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Abstract

Event-triggered control has been recently proposed astamative to the traditional periodic
implementation of control tasks. The possibility of redwgcithe number of executions while guar-
anteeing stability makes event-triggered control veryeatipg in the context of sensor/actuator
networks. In this paper, we revisit the event-triggeredtdrfrom an input-to-output perspective
and we propose a simple event-triggered control strateggtébilization of passive/output feedback
passive systems. The triggering condition is derived basethe output information of the control

system and an estimate of the lower bound of inter-eventstimalso provided.

I. INTRODUCTION

The majority of feedback control laws nowadays are impletedtron digital platforms since
microprocessors offer many advantages of running rea-toperating systems. This creates the
possibility of sharing the computational resources amoogtrol and other kinds of applications
thus reducing the deployment costs of complex control systgll]. Since we are dealing with
resource-limited microprocessors, it becomes importargssess to what extent we can increase the
functionality of these embedded devices through noveltiead scheduling algorithms.

In traditional implementations of the control tasks, onsiges the controllers under the assumption
of no-delayed actuation update and then determines thenmiaxiadmissible interval between two
consecutive actuation updates. However, the controkgfyaibtained based on this approach is conser-
vative in the sense that resource usage(i.e., sampling@& time) is more frequent than necessary
to assure a specified performance level, since stabilityu@ranteed under sufficiently fast periodic
execution of control action. To overcome the drawback ofgaiéc paradigm, several researchers
suggested the idea of event-based control. The terminalefigrs to the triggering mechanism as

event-based-sampling[13], to event-driven sampling[Lédbesgue sampling[6], deadband control[15],



level-crossing sampling[16], state-triggered samplih@gind self-triggered sampling[10] with slight
different meaning. However in all cases control signals lept constant until the violation of a
condition on certain signals of the plant triggers the rexpotation of the control signals. In event-
triggered real-time scheduling algorithms, the contraktaare executed whenever a certain error
becomes large when compared with the states’ norm of thet[plafso the triggering condition

is based on the full-state information of the plant). Thegiukty of reducing the number of re-
computations, and thus of transmissions, while guaramgedesired levels of performance makes
event-triggered control very appealing in networked aargystems(NCSs). One should be aware that
the event-triggered technique reduces resource usage wialiding a high degree of robustness,
since embedded hardware is used to monitor the state of #me. pl

Most of results on event-triggered control are obtainedeuride assumption that the feedback law
provides input-to-state stability(ISS) in the sense of] [ith respect to the measurement errors, see
[7]-[11]. While the ISS framework provides insight into tteggering condition by exploring the
relationship between the demand of stabilizing the systeththe current full-state information, it is
still a quite restrictive requirement in general, althowggime results on designing such control laws
are available[18]-[21].

In this paper, we explore alternative ways to obtain theg&igng condition. We are particularly
interested in the class of passive/output feedback passigeems because it is easy to design
stabilization controller for these systems, i.e., we canpdy stabilize an output feedback passive
system via a properly chosen output feedback gain withadrtimg to the full-state information if
additional detectability condition is satisfied. Also ndtat passive/output feedback passive systems
capture a large class of control systems studied in theatitez, see [2]-[4]. Here, we propose a
simple event-triggered control strategy for stabilizatiof passive/output feedback passive systems
which applies to both linear and nonlinear systems. We tafdioitly into account the actuation
update delay of the control action and show that the propsskdduling policy guarantees that the
closed-loop system is asymptotically stable. We also pieai lower bound of the inter-sampling time
under the proposed scheduling strategy. Based on the wasknsin the current paper, we further
propose an event-triggered communication strategy foperive control of multi-agent systems,
see our companion paper [22]. The rest of this paper is argdnas follows: we introduce some
background on passive/output feedback passive systenestiors II; the problem is stated in section
llI; our main results are provided in section IV and followleyg the examples provided in section V;

concluding remarks are given in section VI.

[I. BACKGROUND MATERIAL

We first introduce some basic concepts on passive systemsudpdt feedback passive systems.



Consider the following control system, which could be lineanonlinear:

z = f(z,u)
H : (1)

y = h(z,u)
wherex € X C R",u € U C R™ andy € Y C R™ are the state, input and output variables,
respectively, and, U andY are the state, input and output spaces, respectively. Titesentation
o(t,to, xo,u) is used to denote the state at timeeached from the initial state, at ¢.
Definition 1(Supply Rate)[1]: The supply ratev(t) = w(u(t), y(t)) is a real valued function defined
onU x Y, such that for any.(t) € U andzy € X andy(t) = h(¢(t, to, zo,u)), w(t) satisfies

t
/ lw(T)|dT < 0. 2)
to
Definition 2(Dissipative System)[1]: SystemH with supply ratew(t) is said to bedissipative if
there exists a nonnegative real functibifz) : X — R, called the storage function, such that, for
all t; >tg >0, zp € X andu € U,

V(1) — V(zo) < / ' w(r)dr, 3)

to

wherez; = ¢(t1,to, xg,u) andR™ is a set of nonnegative real numbers.
Definition 3(Passive System)[1]SystemH is said to bepassiveif there exists a storage function
V(x) > 0 such that

V() - Vizo) < / Cu(r)Ty(r)dr, )

to
if V(x)isC!, then we have

V(z) <u()y(t), vt > 0. (5)

One can see that passive system is a special case of digsiggtem with supply rate(t) =
u(t)y(t).

Definition 4(Output Feedback Passive System)[2]System H is said to beOutput Feedback
Passiv€éOFP) if it is dissipative with respect to the supply rate

w(u,y) =u'y = py'y, (6)
for somep € R.
Remark 1: Note that if p > 0, then H is strictly output passive, anél is said to have excessive
output feedback passivity of, we denote it as OFPY; if p < 0, H is said to lack output feedback
passivity, and we denote it as OFRp|). One can verify that a OFP{(p|) system can be rendered
passive by a negative feedbaghkl/. And clearly, if a system is OFP), then it is also OFR(— ¢),
Ve > 0.1
Definition 5[2]: Consider the systen® with zero input, that ist = f(z,0), y = h(z,0), and let

Z C R™ be its largest positively invariant set contained{inc R"|y = h(x,0) = 0}. We sayH is



Zero-State DetectabléZSD) if = = 0 is asymptotically stable conditionally tg. If Z = {0}, we
say thatH is Zero-State Observable(ZSO).

[1l. PROBLEM STATEMENT

We consider the control system given in (1). We first assuimé a passive system, and there
exists a nonnegative storage functiBiiz) : R* — R*, such that (5) is satisfied. We know thatfif

is ZSD, then under the feedback control law

u(t) = —Ky(t), (7)

whereK > 0 could be a scalar or am x m positive definite matrix, the origin off is asymptotically
stable. For the rest of this paper, we assume for simplibiag K > 0 is scalar.

In real time, the implementation of the feedback control &) on an embedded processor is
typically done by sampling the outpylt) at time instants, t1, to, t3, t4, ..., cOmputing the
control actionu(t) = —Ky(t;) and updating the actuator at time instargs+ Ao, ¢ + Ay, to +
Ag, t3+ Ag, ta+ Ay, ..., WhereA; >0, fori=0,1,2,... represents the actuation update delay,
which includes the time required to read the output from #wmser, compute the control action and
update the actuators. This means a sequence of measurefftentsy(t1), y(tz), y(ts), y(ts), ...,
corresponds to a sequence of actuation updgtes-Ag), u(ti+A1), u(te+Aq), u(ts+As), u(ts+

Ay), .... Thus between actuator updates, the control actign is held constant according to
u(t) = u(t; + A¢),t € [t + Ay, tig1 + Ajpr), Vi (8)
Sampler
>  Plant %— Sensor
W), Y1), y(ty),

ulty + Ao, ult, + A,), -
Controller |«

Fig. 1: Implementation of the Feedback Control Action(we assunat the actuator and the controller are

collocated with the plant)

If we define the output novelty error at the sensor to be
e(t) = y(t) —y(ti),t € [ti, tix1), Yt >0, Vi, )
and the output novelty error at the actuator to be

e(t) =y(t) —y(ti),t € [ti + Aj, tig1 + Aig1), V2 >0, Vi, (10)



then one can see that fore [t;,t; + A;), we havee(t) = y(t) — y(t;—1) andé(t) = y(t) — y(t:);
for t € [tl‘ + Az‘,ti+1), we havee(t) = y(t) — y(tl) = é(t); for t € [tz‘+1,ti+1 + Az‘+1), we have
e(t) = y(t) — y(t:) while é(t) = y(t) — y(tit1)-
Let’s first consider the case when there is no actuation epdelay in the loop, in this case since

A; =0, Vi, we have

e(t) =e(t) =y(t) —y(ti),t € [ti, tiy1), Vi (11)
Since the control systerff is passive, based on (5),(7),(11), we can obtain

V() <u(t)Ty(t) = =K (y(t) — e(t)"y(t)
= —Ky(t)"y(t) + Ke(t) y(t) (12)

< Klle@®l2lly®)ll2 = Klly@)lI3, t € [ti,tis1), Vi,
So if |le(t)||2 < [ly(t)||2, ¥t > 0, we will haveV (z) <0, V¢ > 0, and stability of the origin follows
from LaSalle’s invariance principle[12] and the assumptibat systemi is ZSD[2].
The above discussion gives us an idea as to when the new showgfeut informationy(¢;) should
be sent to the actuator at time for an output feedback control action update when there is no
actuation delay in the loop. If we denote a new sampled inftion update as aevent, we can see
that for the case when there is no network induced delay irdbp, the “event” time is implicitly

defined by the following event triggering condition

le@ll2 = lly@)ll2- (13)

The remaining of this paper addresses the following problem

« Since the event times are implicitly defined by the trigggraondition, can we guarantee that
they will not becomes arbitrarily close and result in an awulation-point?

« In the absence of an accumulation-point, can we get an dstiofathe time elapsed between
any two consecutive updates of the control action?

« If we consider the actuation update delay in the loop, can etap estimate of the lower
bound of the admissible delay in addition to the estimateheftime elapsed between any two
consecutive updates of the control action?

« If the plant is not passive but output feedback passive withesnegative constapt what could

be done?

IV. MAIN RESULTS

In this section, we present the main results of this papechvbhow that under certain conditions
between the output and the state of the system, our propased-teiggering condition will assure

stability of the closed-loop system while avoiding zenaipéing. Our results also consider nontrivial



actuation update delays. The main results are stated inréimet which is followed by remarks to
show that the assumptions in Theorem 1 can be relaxed in sas@s.c

For notation convenience, we left) denote the output novelty error at the actuator, and (et
denote the output novelty error at the sensor, as we haveianedtbefore; let; denote thesvent
time at which a new sampled output information is obtained by #resar; letA; denote the actuation
update delay for théth event; let]t;, 1 —t;] denote theth inter-event time; leL denote the Lipschitz

constant of functiorf; let || - ||» denote the 2-norm of a vector.

Theorem 1.Consider the control systeiif given by (1) and assume that is a passive system with
statex € R™, control inputu € R™ and outputy € R™. Let the following assumptions be satisfied:

1) f:R™ x R™ — R™ is Lipschitz continuous on compacts;

2) h:R™ — R™ is Lipschitz continuous on compacts and it is also a statidinear function of
x, which belongs to a sectde, 3] such thataz”z < 27h(z) < pz’z, wherea € R, 3 € R
and0 < aff < oo;

3) |22, <+, where0 < v < oo;

4) systemH is ZSD.

Let S C R™ be any compact set containing the origin. Then for any inittandition is.S, there exist
g; > 0 andn > 0, such that forA; € [0,¢;] and with control actionu(t) = —Ky(t;)(K > 0), t €
[ti + Aj tiv1 + Air1), the inter-event timét; 1 — ¢;] implicitly decided by the triggering condition

is lower bounded by) + A; and the origin of systen#/ is asymptotically stable.

Sampler

Y | event
Plant detector Sensor

A

Y

y(’())zy(ﬁ)a}’(ﬁ),“‘

ulty +Ag)uty +Ay),--

controller |«

Fig. 2: Implementation of event-triggered real-time schedulinategy(we assume that the actuator is collocated

with the controller)

Proof. The implementation of event-triggered real-time schedubtrategy proposed in Theorem 1
can be illustrated in Fig.2, where we have an “event-detétbcated at the plant side to monitor

the output of the plant and determine when an “event” shoeldriggered, this could be done by



sampling the output of the plant very fast and we need sonteofdnuffer to store the last and the
latest output information sent to the controller. When ¢hisrno actuation update delay in the loop,
the triggering condition is simply defined by (13); when #és non-trivial actuation update delay
in the loop, the triggering condition is defined by (14).

We will first examine the case when there is no actuation @datay in the loopd; = 0, V).
Since the output measurement ereg¢t) induced by the network at the actuator is defined in (10),
based on (12), if we can guarantee thatt)|ls < |ly(t)|j2, V¢ > 0, thenV(z) < 0, V¢t > 0,
and stability of the origin follows by the assumption thasteyn H is ZSD, as we have discussed
before. Consider the triggering condition given by (13)thiére is no actuation update delay in the
loop(A; = 0, Vi), then as soon as the sensor gets the new sampled infornaditiba output at event
time ¢;, a new control actioni(t;) = —Ky(t;) is applied to the plant, and(t) is reset to zero at
t = t;. In this case, since(t) is reset to zero at each event timg,(t)||2 < ||y(t)||2 is enforced
for V¢ > 0, and thus we can conclude that the closed-loop system isstinally stable. We still
need to show that in this case, the inter-event time, — ¢;] is lower bounded by a strictly positive
constant.

Let us look at the dynamics gf %HQ for ¢t € [ti, tit1),

dlell _ d(e"e)z _ ("e)2eé(y"y) — (y"y) " 2y" (e e)>
dtllyll2  dt(yTy): yly
ey el
lellzllyllz— llyll2liyllz lyll2”
sincee(t) = y(t) — y(t;) andy(t;) is kept constant fot € [t;, ¢;11), Vi, we haveeé(t) = y(t), and we

(15)

can further get
d lellz _ llellzllgllz |, llyllzllgllzllell2
dtllyllz = llell2llyllz — llyll2llyll2llyll2
HeHz)ﬂgﬂg
lyll2" Nlyll="
From Lipschitz continuity on compacts ¢z, u) andh(z), we can conclude that(z, —K (y — ¢))

(16)

=1+

is also Lipschitz continuous on compacts, that is theret@xdisconstani such that

1/ (2, =K (y — €)lla < Lll(x, (y — €))ll2 < Llzll2 + Llly — ell2
(17)

< Lljzll2 + Lllyll2 + Llle]l2,

( ) . ( )

thus
il < ||——=

[l21%[l2

SVLWﬂb+HMb+Hﬂﬁ-

Moreover, since) = h(x) is static nonlinearity belongs to a secfar 3] such thatvz”z < 27h(z) <

19ll2 = Il——
(18)

BxTz, where0 < aff < co, one can show that

||| < maX{



SO we can obtain

d Jlell lellz. 19l
L2 (14 T2y I
2Tl = T 1) Tls

sl . lell
<~L(1+ dlellz 20
O ) s ol TV (20)

lell (. lell
PIASERATRE

<~yL(1+

If we denote”;Hz by p, then (20) can be rewritten as

p<~AL(1+p)(L+(+p). (21)
Consider the differential equation given by

E=7L(1+ &1+ +€), (22)

and let&(t, to, &) be the solution to (22) defined at timewith the initial condition¢y. One can see
that for any initial conditionpy = &y, we havep(t, to, po) < &(t,t0,&o). Since the inter-event time
[ti+1 —t;] IS bounded by the time interval it takes fotto evolve from 0 to 1, we can get an estimate
of the lower bound of the inter-event time based on (22), Wihscobtained by the solution € RT

of &(7,19,0) = 1, and we get

T:th(

vLC

2+2<)
24+¢C77

(23)

one can see that > 0 for any ¢ > 0.

However, when the actuation update delay in the loop is naait(A; > 0, V:), the control action
is actually updated at timg + A;, Vi, and notice that at = ¢, + A, e(t) = y(t; + A;) — y(t;) # 0,
and|e(t)|| maybe not less than or equal fig(t)||» to enforceV (z) < 0, V¢t > 0, so we need to

design the triggering condition carefully for this casenc®i fort € [t; + A, tiv1 + Ai11), we have
le@ll2 = lly() —y(t:)ll2 = ly(t)ll2 = lly(@)]2, (24)

so one could find that a sufficient condition fie(¢)[|2 < ||y(¢)]]2,Vt > 0 is given by
le(®)ll2 < 0.5[y(t:) |2, t € [ti + Agytiva + Agr), Vi (25)

Fort € [t;, t; + A;), we havee(t) = y(t) — y(t;—1) andé(t) = y(t) — y(t;), att = t; + A;, we have
e(t) =é(t) =yt + A;) —y(t;). At t =t; + A;, we need

le(®)ll2 < ally(ti)ll2, & € [0,0.5) (26)

to enforce the stabilization condition (25).



Let's examine the dynamics @f(¢)||2 during the time[t;, t; + A;), since
d, . < . 9y .
el < el = 5@l = 15l
o .
<5 llallzllz < vLle @2 + ly®)ll2 + lle®)ll2]

<AL+ Olly@) 2 + lle(®)ll2]

= yL[(1+ Ollé) + y(ti)ll2 + lle(t)]l2] (27)
= YL[(L+ O)lle(t) + y(ta)ll2 + 18(t) + y(t:) — y(ti—1)ll2]
<AL+ O)lle) 2 + (1 +Q)lly(t) ]2

+ [ly(t:) = y(tim1)ll2]

so the evolution of|é(t)||2 during the timet;, t; + A;) is bounded by the solution of

£(t) = YL[2+ Q&) + (1 + Olly(ta)llz2 + ly(t:) — y(ti-1)ll2], (28)

with initial condition £(¢p) = 0. We could get an estimate of the time interval f@(t)||» to evolve
from 0 toa||y(t;)||2 based on (28), which is given by

1 (2+(Q)o

g = n
i 2 L M
(24 Q) 1+ 0+ =50

+1]. (29)

One should notice that if we choosge € [0,0.5), then the stabilizing condition (25) is enforced,
which guarantees thde(t)||2 < ||y(t)|2, for ¢t € [t;,t; + A;), and we can conclude that &t ¢; we

have|le(t;)|l2 = |ly(t:) — y(ti—1)ll2 < ||y(:)]|2, thus we can further obtain

_
2+OnL

and one can see tha > 0 for any ¢ > 0. So if the control action is applied to the plant at the

> In(5 + 1), (30)

Z

timet = t¢; +¢; , then we can guarantee thai(t)||2 < ||y(t)||2 att =t; +¢; with ;" given in (30).
Fort e [t; +¢; ,ti+1), we havee(t) = é(t) = y(t) — y(t;), and

%He(t)Ha < el = l5(t)]l> = H%o‘c!l
< ug—gthg <AL[lz®)ll2 + ly(®)ll2 + lle(®)ll2]
<AL[A+Q)llyllz + llell2] (31)
<AL[(1+ Q)lle(®) + y(t) 2 + llell2]
<AL[2+ Qlle®)lla + (1 + Olly(t)ll2],

so the evolution ofle(t)||2 during [t; +¢;, t;+1] is bounded by the solution of

£(t) =vL[(2+ Q&) + (1L + Olly(ts)ll2], (32)
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with £(t; +¢;) = [ly(ti + ;) — y(ts)|l2 = &|ly(t:)||2. Chooses € (5,0.5), then an estimate of the

time it takes for||e(t)||2 to evolve froma||y(t;)||2 to &|ly(t;)||2 IS given by

14¢ |~
1 T O

= n , (33)

TTALE ) (%EJF&)

and notice that for ang > ¢ > 0, we haven > 0.
Assuming att = (t;+1 + Ai+1)~, we havelle(t)||2 = 0.5|ly(¢;)||2, then we could get an estimate
of the time it takes for|e(t)||2 to evolve froma||y(t;)||2 to 0.5||y(¢;)||2 based on (32) with initial

condition{(t;+1) = ol|y(t;)||2, and the estimate of the time interval is given by

14¢
1 =405
ef = n (Q;FC ) (34)
L2+ e

If A; € [0,min{e; e/ }], then we can conclude thde(t)||> < |ly(t)| is enforced forvt > 0, and
the inter-event timét; ., — ¢;] is lower bounded by = n + A;. The proof is completedli

Remark 2: From the above analysis, one can see that when there is natiaotwpdate delay in
the loop, the inter-event time is lower bounded by (23), Wwhig strictly positive; when there is
nontrivial actuation update delay in the loop, we use a migtd triggering condition (14); to assure
the stability of the closed-loop, the actuation updateydédaeach event should be properly bounded,
and one can see that a lower bound of the delay is related teewent-design parameters: and

&. A lower bound of the inter-event time = n + A; is also directly related to these two design
parametersill

Remark 3: For linear systems, consider a linear passive system giyen b

T = Ax + Bu
H : (35)
y=Cx
then we have

19]l2 = [|Cill2 = |C(Az + Bu)lls

(36)
= ||CAzx — CBK(y — e)||2 = ||CAx — CBKy + CBKel|s,
[9llz _ €Az — CBKy + CBKel
lyll2 lyll2
A BK BK
< |CAz||2 L |CBKyll2 L |CBKel|l2 (37)
yll2 yll2 llyll2
[CAz|ls | [|CBK|2]lyllz | ICBK]l2]lell2
+ +
[yl [yll2 lyll2
since”(ﬁ?ﬁﬁ'b = (xTﬁTCQTT(%AI)%, if (quf‘TTCCTT&A“)% is well bounded, such that
2TATCTC Az 1
(Freray ) <e (38)
1 CtCx
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where0 < a < oo, then we have

j CBK CBK
gl -, o l2llyllz | l2/lell2

Iyl = lyll2 1yl2 (39)
< HCHQHBKHQ(HCHQHQBKHQ +1+ ”;HZ),
in view of (16), we can get
d el <1+ H€||2)M
dt [|yl2 lyll2” [lyll2 (40)
<ICRIBR 11+ 1) 0+ et * )

So when there is no actuation update delay in the loop, thlutwo of ”;HZ is bounded by (40),

and one can show that the inter-event time is strictly pasitn this case. We can further get a lower

bound of the inter-event time when there is nontrivial atturaupdate delay in the loop by following
the similar analysis as shown in the proof of Theorenll.

Remark 4: It can be shown that similar event-triggering approach camjplied to stabilization of
output feedback passive systems. Consider an OFB(systemH with storage functiori/(z), the

following dissipative equality is satisfied:
V(z) <u'y—py'y, p<0, (41)

notice thatp is the smallest constant such that (41) is satisfied. In th& @ is non-passive and
unstable. By applying negative output feedback- — Ky, where K > —pl > 0, we can directly
stabilize the systen#/ if it is ZSD. And one can show that the stabilization conditia this case is

given by:

le@®ll2 < 1K1K = [plD)ll2lly@)]2, Yt =0, (42)

and based on this one can derive the triggering conditiont@dest of the analysis should be the
same as shown in the proof of TheoremilL.

Remark 5: One may remark that assumptions 1) and 2) in Theorem 1 areen@tive, and by
assuming that the output of systdihbelongs to a bounded sector of the state, we restrict theubutp
to have the same dimension as the state. However, in mang,¢hsse assumptions can be relaxed

as long as

lills _ ¢ g, 4 el 3
ol ol

is satisfied for some consta@, Cs, where0 < C < oo and0 < Cy < oo, and one can check how

this works from the examples provided in the next sectlin.
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V. EXAMPLE

In this section, instead of coming up with examples to veoify main results shown in Theorem
1, we would like to show two examples based on our discusgiomgded in Remark 3-Remark 5.
Example 1. Consider the linear passive system given by

il(t) == —5%1(75) - 562(75)
ig (t) = —562(75) + U(t) (44)
y(t) = z2(1),
we can see that the system is stable and ZSD. With

-5 -1 0
A= , B= ,C:[O 1], (45)
0 -1 1

T AT OT 1 . . .
aﬁjﬁ”z = (4554%) = 1. So if we choose K=0.2, based on the discussion

shown in Remark 3 and assume that there is no actuation uddktg in the loop, we can obtain

we can see th

d lle®ll2 _ (1+ H6H2)M

Tyl = O Tl Tl
lell | lell
< ClIBK (1 + 12y 1 + (46)
U+ R O TehRiBEs vk
el lella
—0.2(1 + 6+ ,
U+ ) )

so we could get an estimate of the lower bound of the intentetime 7, and in this case we have
7 > 0.5390s. Notice that in this example, the output dose not belong townbded sector of the full
state, but it belongs to a bounded sector of the observaditesst, and the unobservable state is
ZSD. The simulation results is shown in Fig.3, whet@) shows the evolution |§8HZ i, —ti]
shows the evolution of the inter-event time, and we can saewhenever the triggering condition
is satisfied (wherr(t) = 1, depicted by the dashed red line), a new event is generatarkéoh by
a dot, with x-axis showing the event tintg and with y-axis showing the time interval from the last
event time). The inter-event time is larger than 0.5390s thedsystem is asymptotically stable.

For the case when there is actuation update delay in the Mepuse the more conservative
triggering condition|le(t)||2 = &lly(ti)|l2, t € [ti + Ai, tiv1 + Aiy1], Wwhere we haves € (0,0.5)
. The bound on the actuation update delay and the bound omtieevent time are depended on
two event design parametersandg, as we have discussed in Remark 2. For this case, if we choose
o = 0.05 andé = 0.48, one can show that a tight bound on the actuation update @@y118s,
and the inter-event time is lower bounded by 0.3075s. Welgesimulation results shown in Fig.4,
where o,4(t) shows the evolution o%. One can see that the actual inter-event time is larger
than 0.3075s.
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Fig. 3: simulation result of Example 1 with no actuation update yela
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Fig. 4: simulation result of Example 1 with nontrivial actuationdape delay

Example 2Consider the output feedback passive system given by

@1 (t) = =323 (t) + 21 (t) 22 (t)
Eo(t) = 3xo(t) 4 2u(t) (47)

y(t) = xa(t),

we can see that the system is ZSD but unstable. If we choosstarage function/ (z) = z3(t),

we can get

V(z) = u(t)y(t) + 1.55%(t), (48)

and in this case = —1.5. Since the outpuy = h(x) is only a linear function ofc,, soy does not



14

belong to a bounded sector of the full state. However, we have
[9ll2 _ ll22llz _ [[Bz2 — 3K (y —e)]|2

[[yll2 HHUHQH Hy|’|’2 H " 49)
< g2z | gpe g NON2 3y 3k 4 3 N2
lyll2 lyll2 yll2
so for no actuation update delay case, we can still boH%#ﬁ@l by
d .
A Jlell2 (1+ ||€H2)Hy||2
dt [lyll2 lyll2” llyll2
<(1+ @)(3+3K+3Kw) (50)
llyll2 llyll2
llell2 1 flell
<3K(1+ 1+—=+ .
O+ ) O & * o)

According to Remark 4, we need to choase> —p > 0 as the stabilization feedback gain. If we
chooseK = 3, then the triggering condition becomps(t)|lo = K 1K — |p|)|y()|l2 = 0.5y (t) |2,
and one can show that the inter-event time is lower bounde@i@8s. The simulation result is shown
in Fig.5. We also did simulation for the nontrivial actuatiopdate delay case, where we choose

¢ = 0.05 andG = 0.3233, and the simulation results is shown in Fig.6.

0.8 6
0.6
L . 4
% 0.4 i
2
" m
0 0 A
0 1 2 0 1 2
t(s) t(s)
0.1 15
_ o C e X0
)
= @ — e _xz(t)
%* 0.05 g 5
— [72]
— ;
= 0 R
0 -5
0 1 2 0 1 2
t(s) t(s)

Fig. 5: simulation result of Example 2 with no actuation update ylela

VI. CONCLUSION

In this paper, we proposed a very simple event-triggeredrobistrategy for stabilization of
passive/output feedback passive systems. We take ekplitid account the actuation update delay
of the control action and show that the proposed schedulirajegly guarantees that the closed-
loop system is asymptotically stable. Lower bound of therisampling time under the proposed

scheduling strategy is analyzed in detail.
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Fig. 6: simulation result of Example 2 with nontrivial actuationdape delay
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