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Abstract—In this paper, discrete-time Model-Based 

Networked Control Systems (MB-NCS) are studied. A lifting 

process is applied to a general MB-NCS configuration in which 

the controller is connected to the actuator and plant by means 

of a digital communication network resulting in a multirate 

system; the controller is updated every nT time units while the 

plant is updated every mT time units. Here, necessary and 

sufficient conditions for asymptotic stability are derived in 

terms of the parameters n and m. The lifting process is also 

applied to the MB-NCS configuration when only sensor data is 

sent over the network. In both cases a Linear Time-Invariant 

(LTI) system is obtained after applying lifting techniques. 

Necessary and sufficient conditions are given for the asymptotic 

stability of the system with instantaneous feedback in terms of 

h, the periodic update constant, and in terms of h and for the 

intermittent feedback case, where  is the time interval in which 

the loop remains closed.  

I. INTRODUCTION 

N recent years, control networks have been replacing 

traditional point-to-point wired systems. In networked 

control systems, the different elements, plants, controllers, 

sensors, and actuators are connected through a digital 

communication network with limited bandwidth. The new 

challenges that this implementation has brought are well 

documented [1]-[4]. Perhaps the most relevant is the 

limitation on bandwidth; many researchers have studied 

different problems related to bandwidth restrictions such the 

state estimation problem under limited network capacity [5] 

or the minimum bit rate required to stabilize a Network 

Control System (NCS) [6], [7]. Other authors have focused 

on reducing network communication maintaining the system 

stable or keeping some level of performance. Georgiev and 

Tilbury [8] use the packet structure more efficiently, that is, 

reduction on communication is obtained by sending packets 

of information using all data bits available; for the sequence 

of sensor data received, the controller needs to find a control 

sequence instead of a single control value. Otanez et al. [9] 

use deadbands at each node to record the last value sent to 

the network and compares that value to the current one, 

making a decision on sending the current information or not. 

Walsh, et al. [10] introduced a network control protocol Try-

Once-Discard (TOD) to allocate network resources to the 

different nodes in a Networked Control System.  
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A type of NCS called Model Based Networked Control 

Systems (MB-NCS) aims to reduce communication over the 

network by incorporating an explicit model of the system to 

be controlled. The state of this model is used for control 

when no feedback is available (open loop). When the loop is 

closed, the state of the model is updated with new 

information, namely, the state of the real system. The MB-

NCS framework is able to reduce network communication; 

consequently, the network is available for other uses, 

reducing time delays and bandwidth limitations.  
Work in MB-NCS by Montestruque and Antsaklis [11], 

[12] provided necessary and sufficient conditions for 

stability for the case when the update intervals are constant; 

the output feedback and network delay case were also 

studied. In an extension, the same authors [13] also 

presented results when the update intervals are time-varying 

and follow different probabilistic distributions. In a related 

work Estrada, et al. [14] introduced MB-NCS to intermittent 

feedback control resulting in improved performance and 

longer permissible update intervals. Recently, the 

intermittent control concept has been successfully applied to 

control systems [15]-[18]. 

 In all the above work on MB-NCS it is assumed that the 

network exists only between the sensor and the controller 

node while the controller is connected directly to the 

actuator and plant, that is the input generated by the 

controller is available to the plant at all times without delays 

or losses.   

The work presented in this paper has strong connections 

with multirate systems [22]-[26]. Such systems arise mainly 

due to the limitation in sensing some variables fast enough, 

while the control variables can be adjusted faster. The main 

difference in this paper with respect to the control strategies 

used in multirate systems is the implementation of an 

explicit model to generate estimates of the state between 

sampling times. Note that, [24] offers a similar 

implementation, aiming to compare certain characteristics 

against a fast single rate control system. By contrast, we aim 

to find the specific rates that result in a stable multirate 

system. 

In this paper lifting techniques are used to derive 

necessary and sufficient conditions for stability when there 

is also a communication network between the controller and 

the plant, a more general and flexible implementation that 

uses the network in both sides of the control loop. In 

addition, lifting techniques are also used to derive necessary 

and sufficient conditions for stability for traditional MB-

NCS configurations, thus verifying existing results. 
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II. PROBLEM STATEMENT 

MB-NCS make use of an explicit model of the plant 

which is added to the controller node to compute the control 

input based on the state of the model rather than on the plant 

state. Fig. 1 shows a basic MB-NCS configuration, where 

the network exists only on the sensor-controller side while 

the controller is connected directly to the actuator and the 

plant. 

 
Fig. 1. Representation of a Model-Based Networked Control System. 

 

The dynamics of the plant and the model are given 

respectively by: 
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where x is the state of the plant, x̂ is the state of the model, A, 

B are the state space parameters of the physical system and

ˆ ˆ,A B  represent the model of the system.

  The input u for the case of instantaneous feedback can be 

expressed as: 
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for i=0,1,2,….; h is the number of samples of the real plant 

that the sensor must wait in order to broadcast a 

measurement update, therefore h is an integer;  and  0<j<h (j 

is also an integer). 

In this paper we will analyze system (1) with feedback (2) 

using a lifting approach. The lifting process has the purpose 

of extending the input and output spaces properly in order to 

obtain a Linear Time Invariant (LTI) system description for 

sampled-data, multi-rate, or linear time-varying periodic 

systems. Since the lifted system is a LTI system, the 

available tools and results for LTI systems are applicable to 

the lifted system as well.  

Suppose there exist two periods h and hs in a discrete-time 

set up and they are related by hs=h/r, where r is some 

positive integer. For a discrete-time signal v(k) referred to 

the sub-period h/r, that is, v(0) occurs at time t=0, v(1) at 

t=h/r, v(2) at t=2h/r and so on, the lifted signal v is defined 

as follows: 
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(0) ( )

(1) ( 1)
, ,...

: :

( 1) (2 1)

v v r

v v r
v

v r v r

     
     

      
    
            

 

The dimension of the lifted signal ( )v k  
is r times the 

dimension of the original signal v(k) and is regarded to the 

base period h, i.e. ( )v k  occurs at time t=kh. 

For a detailed treatment on lifting signals and systems the 

reader is referred to [19]. See also [21], [27], and [28]. 

III. INSTANTANEOUS AND INTERMITTENT FEEDBACK 

The MB-NCS of Fig. 1 can be seen as the linear time-

varying system shown in part a) of Fig. 2, by considering an 

output y that is equal to x̂  when the loop is open and equal 

to x when we have an update (closed loop). The system after 

applying lifting is represented in part b) of the same figure, 

and is regarded as a LTI system with higher dimension input 

and output.  

 

 
a) 

 
b) 

Fig. 2. Equivalent systems to a MB-NCS. a) Linear time-varying 

system. b) Lifted system. 
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Note that the original period of the system is denoted by T 

and the period of the network by hT. Then we have that for 

this case r=h since hT/h=T. The input u  for the lifted 

system P and its output y  are given by the equations, 
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The dimension of the state is preserved, and the state 

equation expressed in terms of the lifted input is given by: 
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   (5) 

 

Theorem 1. The lifted system is asymptotically stable if 

only if the eigenvalues of 
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lie strictly inside the unit circle. 

Proof: To prove this theorem we note that (5) is the same 

as the state equation that characterizes the autonomous linear 

time invariant system:  
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Equation (7) can be obtained by directly substituting (3) in 

(5), and then substituting the value of each individual output 

by its equivalent in terms of the state x(kh), i.e. 
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The resulting equation can be simply expressed as (7). Since 

the lifted system is a LTI system we simply apply basic 

results for LTI systems, i.e. a system given by x(k+1)=Ax(k) 

is asymptotically stable if only if the eigenvalues of A lie 

inside the unit circle.■ 

 For the intermittent feedback case [14] the input u of the 

MB-NCS of Fig. 1 is defined as: 
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In this work we consider intermittent feedback with 

constant updates and constant closed loop times, that means, 

1l lh h h   , which represents how often we close the loop 

between the sensor and the controller, and 
l h   , which 

represents the constant number of clock ticks that the loop 

remains closed, h and   are positive integer numbers. 

Theorem 2. The lifted system with intermittent feedback 

(9) is asymptotically stable if only if the eigenvalues of: 
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lie strictly inside the unit circle. 

The proof for this theorem is similar to the one for theorem 1 

and it can be found in [20]. 

IV. DOUBLE NETWORK PATH MB-NCS 

We call double network path MB-NCS a NCS in which 

not only the path from the sensor to the controller is 

implemented using a digital network but also the path from 

the controller to the actuator as well. This configuration 

offers more flexibility to the designer since there is no need 

to place the model/controller and actuator/plant in the same 

node, or directly connect them using a dedicated wire. Given 

the circumstances of the problem it is preferable many times 

to use the network to implement this connection. The 

configuration is shown in Fig. 3; here the two switches are 

closed at different constant rates, giving rise to the constant 

update intervals n and m. As a starting point we wish to find 

the bounding values of m and n that preserve stability of the 

MB-NCS using instantaneous feedback. Note that in this 

case, between input updates, the input to the plant is held 

constant in the actuator and it is equal to the last received 

value. 

Assume that n m (low measurement rate, which is 

typical in many implementations of physical systems) and 

p=n/m is assumed to be an integer.  

Theorem 3: The lifted system corresponding to Fig. 3 is 

asymptotically stable if only if the eigenvalues of: 
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lie strictly inside the unit circle, where 
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Fig. 3. Model-Based Networked Control System with communication 

network between sensor-controller and controller-actuator (plant). 
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Proof: Since p=n/m is an integer the period of the 

networked system in Fig. 3 is n. Taking a similar approach 

as in the last two cases we obtain a LTI system. In order to 

find the state equations of the lifted system let us describe 

the response of the system as a function of the input updates 

that take place every m clock ticks. From equation (5) we 

obtain: 
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The input u is a function of the state of the plant at times 

kn and a function of the state of the model otherwise. The 

state of the model between sensor updates can be expressed 

in terms of the state of the plant at times kn as follows: 
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Note that the model has access to the input that it 

generates at all times as it can be deduced from Fig. 3. The 

network connection is between the controller and the plant, 

and the model is part of the controller. Equation (14) 

becomes: 
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where 
iH  and   are given by (12) and (13). Equation (16) 

represents a discrete-time LTI, therefore asymptotic stability 

is achieved when the eigenvalues of (11) lie inside the unit 

circle. ■ 

V. EXAMPLES 

In this section we provide some simulation examples that 

complement the results obtained in the past two sections. An 

illustrative way to proceed is to plot the eigenvalues of the 

corresponding test equation and obtain the time response of 

the system for different values of the parameters involved in 

the lifted system, those parameters could be h, , n, or m, 

depending on the type of feedback and the implemented 

configuration. 

 
Fig. 4. Absolute value of the eigenvalues of equation (6), showing the 

values of h for which the system remains stable. 

 

Example 1. Consider the following plant and model 

implemented using a traditional MB-NCS configuration with 

network only from sensor to controller and using 

instantaneous feedback with T=0.1 seconds. The model is a 

random perturbation of the real parameters, representing 

some existing uncertainty in most typical implementations of 

real systems. 
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Fig. 4 shows the absolute value of the eigenvalues of (6)  

in theorem 1. Note thet h takes values only in the integers. 

We can implement our controller and model over a network, 

receive measurements every h clock ticks and remain stable 

as long as that h produces eigenvalues of equation (6) with 

absolute value less than one. Fig. 5 shows the response of 

the system for particular values of h. and for initial 

conditions equal to 
0 [0.5 0.2]Tx   in both cases. 

 
Fig. 5. Response of the plant for different values of h: a) h=16 system   

is still stable, b) h=18 system is unstable. 

 

Example 2. Consider now the following plant and model 

implemented as in Fig. 3 where the network is also used to 

connect the controller to the plant. T=1second. 
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In this case we have two variables, n and m, and, 

intuitively, we expect a decrease in the necessary value of n 

as m increases. An appropriate way to proceed here then is 

as follows: first find the largest value of n for m=1, that is, 

find the value of h in theorem 1; then select a value for n less 

than the value of h that we just found and find the divisors of 

n; with this information we can plot the eigenvalues of 

equation (11) as a function of m. For the example in hand, 

the highest value of h, from theorem 1, is 29, so for 

illustrative purposes we can fix n=24 (the choice of n is 

taken considering the existence of a large number of divisors 

to get p=n/m an integer). For this case the eigenvalues of 

equation (11) are shown in Fig. 6, note that the horizontal 

axis contains those values of m that result in p an integer. 

The response of the plant is shown in Fig. 7. The first plot 

represents the response of the system by choosing 

parameters n,m according to Fig. 6 for which all eigenvalues 

of (11) have magnitude less than one (inside the unit circle). 

In the second plot the selected parameters result in an 

unstable system since not all eigenvalues of (11) lie inside 

the unit circle. 

 
Fig. 6. Absolute value of the eigenvalues of equation (11) with n=24. 

 

Fig. 8 shows all admissible pairs (n,m) in the range n<30, 

i.e. those pairs that result in p having an integer value, it also 

shows which of those pairs provide stability for the system 

in example 2. 

 

 
 

Fig. 7. Response of the plant for n=24 and different values of m for 

which: a) stability is still preserved and b) system becomes unstable. 
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VI. CONCLUSIONS AND FUTURE WORK 

The Model-Based control of networked systems has been 

revisited in this paper making use of lifting procedures. 

These techniques were applied to different configurations of 

Networked Control Systems that use a model of the plant to 

generate an estimate of the state between updates. The 

typical MB-NCS configurations (those in which the network 

is implemented only between the sensor and the controller) 

were analyzed and necessary and sufficient conditions for 

asymptotic stability were obtained. In addition, the more 

general configuration where the network is also present 

between the controller and the plant was also studied and 

analogous results were derived. These results represent the 

main contributions of the paper.  

 

 
Fig.8. Sets of admissible values of n and m for example 2. (■) represent 

the pairs (n,m) that result in a stable system. (x) represent the pairs 

(n,m) that result in an unstable system, the rest are inadmissible rates. 
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