Consider the plant
- s-1

Pz s 2)(stD) (16)
and suppose that a compensator should be designed to stabilize the plant
and to attain

_ s-1
T= Tsta) (s4p) " (17)
One compensator that meets these specifications is
C = -8(s+1) (s+1) *(s+2/3) (18)

~ |(s-13/3)° (s~13/3) (sta)(s+p8) |*
The closed-loop characteristic polynomial, (s+a)(s+pg)(s+l)?(s+2/3), is
Hurwitz and of fifth order. Then it is clear that there are three stable
hidden modes corresponding to the eigenvalues {-1,-1,-2/3}. By the
discussion above these three hidden modes are uncontrollable from r and the
pole of P at -1 corresponds to an unobservable mode from u.

Another controller C can be designed that will satisfy the
specifications and will introduce legss hidden modes. First, notice that no
single degree of freedom controller can meet the specifications [14]. A
simplified design approach for a two degrees of freedom controller is
explained next. Since T is the same and T=NX=(s-1}X, X is the same. So we



need to design Cy. We can do this by designing L. In order to minimize
the number of hidden modes, the poles of L should be the same as the poles

of X and no poles of L should be zeros of the plant. Then a possible
choice for L is

= —r
L= (st+a) (s+p)’ (19)
where « is a constant. The conditions for the compensator to be internally

stabilizing and proper are X, L and (l-I.N)D-1 must be proper and stable.
Only the latter one needs further checking:
. -l _(sta)({s+g) - (s-1)x
(1-LNID * = ) (ae1) (3va) (34 9) * (20)
The transfer function in (20) 3 stable if and only if (2+a) (2+8)=«, that
is, a=(x-4-2p)/(2+p). Then, fo. 0 need
0¢pEt (21)
or choose «0, A0 and &=(2+a)(2+p). By chooging & in this way, a
compensator C=[-Cy C,] that attains the desired closed-loop transfer
funtion is

C = - x(8-2)(s+1) (s-2)(s+1) ] (22)
T | (stx){s+B8)-(s-1)x (s+a) (s+p)-(s-1)x |’
where there is a pole-zero cancellation at s=-2 in Cy and .. Suppose «=1
and =3, then x=15 and
_ 15({s8+1) s+l
C=1-"s3 a9 |* (23)
For C in (23) there is only one hidden mode due to the interconnection of
the controller and the plant; the pole of P at s=-1 corresponds to an
uncontrollable mode from r and to an uncbservable mode from u.
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