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Abstract—In this paper, stability conditions for large-scale
systems are derived by categorizing agents into symmetry
groups and applying local control laws under limited intercon-
nections with neighbors. Particularly, stability for dissipative
systems is considered. It is assumed that subsystems are dissi-
pative and stability is studied. Conditions are derived for the
max number of subsystems that may be added while preserving
stability and these results may be used in the synthesis of large-
scale systems with symmetric interconnections.

I. INTRODUCTION

Symmetry is one basic feature of shapes and graphs. In
contrast to classical random graph models, many real-world
networks, such as the internet and US power grid, exhibit
a high degree of symmetry, resulting from the process of
tree-like or cyclic growing. The automorphism groups of
these networks can be decomposed into direct products of
symmetric groups. For purpose of analyzing or synthesizing
large-scale dynamic systems, the notion of symmetry has
been of interest for some time. When dealing with multi-
agent systems with various information constraints and pro-
tocols, symmetry may refer to identical dynamics of sub-
systems or symmetric characterizations of information struc-
ture. Symmetry exists in a dynamical system if the system
dynamics are invariant under transformations of coordinates.
Under certain conditions such systems can be expressed as
or decomposed into interconnections of lower dimensional
systems, which may lead to better understanding of system
properties such as stability and controllability. Furthermore,
we can construct a symmetric large-scale system without re-
ducing performance if certain properties of low dimensional
systems hold.

Passivity and dissipativity in systems, together with de-
composition into lower order subsystems have been used in
the study of large-scale systems. [16] concentrates on Lya-
punov stability using vector Lyapunov functions, as well as
input-output stability results with dissipative subsystems. [17]
studies linear interconnections of dissipative subsystems and
specializes to interconnections of special types of dissipative
systems, namely finite gain systems, passive systems, and
conic systems. [6] generalizes previous results to weighted
Lyapunov functions and gives spectral characterization of the
interconnection matrix.
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There are interesting approaches to the analysis and design
of large-scale systems involving symmetries, and some are
briefly outlined below.

Early research on the topic could be found in [5] and
[21]. [13], [14], [15] study distributed systems containing
multiple instances of identical subsystems, and show that the
controllability of the entire class of systems can be deter-
mined by reducing the model and examining a lower order
member of the equivalence class. [3], [18] deal with analysis,
synthesis, and implementation of distributed controllers. [3]
focuses on spatially interconnected systems, especially peri-
odic interconnected subsystems. [22] studies zero dynamics
of nonlinear control systems with symmetries. It is shown
that the zero dynamics of a symmetric system is also sym-
metric and admits a special form of cascade decomposition.
See also [8], [4] for decomposition of nonlinear symmetric
distributed system and [2] for a mechanical example of
nonholonomic affine control system, and [1] for oscillator
networks. [10] addresses the problem of determining linear-
quadratic optimal control problems whose solutions preserve
the symmetry of the initial linear control system. See also [7]
for H-∞ optimal control for symmetric linear systems. [12],
[11] explore how certain interconnection topologies influence
symmetry in a multiagent system’s trajectories. It is shown
how circulant connectivity preserves rotation and symmetric
formations. [19] defines the concept of partial symmetry for
nonlinear systems, which is an intermediate notion between
the concepts of symmetry and controlled invariance. [20]
uses similar idea and deals with quotients of fully nonlinear
control systems.

In this paper, stability conditions for large-scale systems
are derived by categorizing agents into symmetry groups and
applying local control laws under limited interconnections
with neighbors. Particularly, stability for dissipative systems
is considered. It is assumed that subsystems are dissipative
and stability is studied. Conditions are derived for the maxi-
mum number of subsystems that may be added while preserv-
ing stability and these results may be used in the synthesis
of large-scale systems with symmetric interconnections.

The paper is organized as follows. In Section II, we
introduce preliminaries and background about symmetry in
dynamical systems. In Section III, preliminary or iniitial
results in dissipativity and Lyapunov stability are introduced.
Section IV contains our results about dissipativity. Section V
contains simulation results, followed by concluding remarks
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and future directions in Section IV.

II. PRELIMINARIES AND BACKGROUND

A. Distributed Nonlinear Control Systems

According to [13], smooth analytic systems
∑

are con-
sidered of the form

ẋ1 = f1(x) + g1,1(x)u1,1 + g2,1(x)u2,1 + · · ·+ gn,1(x)un,1

ẋ2 = f2(x) + g1,2(x)u1,2 + g2,2(x)u2,2 + · · ·+ gn,2(x)un,2

...
ẋn = fn(x) + g1,n(x)u1,n + g2,n(x)u2,n + · · ·+ gn,n(x)un,n

where fi and gi,j are smooth vector fields on M , M is a
smooth manifold, x ∈M . The notation ui,j denotes the jth
control input associated with agent i and gi,j is the associated
input vector field. A drift term that is a function of states in
node i is denoted by fi.

To describe the relationships between multiple agents, we
have a digraph G to model the interaction topology. If agent
j can receive information from agent i, then graph nodes vi

and vj correspond i and j, and a directed edge eij represents
a unidirectional information exchange link from vi to vj .
The interaction graph represents the communication pattern
at certain discrete time.

To represent a graph in matrix form, let G = {V,E,A} be
a weighted digraph (or direct graph) of n order with the set
of nodes V = {v1, v2, . . . , vn}, the set of edges E ⊆ V ×V ,
and a weighted adjacency matrix A = [aij ] with nonnegative
adjacency elements aij . The node indices belong to a finite
index set I = {1, 2, . . . , n}. A directed edge of G is denoted
by eij = (vi, vj), where eij ∈ E does not imply eji ∈ E. The
adjacency elements corresponding to the edges of the graph
are positive, i.e., aij > 0 if and only if eji ∈ E. Moreover,
we assume aii 6= 0 for all i ∈ I . The set of neighbors of
the node vi is the set of all nodes which communicate to vi,
denoted by Ni = {vj ∈ V : (vj , vi) ∈ E}.

A graph G is called strongly connected if there is a directed
path from vi to vj and vj to vi between any pair of distinct
vertices vi and vj . Vertex vi is said to be linked to vertex
vj across a time interval if there exists a directed path from
vi to vj in the union of interaction graphs in that interval. A
directed tree is a directed graph where every node except the
root has exactly one parent. A spanning tree of a directed
graph is a tree formed by graph edges that connect all the
vertices of the graph.

B. Symmetric Distributed Nonlinear Systems

To define symmetry in a distributed dynamical system,
we need to define subsystems which have identical dy-
namics and identical interactions with other subsystems; or,
mathematically, the system dynamics are invariant under
transformations of coordinates. We will first introduce vector
field equivalence defined in [13].

Definition 1: (Vector Field Equivalence) Two vector
fields, g1 and g2 are equivalent, denoted by g1 ∼ g2, if there

exists a diffeomorphism, ψ : M 7→M , such that

ψ∗ ◦ g1 = g2

Equivalently, we can define Ei,j ∼ Ek,l by only considering
the jth and lth components of gi and gk, respectively. The
definition of the push forward of a vector field is ψ∗g =
Tψ ◦ g ◦ ψ−1. A symmetric group of order p!, denoted by
Sp, is the group of permutations of p objects.
[13] states that if any one member of the equivalence class
of symmetric distributed control systems satisfies the Lie
Algebra Rank Condition(“LARC”), and all bad brackets
are spanned by lower order good brackets, then all larger
members of the equivalence class of symmetric distributed
control systems are small time locally controllable.

C. Symmetric Distributed Linear Systems

If the system
∑

is linear, then it can be characterized
as a dynamical network involving trajectories of multiagent
dynamical systems

∑
l given by

ẋi(t) =
n∑

j=1

φij(xi(t), xj(t)) +
m∑

k=1

bikuik,

xi(t0) = xi0, t ≥ 0, i = 1, ..., n,

φij(xi, xj) =
∑
j∈Ni

aij(xj − xi)

or in vector form:

ẋ(t) = Ax(t) +Bu(t)

If definition 1 is used in the linear case, then to reflect the
underlying geometric symmetry in the system structure, it
can be shown that

AT = TA

TB = BS

where T and S are unitary representations of G on Rn

and Rr , respectively. T is not necessarily an orthoganal
matrix. But when T is orthogonal(i.e. T−1 = TT ) and A is
a circulant matrix, circulant connectivity preserves rotation,
and in particular instances, dihedral group symmetries in a
formation of locally interacting planar integrators[11].

Fig.1. Star-shaped symmetry Fig.2. Cyclic symmetry
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Here, for a symmetric group Sp consisted of p subsystems,
we consider two types of symmetries, namely star-shaped
symmetry and cyclic symmetry. Intuitively, in a star-shaped
symmtric group, subsystems do not have interconnections
with each other, while in cyclic symmetric group, subsystems
contribute to a close related automorphism group, see Figure
1,2.

D. Dissipative Systems

When characterizing properties of systems, it is often
beneficial to consider particular cases, such as disspative
systems.

Let U be an inner product space whose elements are
funcitons u : R → R. Also let Un be the space of n-tuples
over U, with inner product

〈u, v〉 =
n∑

i=1

〈ui, vi〉

Then for any u ∈ Un and any T ∈ R, a truncation uT can
be defined via

uT (t) =
{
u(t), for t < T
0, otherwise

A truncated inner product is defined as 〈u, v〉T = 〈uT , vT 〉,
an extended space Un

e = {u|ut ∈ Un for all T ∈ R}.
A system with m inputs and p outputs may now be

formally defined as a relation on Um
e × Up

e , that is a set
of pairs (u ∈ Um

e , y ∈ Up
e), where u is an input and y

the correponding output. Let Q ∈ Rp×p, S ∈ Rp×m, and
R ∈ Rm×m be constant matrices, with Q and R symmetric.
Then we say that the above system is (Q,S,R)−dissipative
if

〈y,Qy〉T + 2 〈y, Su〉T + 〈u,Ru〉T ≥ 0 (1)

for all T ∈ R, and all u and y such that (u, y) is valid input-
output pair.

Let Q = −I(where I is the unit matrix of appropriate
dimension), S = 0 and R = k2I , for some fixed positive
real number k. The above definition reduces to

‖y‖T ≤ k ‖u‖T
where ‖�‖T is the truncated norm, defined via ‖x‖2T =
〈x, x〉T . In this case we say that the system is finite gain
input-output stable, or L2−stable with an upper gain bound
of k.

A linear interconnection of N dissipative subsystems can
be described as

∑
:

ẋi = fi(xi) + gi(xi)ui

yi = hi(xi)

ui = uei −
N∑

j=1

Hijyj , i = 1, · · · , n

where ui is the input to subsystem i, yi is its output, uei

is an external input, and the Hij are constant matrices. If

we define y = (y1, · · · , yn), H = [Hij ], and define u, ue

similarly, then the interconnected system can be represented
by

u = ue −Hy

Theorem 1: ([9]) If there exists a diagonal matrix D >
0 such that the matrix

Q̂ = −HTDRH +DSH +HTSTD −DQ

is positive definite, i.e. Q̂ > 0, then the network
∑

of N in-
terconnected (Qi, Si, Ri)-dissipative agents is asymptotically
stable.

Remark 1: This result is a generalization of [17] and [16].
Theorem 2: (Small Gain) Let the ith subsystem have

finite gain γi, for i = 1, · · · , N , and suppose that each
subsystem has only one input and one output. Define Γ =
diag {γ1, · · · , γN} and A = ΓH . Then if there exists a
diagonal positive definite matrix P such that

P −ATPA > 0

the interconnected system is stable.
Remark 2: A sufficient condition for such P satisfying (1)

is that the matrix Â with elements

âii = 1− |aii|

âij = − |aij | , i 6= j

has positive leading principal minors. It is called an M-
matrix. Note that it is positive definite.

III. INITIAL RESULTS IN DISSIPATIVITY AND LYAPUNOV
STABILITY

Proposition 1: Consider a subsystem extended by m star-
shaped symmetric subsystems with symmetric interconnec-
tion matrix H̃ . The whole system is stable if

m <
σ(Â)

σ(αÂ−1αT )

where Â is the test matrix in Remark 2.
Proof: When the interconnected system is extended with

a single symmetric subsystem, we have the test matrix

Ã = Γ̃H̃ =
[

Γ 0
0 Γ

] [
H h12

hT
12 H

]
ˆ̃
A =

[
ˆ̃aij

]
, where ˆ̃aii = 1− |ãii| , ˆ̃aij = − |ãij | , i 6= j

The new test matrix ˆ̃
A can be written as ˆ̃

A =
[
Â α

αT Â

]
,

where α = Γh12. since Â already has positive leading princi-
pal minors, ˆ̃

A is an M-matrix if and only if Â−αÂ−1αT > 0.
Similarly, if the system is extended with m symmetric

subsystems, we have the form

Ã = Γ̃H̃ =


Γ 0 . . . 0
0 Γ · · · 0
...

...
. . .

...
0 0 · · · Γ




H h12 · · · h12

hT
12 H · · · 0
...

...
. . .

...
hT

12 0 · · · H


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ˆ̃
A =


Â α . . . α

αT Â . . . 0
...

...
. . .

...
αT 0 . . . Â


ˆ̃
A is an M-matrix if and only if Â − mαÂ−1αT > 0, i.e.
there is an upper bound on the number of such extended
symmetric subsystems

m <
σ(Â)

σ(αÂ−1αT )

Remark 3: Proposition 1 points to the fact that even
with very samll gain(Theorem2), stability may be lost for
large numbers of subsystems. For the more general case, let
the symmetric subsystems be (Q,S,R)− dissipative. Then
we have the following result.

Proposition 2: Consider a (Q,S,R)−dissipative system
extended by m star-shaped symmetric (q, s, r)−dissipative
subsystems. The whole system is asymptotically stable if

m < min(
σ(Q̂)

σ(cT rc+ β(q̂ − bTRb)−1βT )
,

q̂

bTRb
) (2)

where

Q̂ = −HTRH + SH +HTST −Q > 0

q̂ = −hT rh+ sh+ hT sT − q > 0

β = Sb+ cT sT −HTRb− cT rh

Proof: By Theorem 1, to ensure the enlarged system is
(Q̃, S̃, R̃)− dissipative, where Q̃ = diag(Q, q, . . . , q),S̃ =
diag(S, s, . . . , s), R̃ = diag(R, r, . . . , r), let D = I , we
need

ˆ̃
Q = S̃H̃ + H̃T S̃T − H̃T R̃H̃ − Q̃ > 0 (3)

where

H̃ ,


H b . . . b
c h . . . 0
...

...
. . .

...
c 0 . . . h


This implies

ˆ̃
Q =


Q̂−mcT rc β . . . β

βT

... Λ
βT

 > 0

where
β = Sb+ cT sT −HTRb− cT rh

Λ = q̂ ⊗ Im − bTRb⊗ circ([1 1 · · · 1])

By linear transformations,
[

A B
BT D

]
> 0 if and only if

D > 0 and A − BD−1BT > 0. Thus, recursively, we have
(2).

Remark 4: Proposition 2 implies that for a star-shaped
symmetry group, interconnections should not exist inside the
group. While for cyclic symmetry group, cyclic interconnec-
tions is represented by

H̃ ,


H b . . . b
c
... h̃
c


h̃ = circ([v0 v1 · · · vm−1]) is a circulant matrix with the first
row [v0 v1 · · · vm−1], h̃ = PT h̃P where

P =


0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . .

...
...

...
...

. . . 1
1 0 0 · · · 0


Or h̃ can be written as

h̃ = v0I + v1P + · · · vm−1P
m−1 (4)

.
Proposition 3: Consider a (Q,S,R)−dissipative system

extended by m cyclic symmetric (q, s, r) − dissipative
subsystems. The whole system is asymptotically stable if

m < min(
σ(Q̂)

σ(cT rc+ βmΛ−1βT
m)
,

q̂

bTRb
) (5)

where

Λ = −rhTh+ sh+hT s− q⊗ Im− bTRb⊗ circ([1 1 · · · 1])

q̂ = −rσ(h̃)σ(h̃) + s(σ(h̃) + σ(h̃))− q

β = Sb+ cT sT −HTRb− cT rh̃

βm = [β β · · ·β]︸ ︷︷ ︸
m

σ(h̃) =
m−1∑
j=0

vjλ
j
i =

m−1∑
j=0

vje
2πij
m

Proof: Same as (3), we require

̂̃
Q =


Q̂−mcT rc β . . . β

βT

... Λ
βT

 > 0

According to Proposition 2 [9], requiring Λ > 0 is equivalent
to assuming (q, s, r)-dissipative agents with interconnection
matrix h̃ = circ(v), and Q̂qst− bTRb⊗ circ([1 1 · · · 1]) > 0
thus the spectral characterization of h̃ should satisfy∥∥∥σ(h̃)− s

r

∥∥∥ <√s2

r2
− q +mbTRb

r
(6)
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Then we have

m <
−rσ(h̃)σ(h̃) + s(σ(h̃) + σ(h̃))− q

bTRb

It is known that if two matrices P and Q commute, so
that QP = PQ and if λ is a simple eigenvalue of P with
eigenvector ν, then ν is also an eigenvector of Q. Thus, for
every eigenvalue λi with eigenvector νi of P , |λi| = 1 and
λi = σ(P ) = e

2πi
m , we know that νi is also a eigenvector of

h̃. Multiply by νi the both sides of (4) to obtain:

h̃νi = (v0I + v1P + · · · vm−1P
m−1)νi

= (v0 + v1λi + · · · vm−1λ
m−1
i )νi = (

m−1∑
j=0

vjλ
j
i )νi

Hence σ(h̃) =
∑m−1

j=0 vjλ
j
i , i = 0, 1, . . . ,m− 1.

The rest of the proof is similar as in Proposition 2 thus
omitted.

Remark 5: Unlike the star-shaped structure, a cyclic
structure does not need the support of the original(center)
system, which can be ignored if the symmetry group is the
only interest. In this case, (6) is reduced to∥∥∥σ(h̃)− s

r

∥∥∥ <√s2

r2
− q

r

where

σ(h̃) =
m−1∑
j=0

vjλ
j
i ≤

m−1∑
j=0

∥∥∥vjλ
j
i

∥∥∥ ≤ m−1∑
j=0

‖vj‖

σ(h̃) is bounded and the bound will not be affected by the
number of subsystems given a similar structure of interaction
matrix, in which zero entries are filled when adding new
symmetric subsystems.
The condition above also intuitively explains why passive
systems can be arbitrarily connected. Passive systems are
(0, I, 0)−dissipative with r = 0, thus the stability condition
remains unaltered.
Since the convergence rate is closely related to the eigen-
values of the interconnection matrix, we should be able to
study the performance of the system. This is currently under
investigation.

IV. SIMULATION RESULTS

In this section we present several brief examples.
Example 1

Suppose we have m+ 1 finite gain symmetric subsystems
like Figure 1, each of gain less or equal to 1

2 , and an
interconnection matrix

H̃ =


0.9 −0.8 −0.8 · · · −0.8
−0.8 0.1 0 · · · 0
−0.8 0 0.1 · · · 0

...
...

...
. . .

...
−0.8 0 0 · · · 0.1


︸ ︷︷ ︸

m+1

The problem is to find how large can m be, i.e. how
many symmetric subsystems can be connected without losing
stability.

For such system, we know Q = −I , S = 0, R = 1
4I .

According to ,

m < min(3.11, 6.25) = 3.11

Thus mmax = 3.
In fact, when m = 3, the interconnected system is finite

gain input-ouput stable, since

ˆ̃
Q =


0.318 0.16 0.16 0.16
0.16 0.838 −0.16 −0.16
0.16 −0.16 0.838 −0.16
0.16 −0.16 −0.16 0.838

 > 0

But when m = 4,

ˆ̃
Q =


0.158 0.16 0.16 0.16 0.16
0.16 0.838 −0.16 −0.16 −0.16
0.16 −0.16 0.838 −0.16 −0.16
0.16 −0.16 −0.16 0.838 −0.16
0.16 −0.16 −0.16 −0.16 0.838


is not positive definite, and stability can no longer be guar-
anteed.
Example 2

Fig.3. Cyclic interconnection structure with a center

We are considering a similar example as in [6], the
rendezvous of multiple agents with damping and inertia. The
dynamics for each agent are

Mz̈ +Bż = u

y = z

where z, ż ∈ R2 is the position and velocity, M and B are
positive definite matrices. Consider the storage function V =
żTMTB−1Mż+żTMz+ 1

2z
TBz. Each agent is (Q,S,R)−

dissipative with Q = 0,S = 1
2I ,R = B−1MB−1 > 0.

Assume there is an agent in the center while the other agents
have cyclic interconnection structure, see Figure 3.

According to (6), the system is stable if∥∥∥σ(h̃)− s

r

∥∥∥ <√s2

r2
− q +mbTRb

r
<
s

r

But not all σ(h̃) satisfy the condition above, thus the stability
condition is not satisfied. Actually simulation results show
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that such system is always unstable, no matter how many
agents are extended and how small bTRb is, see Figure 4.

Fig.4. Trajectories of extended agents

Example 3
In Figure 3 we remove the center and consider a network of

cyclic symmetric subsystems. Each subsystem is (q, s, r) −
dissipative with q = −1, s = 0, r = 4, with interaction
matrix

H̃ = h̃ =


0.1 0.2 0 · · · 0
0 0.1 0.2 · · · 0
0 0 0.1 · · · 0
...

...
...

. . .
...

0.2 0 0 · · · 0.1


︸ ︷︷ ︸

m

According to (6), the system is stable if

∥∥∥σ(h̃)− s

r

∥∥∥ =

∥∥∥∥∥∥
m−1∑
j=0

vje
2πij
m

∥∥∥∥∥∥ ≤ 0.3 < 0.5 =

√
s2

r2
− q

r

The inequality above always holds. Thus the system can be
extended with infinite numbers of subsystems without losing
stability.

V. DISCUSSIONS AND CONCLUSIONS

In this paper we introduced the notion of symmetry both
in linear and nonlinear distributed systems, and we derived
preliminary results about the stability conditions for dissi-
pative systems when composing or constructing symmetric
systems. It is shown that stability conditions for large-scale
systems can be derived by categorizing agents into symmetry
groups and applying local control laws under limited inter-
connections with neighbors. There exists an upper bound on
the number of subsystems so to guarantee stability.

Future directions will be focused on various properties and
performance of nonlinear symmetric systems.
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