
Limitations of Liveness in Concurrent Software Systems

Marian V. Iordache and Panos J. Antsaklis

Abstract— A desirable property of software is that from
any reachable state any transition of interest will eventually
take place. In this paper, software satisfying this property will
be said to be responsive. Responsiveness can be studied on
untimed DES models of the software. The paper shows that
DES liveness is not sufficient to guarantee that the software
will be responsive. Two causes of this problem are identified,
namely transition determinism and operation timing. Transi-
tion determinism refers to the fact that not any DES enabled
transition may be fired, but only the specific transition selected
by the software. Operation timing refers to the times at which
software execution stages take place. Conditions required to
fire a transition may become unlikely or impossible due to
operation timing. To address these issues, explicit modeling of
deterministic choice is proposed and a special DES structure
is introduced. Then, a sufficient condition is formulated under
which DES liveness implies software responsiveness. This
sufficient condition is then applied to the supervisory control
problem in order to identify a class of liveness enforcing

supervisors that ensure responsiveness. While Petri nets are
used here to represent the DES models, the results are also
relevant in the automata framework.

I. INTRODUCTION

Difficulties encountered in the context of concurrency

have motivated the use of DES models for analysis, ver-

ification, and synthesis of software systems. One of the

basic properties that software systems should satisfy is that

from any reachable state any desirable transition should

eventually take place. Systems satisfying this property will

be said to be responsive. At a first look, responsiveness and

liveness may appear to be identical. However, this is not the

case. As we show in this paper, due to certain aspects of

software systems, unresponsive software systems may have

live DES models. Here, by DES models we mean classic

untimed Petri net and automata models. Since liveness has

received considerable attention in the technical literature, it

is of interest to determine conditions under which liveness

guarantees responsiveness. The paper addresses this topic

as follows. First, Petri net (PN) models are defined that

are appropriate for the study of responsiveness. Second, a

sufficient condition is proven under which liveness guaran-

tees responsiveness. Note that responsiveness implies that

there are no reachable states in which starvation takes

place, since starvation occurs when a process can no longer

receive resources necessary for its execution. Note also that

in our setting the absence of starvation does not imply

M. V. Iordache is with the School of Engineering & Engineer-
ing Technology, LeTourneau University, Longview, TX 75607, USA
MarianIordache@letu.edu

P. J. Antsaklis is with the Department of Electrical Engineer-
ing, University of Notre Dame, Notre Dame, IN 46556, USA
Antsaklis.1@nd.edu

The authors gratefully acknowledge the support of the National Science
Foundation (NSF CNS-0834057).

responsiveness. Indeed, we consider concurrent software

systems in which processes may not only access common

resources but also synchronize their execution on certain

operations.

This work is part of a project for the development

of a concurrency tool suite (ACTS) for the synthesis of

concurrent programs [1], [7], [8]. The goal is to design soft-

ware that based on a high level specification can generate

concurrent programs. The general approach of the project

can be outlined as follows. Based on a specification written

in a high level specification language, a PN model and a

supervisory control (SC) specification is extracted. Then,

SC methods are applied. Finally, low level code is generated

that combines low level user code and concurrency control

code implementing the SC policy. Thus, the project involves

developing a high level specification language, the software

tools for compilation and SC, and theoretical work on

the required methods. Of special interest are theoretical

results that can guarantee the performance of the generated

code. While numerous SC results have been developed and

rigorously proven, there are still certain aspects that need

to be considered when applying them to software systems.

Thus, the work presented in this paper is motivated by the

need to offer guarantees that liveness enforcement methods

will ensure that the generated programming code will be

responsive.

Related work includes the following papers. Deadlock

analysis of programs based on PN models has been used

in papers such as [2], [11], [12], [13]. The application of

SC to software systems has been proposed in references

such as [4], [8], [9], [10]. A literature survey on PN ap-

plications to software systems has appeared in [6]. Related

work includes also [3], dealing with conditions that ensure

that the implementation of automata-based supervisors is

nonblocking.

The paper is organized as follows. An introduction to

the notation, concepts, and setting of the paper is given in

section II. Then, section III describes limitations of liveness

in the context of software systems. Finally, section IV

presents sufficient conditions under which liveness implies

responsiveness and liveness enforcement implies enforce-

ment of responsiveness. The results of section IV represent

the main contribution of the paper. Much of the material

of section III could also be new, since we are not aware of

prior work related to the observation that determinism and

timing limit liveness.

II. PRELIMINARIES

In this paper a PN denotes a place/transition (P/T) net.

Given a PN and a place or transition x, •x and x• will

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7744-9/10/$26.00 ©2010 IEEE 3252

denote the preset and postset of x, respectively. Given a set

X , let |X | denote the number of elements of X . A state

machine is a PN in which | • t| ≤ 1 and |t • | ≤ 1 for

all transitions t. Note that we do not assume that a state

machine will have only one token. Rather, in this paper,

state machines may have an arbitrary number of tokens.

A. PN Representation of Software

We consider programs consisting of entities that run

concurrently. Each such entity will be called process,

though it may be implemented as a thread. Each process

is modeled by a state machine. The places of the state

machine represent stages in the operation of the process.

Each place is associated with the segment of code of the

corresponding process stage. Transitions between places

correspond to transitions of the process from one stage to

another. Transitions t with •t = ∅ model process creation

and transitions t with t• = ∅ model process termination.

The process itself is represented by a token of the state

machine. The place in which the token is present indicates

the current stage of the process. Identical processes may be

modeled by distinct tokens of the same state machine.

The DES model of the program is obtained by composing

the models of its processes. The method used to compose

the process models is the parallel composition of PNs [5].

Now, even though processes are modeled by state machines,

the result of the composition is usually not a state machine.

This is due to the fact that processes are allowed to

synchronize their operation. In particular, when processes

share resources, a process accessing a shared resource has

to synchronize its operation with the process managing the

access to the shared resources. Since any PN can be seen as

the composition of a number of state machines, it follows

that in general there is nothing that can be assumed about

the structure of the PN representing the program.

The PN representing a program together with the blocks

of code associated with each place forms a high level PN

(HPN). Note that a transition t of the HPN may fire when

enabled by the underlying PN and by the code associated

with the places p ∈ •t. Enabled transitions are fired

immediately.

In an HPN, the tokens involved in a transition firing

have special significance, since tokens represent processes.

Multiple tokens in the same place are possible. They

represent multiple identical processes in the same stage

of execution. In principle, an HPN might reach a state in

which the number of tokens of a place exceeds the number

of tokens necessary to fire a transition. When there is a

choice concerning which processes should participate in a

transition firing, processes are considered in the order in

which they made the request to fire the transition.

B. Determinism

In the state machine representing a process, each place

corresponds to a process stage. In each stage a process

executes a block of code. At the end, the process executes

p

(a) (b)

p

t
3

tt
1

t
2

t
3

t
1

2

Fig. 1. A place involving a combination of deterministic and non-
deterministic choice can be decomposed into two or more places, one
place involving deterministic choice and the other places nondeterministic
choice.

code that selects the transition to the next place. The choice

of the transition is deterministic if the choice is completely

determined by the internal code of the process. Once a

transition has been chosen, the process waits until the

transition may be fired. Thus, the choice cannot be revoked.

Now, the choice of a transition is nondeterministic if the

process lets external factors (such as a supervisor process)

select which transition should be fired.

Without loss of generality, we will assume that at any

place the choice is either completely deterministic or com-

pletely nondeterministic. For instance, for a place p having

three output transitions t1, t2, and t3, a possibility might

be that p chooses deterministically between firing t1 or

allowing a supervisor to select one of t2 and t3. Without

loss of generality, this possibility will be ignored. Indeed, it

is possible to separate deterministic choice from nondeter-

ministic choice by means of additional places, as illustrated

by the PN transformation of Figure 1.

Places modeling resources provide an example of non-

deterministic choice. By itself, a resource place does not

determine which process should use the resource. Rather, a

supervisor process determines the process that may use the

resource according to some rule, such as according to the

order in which requests are made.

Given a place p and a transition t ∈ p•, the transition arc

(p, t) is said to be deterministic if the choice of transitions

at the place p is deterministic. Otherwise, the arc (p, t) is

said to be nondeterministic.

III. LIVENESS

A process of a software application may have to wait,

such as for a shared resource. A desirable property of the

software would be that the process will eventually be able

to resume its execution. An indirect approach to address

this problem is to ensure liveness.

A transition t of a PN is live if for any reachable marking

there is an enabled firing sequence that includes t. A PN is

live if all its transitions are live. An HPN is live if its un-

derlying PN is live. As shown in this section, liveness does

not address all deadlock possibilities of an HPN. Therefore,

we define a stronger requirement called responsiveness.

2
3253

p
1

p
3

p
4

t
1

t
2

t
5 t

6
t
4

t
3

p
2

Fig. 2. PN representing the composition of two processes that synchronize
their operation on the transitions t1 and t4.

t
13

p
6

t
4

p
8

p
12

p
9

p

11

p
10

p

5
p
3

p
4

p
2

p
1

t
7

t
1

t
2

t
3

t
8

t
9

t
10

p
7

t
6

t
5

t
11

t
12

t
14

Fig. 3. Enhancement of the PN model of Figure 2 that models explicitly
deterministic choice.

An HPN is responsive if from any reachable state of the

software system any transition can be eventually fired. Note

that the state of the software system consists of the value of

all program variables, including the information about the

stage of execution. Responsiveness ensures that a process

waiting for permission to fire a transition will eventually be

allowed to fire it. This relies on the fact that when there

is a choice concerning which processes should be involved

in a transition firing, the “first come first served” policy is

applied. Just like liveness, responsiveness is a property of

systems that have a repetitive operation. Of special interest

here are software systems in which all processes correspond

to structurally live state machines.

A. Determinism and Liveness

Deterministic choices are a source of deadlock. However,

deadlocks due to deterministic choices may not be apparent

from the PN model of the software, unless adequate changes

are made. To illustrate this point, consider the PN model of

Figure 2. The PN represents two processes that synchronize

their operation on the transitions t1 and t4. Clearly, the PN is

live. However, if choices are taken into account, the model

may be in deadlock. Indeed, if the block of code at the

place p1 chooses the transition t1 and the block of code at

p4 chooses the transition t4, then the system is deadlocked.

A PN model could reveal potential deadlocks caused by

deterministic choice if choice is explicitly modeled in the

PN (Figure 3).

The PN change done in Figure 3 can be described by

the following algorithm. Note that given a transition arc x,

W (x) denotes the weight of x.

1) Let A be the initial set of deterministic arcs.

2) For all arcs (p, t) ∈ A do:

a) Let p′ and t′ be a new place and a new transition.

b) p′• = {t}, •p′ = {t′}, W (p′, t) = W (p, t), and

W (t′, p′) = 1.

c) p• = (p • \{t}) ∪ {t′} and W (p, t′) = 1.

d) Note that the block of code associated with the

place p contains a request to fire t. This request

to fire t is replaced with a request to fire t′.

In the algorithm above note that (p, t′) is deterministic and

(p′, t) is nondeterministic. PNs obtained using the algorithm

above will be called normal. Normal PNs represent deter-

ministic choice explicitly.

Note that deterministic choice is related to uncontrolla-

bility [14]. Indeed, a supervisor cannot control the outcome

of deterministic choice. For instance, consider the system

of Figure 3. Assume that p1 and p9 have each one token

and that there are no other tokens in the system. A possible

approach to prevent deadlock is to disable the transition t7
in the hope that t8 will be eventually fired. This approach

will not work in our setting, since the decision to fire t8 or

t7 is determined independently by the code associated with

the place p1. Thus, if the code determines that t7 should be

fired, deadlock is reached, since the supervisor disables t7.

The transitions t8 and t7 could be seen as uncontrollable,

in the sense that the supervisor cannot select which of the

two should fire. All that a supervisor could do is to block

the firing of either transition.

While a supervisor cannot determine choice, it can post-

pone choice and the effects of choice. For instance, assume

that the PN of Figure 3 has tokens in the places p7, p8,

p9, and p10. Choice at p1 can be postponed by disabling t3
and t4. Moreover, the effect of the choice at p4 that caused

a token to enter p10 can be postponed by disabling t6. A

supervisor will be said to be admissible if it never disables

deterministic transitions.

B. Timing and Liveness

Even in the absence of deterministic choice, the timing of

the operations performed by processes can create deadlocks.

In terms of PN models, this problem can be noticed when

there are transitions with inputs from multiple resource

or monitor places. An implication of this observation is

that a supervisor could create deadlocks when it is equally

permissive to a monitor based supervisor in which two or

more monitors have common transitions in their postset.

To illustrate how timing can be an issue, consider three

processes Pa, Pb, and Pc that share two resources Rb and

Rc.

1) The process Pa executes an infinite loop consisting

of the execution stages a1 and a2.

a) In each iteration, the process executes first a1

and then a2.

b) At the beginning of a1 the process waits until the

resources Rb and Rc are available. When both

resources are available, the process acquires

them and continues by executing the stage a1.

3
3254

f

b
R

c

PROCESS P
b

PROCESS P
a

PROCESS P
c

a

b

c

d

eR

Fig. 4. PN model of three processes with two shared resources.

50

1
b

2
b

1
b

2

c
2

c
1

c
2

c
1

Time

40 40

30

b

Fig. 5. Example illustrating how timing can prevent shared resources
from being available at the same time.

c) At the end of a1 the process releases the re-

sources.

2) The process Pb has the same description as Pa with

the following exceptions: (a) it uses only Rb instead

of both Rb and Rc; (b) the stage names are b1 and b2

instead of a1 and a2.

3) The process Pc has the same description as Pa with

the following exceptions: (a) it uses only Rc instead

of both Rb and Rc; (b) the stage names are c1 and c2

instead of a1 and a2.

A PN model of this system is shown in Figure 4. Clearly,

the PN is live. However, the process Pa will have to wait

forever if the two resources are never available at the same

time. For instance, if the execution time of the stages b1,

b2, c1, and c2 is 40, 40, 50, and 30 time units, respectively,

and if stage c1 follows b1 after 35 time units (Figure 5),

then the resources are never available at the same time.

In general, the execution time of any stage might not be a

constant. Nonetheless, it might still be difficult to guarantee

that the two resources will eventually be available at the

same time. Even if the two resources are guaranteed to

become available at the same time, access to resources could

still be unfair, since process Pa might have a much lower

likelihood to access them than the other two processes.

The equivalent automaton model of the PN of Figure 4

is shown in Figure 6. Note that the state s1 is the state in

which both resources are available. In our example the two

resources are never available at the same time. The states

s1 and s3 are unreachable because an event b is always

followed by an event a and an event f is always followed

by an event e.

Figure 7 can also be used to illustrate that timing can lead

to deadlock. The places p1, . . . , p6 model execution stages

da

a

b

b

e

f

f

e

c

s
5

s
3

1
s

s
2

s
4

Fig. 6. Equivalent automaton model of the processes of Figure 4.

p
1

p
2

p
4

p
3

p
5

p
6

p
7

p
8

t
1

t
2

t
3

t
4

t
5

Fig. 7. In this example, if τ1 < τ3 then t5 cannot fire.

of three processes. The places p7 and p8 model resource

places or monitor places. Let τi be the time necessary to

complete the stage pi. Assuming that a transition fires as

soon as possible, t5 will never fire unless τ1 ≥ τ3. Since

the PN is live, this example shows that liveness does not

guarantee that every transition will eventually fire.

A common feature of the examples presented in this sec-

tion is that in each case there is a transition having among its

input places more than one resource place. Resource places

differ from other places in that all their output arcs are

nondeterministic. Transitions in which multiple input arcs

are nondeterministic are essential for this type of deadlock,

as will be shown in the following section.

IV. MAIN RESULT

This section provides a sufficient condition under which

liveness guarantees responsiveness. The result is then ap-

plied to supervisors in order to obtain a sufficient condition

under which a liveness enforcing supervisor guarantees

responsiveness. The results rely on several assumptions. The

first two assumptions guarantee that the software system

will try to fire all its transitions. The third assumption is that

the nondeterministic part of the PN has a special structure.

4
3255

Assumption 1 For every place p that outputs deterministic

transitions, for every transition t ∈ p•, the number of

consecutive choices at p that do not select t is finite.

Formally, let σ = t1t2 . . . denote a sequence of firing

decisions made at the place p (where t1, t2, . . . ∈ p•). Then,

the assumption is that for all possible infinite sequences σ,

for all t ∈ p•, for all n ≥ 1, there is k > n such that tk = t.
Assumption 2 The code associated with any place p is

executed in finite time.

Assumption 3 Places with nondeterministic choice have

“asymmetric choice”. That is, for any two nondeterministic

arcs (p1, t) and (p2, t) connected to the same transition t,

either p1• ⊆ p2• or p1• ⊇ p2•.

A PN is said to be PT-ordinary if all arcs from a place

to a transition have unity weight. Furthermore, given a

state s of the software system, let R(s) denote the set

of states reachable from s, including s. Recall that the

state of the software system consists of the value of all

program variables, including the information about the stage

of execution. Thus, a state s determines the marking µ of

the underlying PN model.

Lemma 4.1 Assume a PT-ordinary normal PN. Under the

assumptions 1–3, if there is a reachable state s from which

a transition t can never be fired, then there is a place p ∈ •t
and s′ ∈ R(s) such that µ(p) = 0 ∀s′′ ∈ R(s′).

Proof: If |•t| = 1, let p be the input place of t. If (p, t)
is nondeterministic, it must be that µ(p) = 0 ∀s′ ∈ R(s),
since t cannot be fired. If (p, t) is deterministic, in view of

Assumption 1, there is a reachable state s′ ∈ R(s) at which

µ(p) = 0 and p can no longer receive tokens.

If |•t| ≥ 2, then all input arcs (p, t) are nondeterministic,

since the PN is normal. Let n = | • t|. If n = 1 the

conclusion follows, since t cannot be fired. If n > 1, in

view of assumption 3, there are n places p1, p2, . . . , pn such

that p1• ⊆ p2• ⊆ . . . ⊆ pn• and (p1, t), (p2, t), . . . , (pn, t)
are the input arcs of t. Let k be the least index for which

∃s′′ ∈ R(s′) at which µ(pk) = 0. Then, ∀s′′ ∈ R(s′),
µ(pi) ≥ 1 for i = 1 . . . k − 1. Consider the following

procedure:

1) Let j = k and sj−1 = s′.

2) While ∃sj ∈ R(sj−1) : µ(pj) ≥ 1

a) j = j + 1

At step 2) note that after the state sj is reached, pj can

no longer lose tokens. Indeed, pj can only lose tokens by

firing a transition t′ ∈ pj• and t′ cannot be enabled without

t being enabled, since µ(pi) ≥ 1 for i = 1 . . . j and t′ ∈ pi•
for i = j + 1 . . . n. Now, since t will not get enabled, there

must be u ≤ n such that ∀su ∈ R(su−1) : µ(pu) = 0.

Then, the conclusion of the lemma is verified for s′ = su−1

and p = pu.

A PN N ′ is said to be the normalized version of a PN

N if it is obtained from N by means of the normalization

algorithm of section III-A.

Theorem 4.1 Consider a PT-ordinary PN. Under the as-

sumptions 1–3, if there is a reachable state from which a

transition can never be fired, then the normalized PN is not

live.

Proof: Note that assumptions 1–3 are not affected

by normalization. Moreover, reaching a state in which a

transition can never be fired implies that the normalized

PN has a reachable state in which a transition can never

be fired. The proof considers the normalized PN and shows

that if there is a reachable state from which a transition t

can never be fired then there is a reachable state for which

a siphon is empty. The siphon is constructed according to

the following algorithm.

1) Let s0 be a state from which a transition t can no

longer be fired.

2) By Lemma 4.1, there is a state s1 reachable from s0

and there is a place p ∈ •t such that p has no tokens

in the state s1 and in all states reachable from s1. Let

k = 1, A0 = ∅, and A1 = {p}.

3) While Ak \ Ak−1 6= ∅ do

a) In view of Lemma 4.1, let sk+1 be a state

reachable from sk such that ∀p ∈ Ak \ Ak−1,

∀t ∈ •p, ∃p′ ∈ •t such that µ(p′) = 0 in sk+1

and all states reachable from sk+1. Let A be the

set of all such places p′.

b) Let Ak+1 = Ak ∪ A.

c) k = k + 1.

End while.

Let S be the last set Ak. By construction, S is a siphon and

S is empty at the state sk. Therefore, the PN is not live.

Based on Theorem 4.1 it is possible to obtain a sufficient

condition under which liveness enforcing supervisors ensure

responsiveness. Now, when a supervisor is represented by a

PN, the total system consisting of the plant and supervisor

is represented by the closed-loop PN, where the closed-loop

PN is the parallel composition of the plant and supervisor

PNs. Note that the closed-loop PN is the union of the plant

and supervisor PNs with the following modifications.

1) Let I and O be the input and output matrices of

the closed-loop PN. Let Ip, Op, Is, and Os be the

corresponding matrices of the plant and supervisor.

2) Let Tp = ∅ and Ts = ∅.

3) For every plant transition tx and every supervisor

transition ty that have the same label:

a) Create a new transition tyx such that tyx has copies

of the arcs of tx and ty (that is, I(p, tyx) =
Ip(p, tx) and O(p, tyx) = Op(p, tx) for all plant

places p and I(p, tyx) = Is(p, ty) and O(p, tyx) =
Os(p, ty) for all supervisor places p).

b) Tp = Tp ∪ {tx} and Ts = Ts ∪ {ty}.

4) Remove all transitions in Tp and Ts.

By definition, an admissible supervisor will not attempt to

disable deterministic transitions. This does not mean that the

places of an admissible supervisor may not be connected

to deterministic transitions. Then, note that the step 3 of

the algorithm can create multiple copies of a single deter-

ministic arc of the plant. Multiple copies of a deterministic

5
3256

arc are neither deterministic nor nondeterministic. Thus, the

following closed-loop normalization algorithm can be used

in order to ensure that all transitions are either deterministic

or nondeterministic. The algorithm also ensures that no

supervisor places are connected to deterministic transitions.

1) For all deterministic arcs (p, tx) of the plant that

are copied to one or more closed-loop transition tyx,

perform the following changes to the closed-loop PN:

a) Let Tx be the set of transitions tyx obtained by

composing tx with supervisor transitions ty .

b) Add a new transition t and a new place px. The

function of t is as follows. In the plant, the code

associated with the place p contains a request to

fire tx. This request to fire tx is replaced in the

closed-loop with a request to fire t.

c) Let p• = (p • \Tx)∪{t}, t• = {px}, px• = Tx.

In the previous algorithm note that the arc (p, t) is de-

terministic and the arcs (px, tyx) are nondeterministic for

all tyx ∈ Tx. In the following, the normalized closed-

loop PN will denote the PN obtained by applying the

algorithm above to the result of the parallel composition

of the supervisor PN and the normalized plant PN.

Corollary 4.1 A supervisor enforces responsiveness if all

of the following conditions are met.

1) The plant satisfies the assumptions 1 and 2.

2) The supervisor can be represented by a PN.

3) The normalized closed-loop PN is live.

4) The normalized closed-loop PN is PT-ordinary and

satisfies the assumption 3.

Proof: If the plant satisfies the assumptions 1 and 2,

then the closed-loop will satisfy them also. The normalized

closed-loop has all the properties of a PN normalized

using the algorithm of section III-A. Thus, Theorem 4.1

can be applied to the normalized closed-loop to guarantee

responsiveness.

Note that the corollary does not assume admissible su-

pervisors. Admissibility as defined in section III-A is not

a feasibility issue but a design issue. A design approach

that does not consider admissibility ignores a source of

deadlocks and thus is likely to fail.

The first three conditions of the corollary are critical

for responsiveness. However, the fourth condition is not

necessary. A special case in which assumption 3 is satisfied

is when all nondeterministic transitions of the plant have at

most one input place, the supervisor is a state machine, and

no two transitions of the supervisor have the same label. In

particular, supervisors obtained using liveness enforcement

methods that rely on control places [5] can be in this

category. Such supervisors have distinct labels and are

state machines when no transition has more than one input

control place. Now, if arbitrarily labeled state machines are

considered, assumption 3 may not be satisfied even when

both the supervisor and the plant are state machines.

A possible supervisor design approach would be to gen-

erate a liveness enforcing supervisor such that assumption

3 is satisfied. This approach would result in supervisors in

which typically a transition has at most one input place.

A transition having more than one input supervisor place

might be anyways undesirable, since it might be unlikely

to have all input places marked at the same time.

Another possible supervisor design approach would be to

enforce first fairness constraints and then design a liveness

enforcing supervisor. The fairness constraints would ex-

clude the type of deadlock illustrated in section III-B. This

approach would not rely on assumption 3. For an example

of fairness constraints, consider Figure 7. An appropriate

fairness constraint would be v2 ≤ v5 +1, requiring that the

number of firings of t2 does not exceed by more than one

the number of firings of t5. This constraint would in fact

ensure responsiveness.

V. CONCLUSIONS

In general, liveness is not sufficient for software-system

responsiveness. However, it is possible to obtain sufficient

conditions under which liveness can guarantee that the sys-

tem will be responsive. In the context of supervisory control,

a possible approach to supervision would be to design

liveness enforcing supervisors that satisfy such sufficient

conditions. In particular, an approach of special interest for

future work is to use fairness constraints to guarantee that

liveness enforcement will ensure responsiveness.

REFERENCES

[1] A Concurrency Tool Suite. www.letu.edu/people/marianiordache/acts.
[2] K. Barkaoui and J.-F. Pradat-Peyre. Verification in concurrent pro-

gramming with Petri nets structural techniques. In High-Assurance

Systems Engineering Symposium, pages 124–133, 1998.
[3] P. Dietrich, R. Malik, W.M. Wonham, and B.A. Brandin. Implemen-

tation considerations in supervisory control. In Synthesis and control

of discrete event systems, pages 185–201, Kluwer, 2002.
[4] J. Dingel, K. Rudie, and C. Dragert. Bridging the gap: Discrete-

event systems for software engineering. In Proc. Canadian Conf. on

Comp. Sci. and Soft. Eng., pages 66–71. ACM, 2009.
[5] M. V. Iordache and P. J. Antsaklis. Supervisory Control of Concurrent

Systems: A Petri Net Structural Approach. Birkhäuser, 2006.
[6] M. V. Iordache and P. J. Antsaklis. Petri nets and programming: A

survey. In Proc. 2009 Amer. Control Conf., pages 4994–4999, 2009.
[7] M. V. Iordache and P. J. Antsaklis. Synthesis of concurrent pro-

grams based on supervisory control. Technical report isis-2009-005,
University of Notre Dame, September 2009.

[8] M. V. Iordache and P. J. Antsaklis. Concurrent program synthesis
based on supervisory control. In Proc. 2010 Amer. Control Conf.,
pages 3378–3383, 2010.

[9] T. Kelly, Y. Wang, S. Lafortune, and S. Mahlke. Eliminating concur-
rency bugs with control engineering. Computer, 42(12):52–60, 2009.

[10] M. Lemmon and K. He. Supervisory plug-ins for distributed
software. In Proc. of the Workshop on Software Engineering and

Petri Nets, pages 155–172. University of Aarhus, 2000.
[11] T. Murata, B. Shenker, and S. M. Shatz. Detection of Ada static

deadlocks using Petri net invariants. IEEE Transactions on Software

Engineering, 15(3):314–326, 1989.
[12] M. Notomi and T. Murata. Hierarchical reachability graph of

bounded Petri nets for concurrent-software analysis. IEEE Trans-

actions on Software Engineering, 20(5):325–336, 1994.
[13] S. Shatz, S. Tu, T. Murata, and S. Duri. An application of Petri net

reduction for Ada tasking deadlock analysis. IEEE Transactions on

Parallel and Distributed Systems, 7(12):1307–1322, 1996.
[14] Y. Wang. Software Failure Avoidance Using Discrete Control Theory.

PhD thesis, University of Michigan, 2009.

6
3257

