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Abstract—In this paper the problem of controlling nonlinear
switched systems over a network with time-varying delay is ad-
dressed. The solution presented is an extension of results from the
control of continuously-varying passive systems over a network
using the wave variable transformation. Background material
is presented on passivity and the wave variable transformation.
The concept of passivity for switched systems is also covered in
this paper. Stability results are then shown for passive switched
systems connected over a network with time-varying delay.

I. INTRODUCTION

Passive systems theory is a widely used tool for the analysis

and synthesis of nonlinear systems [1], [2]. Passivity is a

characterization of system behavior based on energy. Passive

systems store and dissipate energy without generating their

own. This implies that passive systems are Lyapunov stable

and minimum phase. Passivity can be used to assess the

stability of a single system, but it is more restrictive than

directly showing Lyapunov stability. A real benefit is that

when two passive systems are combined in negative feedback,

the resulting interconnection is passive and stable. These

results provide open-loop conditions to guarantee closed-loop

stability.

Although passivity is often used to assess stability of

feedback systems, these results do not hold when systems are

interconnected over a delayed network. The delays cause the

energy being sent over the network to be different than the

energy received at the other side of the network. Typically the

interconnection becomes unstable even for small delays.

There are many applications where systems must be con-

trolled over a delayed network. One solution to the delay

problem is covered in [3] and [4]. This framework uses

passivity theory and the wave variable transformation [5]. The

approach was first used to guarantee stability in telemanipu-

lation systems over networks with constant time delays [6].

It has been expanded in many works such as [7] and [8].

In general, it can be applied to any system that is passive or

can be made passive with a local controller. The wave variable

transformation is used to map the generalized power variables,

the ones used to show passivity, to wave variables. After

being transformed to wave variables, the energy exchanged

with the network is decoupled between waves going out over

the network and waves coming in from the network. The

decoupling makes the delayed channel lossless; no energy is

added or removed by a channel with constant delays. Later,

this work was expanded to apply to networks with time-

varying delay [9]. The approach for treating time-varying

delays is used in the current paper.
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The framework for control of passive systems over a

network applies to non-switched systems. The present paper

expands the framework to switched systems. This allows for a

much larger class of systems to be controlled over a network.

The extension presented here uses a definition of passivity

for switched systems in [10]. The present paper applies the

concept of passive switched systems to networked passive

systems using a modified wave variable transformation.

The remainder of the paper is organized as follows. Back-

ground material on passivity theory and the wave variable

transformation for networks is covered in Section 2. The

constant time delay case is covered first, and then the time-

varying delay case is presented with a modified wave vari-

able transformation. Section 3 covers a previously presented

definition of passive switched systems. Section 4 presents

new material on interconnecting passive switched systems

over a network with time-varying delay. Section 5 contains

concluding remarks.

II. BACKGROUND MATERIAL

A. Passivity Theory

Passivity is a characterization of system behavior based on

a generalized notion of energy. A passive system is one that

stores and dissipates energy without generating its own. For a

thorough background on passivity, refer to [11] and [12].

In this section of the paper, passivity will be applied to

continuously-varying systems of the form,

ẋ = f(x, u)
y = h(x).

(1)

Showing passivity is typically done by finding a storage

function V (x) that represents a notion of internal energy. V

is required to be positive definite; that is, it is strictly positive

for all arguments not equal to zero, V (x) > 0 for x 6= 0,

and equal to zero only for the zero argument, V (0) = 0. This

function is used to show passivity in the following definition.

Definition 1. Consider a nonlinear system (1). This system is

passive if there exists a positive definite storage function V (x)
such that

∫ t2

t1

(uT y − ǫyT y)dt ≥ V (x(t2))− V (x(t1)), (2)

for ǫ ≥ 0. If ǫ > 0, the system is said to be output strictly

passive (OSP).

This definition uses the system input u and output y. In this

paper, these will be referred to as power variables even when

their product is not a traditional notion of power.

When two passive systems are interconnected in negative

feedback the resulting system is passive. This property of
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passivity, feedback invariance, makes it a strong tool for the

analysis and synthesis of interconnected systems. This prop-

erty is essential for the networked control systems framework

presented in this paper.

The subset of passive systems that are OSP is important

because these systems are L2 stable. They also form feedback

interconnections that are L2 stable. These results can be

extended to internal stability with an appropriate detectability

assumption. One such definition, asymptotic zero-state de-

tectability, is given. Systems that are L2 stable can be shown to

be asymptotically stable if they are also asymptotically zero-

state detectable.

Definition 2. [10] Consider an unforced nonlinear system,

ẋ = f(x)
y = h(x).

(3)

This system is asymptotically zero-state detectable (ZSD) if

∀ǫ > 0, ∃δ > 0 such that ||y(t+ s)|| < δ for some t ≥ 0,

∆ > 0 and 0 ≤ s ≤ ∆ implies ||x(t)|| < ǫ.

This form of detectability for nonlinear systems is less

restrictive than zero-state detectability. It can be used to show

that OSP systems are asymptotically stable. It also can be

applied to general systems where the output approaches zero

asymptotically.

B. Network Structure

The networked control structure used in this paper is given

in Fig. 1. Typically, G1 is a given passive plant and G2 is a

designed passive controller. For this initial work, the delays in

the network are assumed to be constant but the two delays T1

and T2 can be different. The signal relationships are given as,

Fig. 1. This figure shows the network structure for control of passive plants
using the wave variable transformation. The blocks T1 and T2 are the network
time delays. The two blocks labeled WVT are the transformations to wave
variables on each side of the network.

e1 = r1 − y2d (4)

e2 = r2 + y1d. (5)

The network is modeled as a constant delay in each direction,

u2(t) = u1(t− T1) (6)

v1(t) = v2(t− T2). (7)

The wave variable transformation (WVT) is defined as in [5].

The linear transformation to wave variables is
[

u1

v1

]

=
1√
2b

[

bI I

bI −I

] [

y1
y2d

]

(8)

[

u2

v2

]

=
1√
2b

[

bI I

bI −I

] [

y1d
y2

]

, (9)

where b is the impedance of the channel and can be chosen

in the synthesis of a controller. With the inputs and outputs of

the two wave variable transformation blocks as defined in the

figure, the transformation is actually implemented as

[

u1

y2d

]

=

[

−I
√
2bI

−
√
2bI bI

] [

v1
y1

]

(10)

[

v2
y1d

]

=





I −
√

2
b
I

√

2
b
I − 1

b
I





[

u2

y2

]

. (11)

The energy stored in the network is the sum of the energy

going into the network minus the energy coming out of the

network.

VN =
1

2

∫ t

t0

(uT
1 u1 + vT2 v2 − uT

2 u2 − vT1 v1)dτ. (12)

When the system delays are constant, this expression can be

simplified to show that the energy in the network is positive.

VN =
1

2

∫ t

t−T1

uT
1 u1dτ +

1

2

∫ t

t−T2

vT2 v2dτ ≥ 0 (13)

The quantity VN is always nonnegative. This can be used to

show that the network is a passive system. By the definition

of energy stored in the network (12), it can be seen that the

energy on the G1 side of the network bounds the energy on

the G2 side.

1

2

∫ T

t0

(uT
1 u1 − vT1 v1)dτ ≥ 1

2

∫ T

t0

(vT2 v2 − uT
2 u2)dτ (14)

=⇒
∫ T

t0

yT1 y2ddτ ≥
∫ T

t0

yT2 y1ddτ (15)

This fact can be used to show stability of the overall system.

Theorem 1. Consider two passive systems of the form (1)

where fi(0, 0) = 0 and hi(0) = 0 for i = 1, 2. These two

systems are interconnected over a delayed network using the

wave variable transformation (Fig. 1). If the delays in the

network are constant, the interconnected system is L2 stable.

Additionally, if the two systems are asymptotically zero-

state detectable, the overall system is asymptotically stable

for r(t) = 0.
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C. Compensating for time-varying delay

The proposed architecture applies to constant time de-

lays. However, typical communication channels include time-

varying delays. One method of solving this problem is to

introduce a modified wave variable transformation in order

to compensate for time-varying delays in the system. This

solution is a simple modification of the solution presented in

[9]. It is assumed that the delay in the network is measurable

in real-time and that the maximum rate of change of each

delay is bounded, dTi

dt
≤ 1.

The time-varying delays are compensated by time-varying

gains in the transformation. Essentially, each received wave

variable is scaled before the transformation is applied. The

scaling is defined as

û2(t) = f1(t)u1(t− T1(t)) (16)

v̂1(t) = f2(t)v2(t− T2(t)). (17)

These time-varying gains can be can be incorporated into

the wave variable transformation,

[

u1

y2d

]

=

[

−f2(t)I
√
2bI

−
√
2bf2(t)I bI

] [

v1
y1

]

(18)

[

v2
y1d

]

=





f1(t)I −
√

2
b
I

√

2
b
f1(t)I − 1

b
I





[

u2

y2

]

. (19)

Now this wave variable transformation can replace the previ-

ous one (10-11). The architecture in Fig. 1 can still be used

for the time-varying delay case. The gains f1 and f2 are time-

varying and are chosen such that

f2
1 (t) ≤ 1− dT1

dτ
(20)

f2
2 (t) ≤ 1− dT2

dτ
. (21)

If the gains are chosen to satisfy the above inequalities with

equality, the channel remains lossless.

The energy in the channel is now given as

VN =
1

2

∫ t

t0

(uT
1 u1 + vT2 v2 − ûT

2 û2 − v̂T1 v̂1)dτ. (22)

Substituting in û2 and v̂1 as defined above (16-17) gives

VN =
1

2

∫ t

t0

(uT
1 u1 + vT2 v2 − f2

1u
T
1 (τ − T1)u1(τ − T1)−

f2
2 v

T
2 (τ − T2)v2(τ − T2))dτ.

The two time-varying terms in the above integral can be

bounded by a constant term. The following derivation uses

the substitution s = τ − T1(t).
∫ t

t0

f2
1u

T
1 (τ − T1(τ))u1(τ − T1(τ))dτ

≤
∫ t

t0

(1− dT1

dτ
)uT

1 (τ − T1)u1(τ − T1)dτ

=

∫ t−T1(t)

t0−T1(t)

uT
1 (s)u1(s)ds

≤
∫ t

t0

uT
1 (s)u1(s)ds

A similar derivation can be done to show that,
∫ t

t0

f2
2 v

T
2 (τ − T2(τ))v2(τ − T2(τ))dτ ≤

∫ t

t0

vT2 (s)v2(s)ds

Applying these two inequalities to equation (22) shows that

VN is always nonnegative despite time-varying delay. This

leads to the result that the energy on the G1 side of the network

bounds the energy on the G2 side, as in the constant time-delay

case,
∫ T

t0

yT1 y2ddt ≥
∫ T

t0

yT2 y1ddt. (23)

From this inequality, a stability result like Theorem 1 can be

shown even when there are time-varying delays in the system.

III. PASSIVE SWITCHED SYSTEMS

The concept of passivity is applicable to a wide range

of systems. Recently there have been several generalizations

of passivity to switched systems [10], [13], [14]. These ap-

proaches can be summarized as requiring two fundamental

conditions. The primary condition is that each subsystem is

passive when it is active. The second condition varies between

these works. In each, it is a condition that is sufficient to

ensure that energy added due to switching is finite. If this

more general condition was able to be guaranteed directly, then

showing that each active subsystem is passive is sufficient to

show the system is a passive switched system. However, this

condition typically depends on the switching signal chosen,

and in general it can’t be shown for arbitrary switching. The

notion of passivity for switched systems adopted in this paper

is from [10].

In the present paper, passivity is applied to switched systems

of the form,
ẋ = fσ(x, u)
y = hσ(x),

(24)

where it is assumed that f(0, 0) = 0 and h(0) = 0 for all sub-

systems. The switching signal σ(t) indicates the current active

subsystem out of the set Σ = {1, ...,m}, i.e. σ : R+ → Σ. A

single switching instant is denoted tik , which is the kth time

that the ith subsystem becomes active. This system becomes

inactive at time tik+1 and becomes active again at time ti(k+1)
.

The values of i are a subset of N from 1 to m, and k take

on values in N that is allowed to be infinite. To avoid Zeno

behavior, it is assumed that on any finite time interval, t0
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to arbitrary time T , the system switches a finite number of

times K where K typically depends on the time T chosen.

To avoid trivial asymptotic analysis, it is assumed that the

system switches an infinite number of times on the infinite time

horizon. Passivity for switched systems is defined as follows.

Definition 3. [10] A switched system (24) is passive if there

exist positive definite storage functions Vi(x) and cross supply

rates ωi
j(u, y, x, t) such that the following conditions hold.

1) Each subsystem i is passive while active, i.e. for ǫ ≥ 0,

tik ≤ t1 ≤ t2 ≤ tik+1 and ∀i, k,
∫ t2

t1

(uT y − ǫiy
T y)dt ≥ Vi(x(t2))− Vi(x(t1)). (25)

2) Each subsystem j is dissipative when it is inactive, i.e.

∀j 6= i, and for tik ≤ t1 ≤ t2 ≤ tik+1,
∫ t2

t1

ωi
j(u, y, x, t)dt ≥ Vj(x(t2))− Vj(x(t1)). (26)

3) For all i and j there exist absolutely integrable functions

φi
j(t) and some input u∗(t) such that, ∀t ≥ t0,

ωi
j(u

∗, y, x, t) ≤ φi
j(t), ∀j 6= i. (27)

A system is considered an output strictly passive (OSP)

switched system if it is passive with all ǫi > 0.

In the previous definition, for each subsystem i there is

a single Vi(x). However, it is often convenient to index the

storage functions, as the time indices are indexed, by Vik . This

notation denotes the storage function for the ith subsystem

over the kth time it is active. Of course the storage function

doesn’t change for the same subsystem over different active

time intervals, i.e. Vik1
= Vik2

for all k1, k2. Although the

notation Vik seems to imply that there are an infinite number

of storage functions, there are actually only m unique storage

functions.

Passive switched systems are Lyapunov stable. Asymptotic

stability can be shown when negative output feedback is

applied or when the system is an output strictly passive

switched system.

Theorem 2. [10] Consider a switched system that is output

strictly passive. If all of the subsystems are asymptotically

zero-state detectable, then the switched system is asymptot-

ically stable.

By itself, this result is only an indirect method of showing

asymptotic stability. There are more direct methods of showing

asymptotic stability in the literature (for example, see [15] and

[16] and the references therein). However, when using The-

orem 2 in conjunction with Lemma 1, open-loop conditions

for asymptotic stability of the feedback interconnection of two

switched systems are derived.

Lemma 1. The negative feedback interconnection of two

output strictly passive switched systems is again an output

strictly passive switched system.

These two results can be applied to the feedback intercon-

nection of two switched systems. The switched systems must

be OSP and have all subsystems be asymptotically zero-state

detectable. When each of these switched systems meets the

two open-loop conditions, the resulting interconnected system

is OSP and asymptotically stable. These open-loop conditions

for closed loop stability can be applied to networked control

systems in the following section.

IV. MAIN RESULTS

The main results of this paper are presented incrementally

in the following lemmas and in Theorem 3. Lemma 2 shows

how the network structure including the wave variable trans-

formation preserves the OSP nature of the active subsystems.

Lemma 3 shows how the definition of passive switched sys-

tems implies that the energy accumulated due to switching is a

finite quantity for arbitrary switching. Lemma 4 expands upon

Lemma 3 to show that the L2 norm of the output is also finite.

Finally, Theorem 3 shows that two OSP switched systems in

this network structure produce a compensated system that is

asymptotically stable.

The first lemma of this section, Lemma 2, shows how

the wave variable transform and the network interconnec-

tions preserve the output strictly passive nature of the active

subsystems. For this result, it should be noted that the set

of switching instants of the overall system is the union of

the sets of switching instants of the two systems in the

interconnection. This means that, if the systems G1 and G2

have m1 and m2 subsystems, the total number of subsystems

in the interconnection can be up to m = m1 · m2. Each

subsystem has storage functions V 1
i for G1 and V 2

i for G2.

Note that the loop signals can be stacked to make the vectors

e = [eT1 e
T
2 ]

T , r = [rT1 r
T
2 ]

T , and y = [yT1 y
T
2 ]

T .

Lemma 2. Consider the architecture in Fig. 1 with mea-

surable time-varying delays and the modified wave variable

transformation (18-19). If each system G1 and G2 is an OSP

switched system then each active subsystem of the switched

system r → y is OSP.

Proof. Since the mapping e → y is OSP, V 1
i and V 2

i exist

for G1 and G2, respectively, that satisfy

∫ t2

t1

eT1 y1dt≥
∫ t2

t1

ǫ1i y
T
1 y1dt+V 1

i (x1(t2))−V 1
i (x1(t1)) (28)

∫ t2

t1

eT2 y2dt≥
∫ t2

t1

ǫ2i y
T
2 y2dt+V 2

i (x2(t2))−V 2
i (x2(t1)), (29)

for tik ≤ t1 ≤ t2 ≤ tik+1, ∀i, k. Using the wave variable

transformation (18-19,23) and the signal relations in the loop

(4-5), the following derivation holds.

∫ T

t0

yT1 y2ddt ≥
∫ T

t0

yT2 y1ddt

∫ T

t0

yT1 (r1 − e1)dt ≥
∫ T

t0

yT2 (e2 − r2)dt

∫ T

t0

(yT1 r1 + yT2 r2)dt ≥
∫ T

t0

(yT1 e1 + yT2 e2)dt.
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Define a new energy storage function Vi(x) = V 1
i (x1) +

V 2
i (x2). Applying (28) and (29) to the above inequality gives

the following result.
∫ T

t0

yT rdt ≥
∫ T

t0

yT edt ≥ ǫi

∫ T

t0

yT ydt+Vi(x(T ))−Vi(x(t0)).

where ǫi = min{ǫ1i , ǫ2i }. This shows that each active subsys-

tem i of the mapping r → y is OSP with storage function Vi.

This lemma verified that the network structure using the

wave variable transformation preserves the OSP behavior of

each active subsystem.

As explained before, the differing definitions of passivity

for switched systems have two main conditions. The first

is that the active subsystems are passive. The second is a

condition that is sufficient to show that the energy added due to

switching is finite. The following lemma will demonstrate how

a switched system being passive guarantees that the energy

added to the system due to switching is bounded.

Lemma 3. If a system e → y is a passive switched system,

then the energy added at switching instants is finite for

arbitrary switching.

Proof. The first line of the following derivation is the energy

added at switching instants tik from initial time t0 to arbitrary

time T for a particular subsystem i. It can be assumed that

K switches occur on this interval where K depends on T .

Denote the number of times that subsystem i is active on this

interval by Ki.

K−1
∑

ik=1

[Vik(x(tik))− Vik−1(x(tik))]

=
m
∑

i=1

Ki
∑

k=1

[

Vik+1
(x(tik+1

))− Vik(x(tik+1))
]

+

m
∑

i=1

[

Vi1(x(ti1))− ViKi
(x(tiKi

))
]

≤
m
∑

i=1

Ki
∑

k=1

[

Vik+1
(x(tik+1

))−Vik(x(tik+1))
]

+

m
∑

i=1

Vi1(x(ti1))

By the definition of passive switched systems, there exist abso-

lutely integrable functions φi
j to bound the energy accumulated

by the j subsystem while the i subsystem is active. For a

particular switching sequence, a set of piecewise continuous

functions can be defined to indicate the function φi
j that is

valid at each time for the jth inactive subsystem,

φj(t) =

{

φi
j(t) ∀i 6= j

0 i = j

Since each φi
j is absolutely integrable, then each φj is also

absolutely integrable. The energy accumulated by each sub-

system i can be bounded.

Ki
∑

k=1

[

Vik+1
(x(tik+1

))−Vik(x(tik+1))
]

≤
Ki
∑

k=1

∫ tik+1

tik+1

φi(t)dt

This leads to a bound on the energy added due to switching.

K−1
∑

ik=1

[Vik(x(tik))− Vik−1(x(tik))]

≤
m
∑

i=1

[
∫

∞

t0

φi(t)dt+ Vi1(x(ti1))

]

< ∞

Each of the terms in this finite sum is a finite quantity so

the energy is bounded. This upper bound is independent of

the choice of T . Taking the limit as T → ∞ shows that the

energy is bounded for all time.

This result shows that the energy added due to switching

is finite for arbitrary switching sequence. This meets the

generalized second condition required of a passive switched

system discussed earlier. This result will be used in the

following lemma to show that the L2 norm of the system

output y is bounded.

Lemma 4. If a system e → y is an OSP switched system and

r is defined as in Fig. 1, then the L2 norm of the output is

finite for r = 0.

Proof. The L2 norm of y is taken from initial time t0 to

arbitrary time T . As assumed earlier, over this time interval

there are K switches and Ki switches to the ith subsystem.

In the following derivation, note that t0 ≤ t1 ≤ ... ≤ tk ≤ T .

Lemma 2 is invoked to upper bound eT y by rT y and then

r(t) = 0 is applied.

∫ T

t0

yT ydt =

K
∑

ik=1

∫ tik

tik−1

yT ydt+

∫ T

tK

yT ydt

≤1

ǫ

K
∑

ik=0

[

∫ tik+1

tik

eT ydt+Vik(x(tik))−Vik(x(tik+1))

]

≤1

ǫ

K
∑

ik=0

[

∫ tik+1

tik

rT ydt+Vik(x(tik))−Vik(x(tik+1))

]

≤1

ǫ

K−1
∑

ik=0

[Vik+1(x(tik+1))− Vik(x(tik+1))] +

1

ǫ

m
∑

i=1

[

Vi1(x(ti1))− ViKi
(x(tiKi

))
]

≤1

ǫ

K−1
∑

ik=0

[Vik+1(x(tik+1))− Vik(x(tik+1))] +

1

ǫ

m
∑

i=1

Vi1(x(ti1))

In the last line of the derivation above, there are two

summations. The second summation is the sum of the initially

stored energy across all subsystems. Since initially stored

energy is finite, this sum is finite. The first summation can be

shown to be finite by applying Lemma 3. Again, this bound

is independent of the time T chosen earlier. As we take the

limit as T → ∞, the bound still holds. This shows that the

L2 norm of the output is finite and bounded above by the sum
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of the initially stored energy and the energy added due to the

switching sequence.

Remark. Lemma 4 assumes r(t) = 0 to show asymptotic

stability. However, this result is also valid for r(t) such that

rT y < ǫyT y.

The main result of the paper will now be presented. It as-

sumes that each system in feedback is an output strictly passive

switched system. It employs the wave variable transformation

to guarantee stability despite time-varying delays. The proof

is based on the lemmas presented.

Theorem 3. Consider two systems, G1 and G2, each an

OSP switched system with all subsystems asymptotically zero-

state detectable. These two systems are interconnected over

a network with measurable time-varying delays using the

modified wave variable transformation as in Fig. 1. Then this

system is asymptotically stable.

Proof. By applying Lemma 4, the quantity

∫

∞

t0

yT ydt

is finite. It will be shown by contradiction that y(t) approaches

zero asymptotically. Assume that it doesn’t. Since y(t) is

continuous for each subsystem, there is at least one subsystem

where there exists a δ > 0 and an infinite sequence of intervals

such that y(t) ≥ δ. However, this implies that the L2 norm

of y(t) is not finite, which contradicts Lemma 4. This implies

y(t) approaches zero asymptotically.

With the asymptotically zero-state detectable assumption,

the fact that y(t) approaches zero asymptotically implies that

the state x(t) also approaches zero asymptotically. Therefore,

the overall interconnected system is asymptotically stable.

The theorem shows how the proposed architecture (Fig. 1)

can be used to guarantee stability for an interconnection of

two output strictly passive switched systems. This approach

requires that the wave variable transformation can be added. In

a given network, it may not be possible to change the network

interface. The addition would require additional computation

at each side of the network which may not be available.

This theorem is more applicable as a synthesis tool. This

approach assumes that a given plant is an output strictly

passive (switched or non-switched) system. The controller

must be designed to be an output strictly passive switched

system with asymptotically zero-state detectable subsystems.

It is allowed to be switched or non-switched as long as it

meets the definition of an output strictly passive switched

system given in this paper. The resulting interconnection is

an asymptotically stable system despite time-varying delays

in the network.

This design framework is very general. It can be applied to

nonlinear switched systems that are connected over a realistic

network with time-varying delay. The main limitation to this

setup is that the systems must be output strictly passive.

Although many realistic systems are passive, systems with

unstable or non-minimum phase dynamics can’t be controlled

using this framework. This framework would be more appli-

cable if it could tolerate a larger class of systems that aren’t

necessarily passive.

V. CONCLUSION

This paper presented a stability result for networked passive

switched systems with time-varying delay. When the systems

in the loop are output strictly passive switched systems with

asymptotically zero-state detectable subsystems, the control

loop is shown to be stable despite time-varying delays. The

development is based on a previous framework for control

design of networked passive systems with delay. The extension

allows for the passive network approach to apply to a much

larger class of systems. The nonlinear switched system model

is general and allowing for time-varying delay is a realistic

network model. This approach decouples the design of the

network interface from the design of the controller. With this

decoupling, the approach is an intuitive approach to stabilize

a large class of networked switched systems.
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