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Abstract

In this paper, we propose a robust self-triggered real-seteeduling strategy for stabilization
of passive or output feedback passive systems under uhstedcuncertainties and in the presence
of non-trivial actuation update delays. We assume that tietructured uncertainty is A, stable
dynamic system in a feedback or feedforward interconnedtith the model of the plant, we took
the structure uncertainty into account to design the ougmdback controller and we derived the self-
triggered real-time scheduling strategy for both casesbilly and expected inter-sampling time of
the system under the proposed scheduling strategy is @&thigzletail. Simulations are also provided

to validate these results.

I. INTRODUCTION

In traditional implementations of the control tasks, onetfidesigns the controllers under the
assumption of no-delayed actuation updates and then dagsrthe maximum admissible interval
between two consecutive actuation updates. However, theatostrategy obtained based on this
approach is conservative in the sense that resource usags@mpling rate, CPU time) is more
frequent than necessary to assure a specified performavele dece stability is guaranteed under
sufficiently fast periodic execution of control action. Teeocome the drawback of periodic paradigm,
several researchers suggested the idea of event-basewlcafthough the heterogeneous termi-
nology refers to the triggering mechanism as event-baaegpkng[10], event-driven sampling[11],
Lebesgue sampling[4], deadband control[12], level-drmpsampling[13], state-triggered sampling[6]
with slightly different meaning, all refer to the situatiovhere the control signals are kept constant
until the violation of a condition on certain signals of thiamg triggers the re-computation of the
control signals. One should be aware that event-triggegetinique reduces resource usage while
providing a high degree of robustness, since embedded hagd® used to monitor the state of the

plant and examine the triggering conditions continuously.



Self-triggered real-time scheduling strategy is studieds], [7],[8], [9]. It takes the advantage
of the event-triggered technique without resorting to &xtardware. The key idea of self-triggered
control is to compute the next instants of time at which thetid action is to be recomputed based
on the current or the last state’ measurements of the plafirsAattempt to explore self-triggered
paradigm for linear systems was developed in [5], by disiref the plant, and in [8] for linear full-
state informatiori{., controllers. A study on self-triggered scheduling for noe&r dynamic systems
is shown in [7] and [9], where a simple self-triggering cdiwi based on the norm of the current
states is proposed by exploiting the properties of the dtajees of homogeneous control systems.
However, most of these results on self-triggered contreliae that the feedback law provides input-
to-state stability(ISS) in the sense of [15] with respeattasurement errors which is quite restrictive
in general, although some results on designing such colatn@ are available [16]-[19].

The key complications in applying self-triggered control the nonlinear context are that the
propagation of the measurement error is not as straightfi@vo characterize and that a suitable
form of robustness with respect to this error is needed frioencontroller. In this paper, we propose
a robust self-triggered real-time scheduling strategyfabilization of passive/output feedback passive
systems. We treat the structure uncertainty @ atable dynamic system in a feedback/feedforward
interconnection with the model of the plant and we derivesl $blf-triggered real-time scheduling
strategies for both cases. We have also taken non-trivialion update delays into consideration.
The inter-sampling time under the proposed schedulingestyas shown to be strictly positive based
on the analysis shown in this paper.

The rest of this paper is organized as follows. We first inficelsome background on passive/output
feedback passive systems in section II; the problem stateimenade in section lll; the self-triggered
scheduling strategy when the uncertainty is in a feedbaekdannection with the model of the plant
is proposed in section IV.A and in section IV.B we proposedeH-tsiggered scheduling strategy
when the uncertainty is in a feed-forward interconnectiatinwthe model of the plant; examples are

provided in section V; finally, conclusion is made in sectiin

1. NOTATION AND BACKGROUND MATERIAL

We first introduce some basic concepts on passive systemewpdt feedback passive systems.

Consider the following control system, which could be lineanonlinear:

z = f(z,u)
H: Q)

y = h(z,u)
wherex € X C R, u e U C R andy € Y C R™ are the state, input and output variables,
respectively, and, U andY are the state, input and output spaces, respectively. Titesentation

x(t) = ¢(t,to, z0,u) is used to denote the state at tiheeached from the initial state, at ¢.



Definition 1(Supply Rate)[1]: The supply ratev(t) = w(u(t), y(t)) is a real valued function defined
on U x Y, such that for any(t) € U andzy € X andy(t) = h(¢(t,to, zo,u)), w(t) satisfies

t1
/t lw(T)]dT < 0. (2)

Definition 2(Dissipative System)[1]: SystemH with supply ratew(t) is said to bedissipative if
there exists a nonnegative real functibifz) : X — R, called the storage function, such that, for

alltlztozo,woeXandueU,

V(a1) — V(wo) < /t ' w(r)dr, 3)

wherez; = ¢(t1,to, xg,u) andR™ is a set of nonnegative real numbers.
Definition 3(Passive System)[1]SystemH is said to bepassiveif there exists a storage function

V(x) > 0 such that

V() - Vi(zo) < / Cu(r)Ty(r)dr, )

to

if V(z) is C!, then we have

V(z) <u()y(t), vt > 0. (5)

One can see that passive system is a special case of digsiggtitem with supply rate(t) =
u(t)Ty(t).

Definition 4(Output Feedback Passive System)[2]System H is said to beOutput Feedback
PassivéOFP) if it is dissipative with respect to the supply rate

w(u,y) =uly — py'y, (6)

for somep € R.

Remark 1: Note that ifp > 0, then H is strictly output passive[2], anfl is said to have excessive
output feedback passivity ¢f, we denote it as OFBY); if p < 0, H is said to lack output feedback
passivity, and we denote it as OFRp|). One can verify that a OFP(p|) system can be rendered
passive by a negative feedbalgk/. And clearly, if a system is OFp), then it is also OFR{(— ¢),
Ve>0. 1

Definition 5[2]: Consider the systen®/ with zero input, that ist = f(z,0), y = h(z,0), and let
Z C R™ be its largest positively invariant set contained{inc R"|y = h(x,0) = 0}. We sayH is
Zero-State DetectabléZSD) if x = 0 is asymptotically stable conditionally tg. If Z = {0}, we
say thatH is Zero-State Observable(ZSO).



[1l. PROBLEM STATEMENT
We first consider a passive control systdinas given in (1), we know that if{ is zero-state
detectable(ZSD), then under the feedback control law

u(t) = —Ky(t) (7)

whereK > 0 could be a scalar or am x m positive definite matrix, the origin off is asymptotically
stable. For the rest of the paper, we will assume #at 0 is a scalar for simplicity.

In real time, the implementation of the output feedback amhéw (7) on an embedded processor is
typically done by sampling the output at time instafitst;, t2, t3, t4, ..., updating the actuator at
time instantsg + Ag, t1+ A1, to+ Ao, t3+ Az, t4+ Ay, ..., Whered;,i =0,1,2,... represents
the time required to read the output from the sensor, comfhéecontrol action and update the

actuators. Between actuator updates, the controldé is held constant according to
u(t) = —Ky(ti), t e [tl‘ + Az‘, ti+1 + Ai-ﬁ-l)- (8)
The implementation of the control action for sensor-actuatetwork is shown in Fig.1.

Sampler

> Plant %7 Sensor

y(’o),J’(’l),y(fz),m

u(ty +Ay)ut, +A,), -
Controller

Fig. 1: Implementation of the Feedback Control Action (we assuna the actuator and the controller are

collocated with the controller)

If we define the output novelty error induced by the networkhat actuator to be
e(t) =y(t) —y(ti),t € [ti + Aistiv1 + Ajyr), VE >0, Vi, 9)
since systent{ is passive, based on (5), (8) and (9) we can obtain
Vie) <u(t)y(t) = —K(y(t) —e(t)y(t)
= —Kyt)Ty(t) + Ke(t)"y(t) (10)
< Klle(®)l2lly(®)ll2 = Klly(@)3, ¢ € [ti + Ais tips + Aiga), Vi,

So if |le(t)||l2 < [ly(t)||2, V¢ > 0, we will haveV (z) <0, V¢ > 0, and stability of the origin follows

from LaSalle’s invariance principle [14] and the assumptibat systemH is ZSD.



If we denote “sampling” agvent in the loop, the above discussion gives us an idea on when a
new sampled output information(¢;) should be obtained for re-computation of the control action
i.e., for the case when there is no network induced delay énldbp@; = 0, Vi), the event time is

implicitly defined by the following event triggering conigit

le(@ll2 = lly@)ll2- (11)

So when the triggering condition (11) is satisfied at titneve need to get a sampled information of
the output, a new control actiar(t;) = —Ky(t;) needs to be generated and applied to the plant, then
e(t) is reset to zero (sincgt;) = y(t;) —y(t;) = 0), and the stabilization conditiofe(t)||2 < [|y(¢)]|2

is enforced again.

For event-triggered control, since the event-time is deteed by the triggering condition, we
need some sort of “event-detector’(an embedded hardwardgtect when the triggering condition
is satisfied to schedule control task. Self-triggered admras introduced to take the advantage of
the event-triggered technigue without resorting to ex@aadivare. It does not require a dedicated
hardware to monitor the state of the plant and examine whertrifgering condition is satisfied,
but it needs some information of the latest sampled infoonadf the plant for scheduling of the
stabilization control tasks. For self-triggered contithle intervals of time in which no attention is
devoted to the plant pose a concern regarding the robustiigbe closed-loop system. The main
result of this paper is trying to address robustness issgelbfriggered control with respect to model
structural uncertainty. We propose a robust self-trigdeeal-time scheduling strategy for stabilization
of passive/output feedback systems, and a rigorous ex#oninan the estimated lower bounds of the

inter-sampling time and the admissible actuation updakayde provided.

IV. MAIN RESULTS

In this section, we present the main results of this papechvbhow that under certain conditions
between the output and the state of the system, our propesetiggered scheduling strategy will
guarantee stability of the closed-loop system and the timerval between any two consecutive
actuation updates will be strictly positive. Our resultscatonsidered nontrivial actuation update
delays. The main results address two cases: we first prdsemésults when the model of the plant
is subject toOutput Feedback Uncertainty; then we present the results when the model of the plant
is subject tolnput Feed-forward Uncertainty. The main results have been stated in Theorem 1 and
Theorem 2 respectively followed by discussions to show thatassumptions claimed in these two
theorems can be relaxed in some scenarios.

For notation convenience, we left) denote the output novelty error induced by the network at the

actuator, and le&(¢t) denote the output novelty error at the sensor. One shouldentbtat when there



iS no actuation update delad(t) = e(t), V¢ > 0; when the actuation update delay is nontrivial, then
for t € [t;, t; + A;), we havee(t) = y(t) — y(t;—1) andé(t) = y(t) — y(t;); for t € [t; + A, tiv1),

we havee(t) = y(t) — y(t;) = é(t); for t € [tit1,tiv1 + Aiy1), we havee(t) = y(t) — y(t;) while
é(t) = y(t) — y(ti+1). Lett; denote theith event time at which a new sampled output information
is obtained by the sensor; lét; denote the actuation update delay for ke event; let[t; 1 — ¢;]
denote theth inter-sampling time; leL denote the Lipschitz constant of functighlet || - || denote

the 2-norm of a vector.

A. Sf-Triggered Real-Time Scheduling In Presence Of Output Feedback Uncertainty

Theorem 1Consider the control system as shown in Fig.2, where thet ptexdel is given by

T = f(x,u)
o (12)

y = h(z)
with € R™ is the statex € R™ is the control input ang € R™ is the output,Y, is a ZSD passive

system. The model uncertainty is given by

YA 3 (13)
g = h(2),
and we assume that the model uncertainty 15, a&table dynamic system with finité, gainT" > 0.

Plant
¥ i=f(&a) y
y=h® |
0o+ + u x=f(x,u) y
L >
3 v =h(x)

Fig. 2: Output Feedback Uncertainty

Let the following conditions be satisfied

1) f:R"™ x R™ — R" is Lipschitz continuous on compacts;

2) h:R™ — R™ is Lipschitz continuous on compacts and it is also a statidinear function of
x, which belongs to a sectde, 3] such thataa”z < 27h(z) < 82Tz, wherea € R, 3 € R

andag > 0;



3) h:RP — R is Lipschitz continuous on compacts;

4) Ha}é—(xx)ug <, where( < v < oc;

5) Bala < alg < aula, where—oo < B <0 < & < o00;
if we chooseK > —p3, then under the following scheduling strategy, the passjem under the
control action (8), is asymptotically stable:

o tg=tg+ Ag;

— _ 1 24C4T 4.
. tl—tO‘l—TO, To—mhl(1+ 1+C+FU)’

o tiy1=ti+A;+T1,i=1,2,..

where( = max{‘%', |7%‘}; &,6 are design parameters such that 6 < ¢ < 21;;%;
14¢4T | =~
re—— L @) (1)
L@+ D) R 46
A; is the actuation update delay which is given by
A; = min [5;, 6?], (15)
where
- 1 (24 ¢+ D)ally(t)]l2
= rer o EE e D@ + 1) - vl Y
and _
. K+ | 14¢hT
+ 2K+4+3 = 2+¢+T
Ceater e )

Proof. Since the model of the plaii, is passive, we havéf(x) < uly, and fort € [t; + A, tig1 +

A1), we haveu(t) = —Ky(t;) — y(t), so we can obtain
V() < [=Ky(t:) = 5(0)] y(t) = —Ky(t:) y(t) — 5(t) " y(t)
= —K[y(t) — e®)]"y(t) — () y (1) (18)
= —Ky(t)Ty(t) + Ke(t)y(t) — g(t)y(1),
then we can get
V(z) < —Klyl3 + Klell2llyll2 — 7"y
< —Kllyl3 + Kllell2llyllz — Bliyl3 (19)
= —(K + B)lyl3 + Klell2llyll2.

So, if K > —fB, and [lella < £ |ylly for ¢ € [t + Ai,tivs + Aira), Vi, then we will have

V(x) <0, vVt > 0, and the closed-loop system is asymptotically stable skiycés ZSD. Moreover,
sincee(t) = y(t) — y(t;) for t € [t; + Aj, tiv1 + Aiy1], we have|lella > |ly(t:)|l2 — |lyll2, and we
can obtain a sufficient condition fdje||s < KTJFBHyHQ to hold which is given by

K+ 8
lell < = _'_%H?J(Q)HQ, For t € [ty + Austiss + Avsa]. (20)




Fort € [ti,t; + A;), we havee(t) = y(t) — y(t;—1) andé(t) = y(t) — y(t;), SO we can obtain

%Ilé(t)\lz < lle®llz = llg(#)ll2 = || 2 < H H 1212
< f (w2 =~If(, —Ky(tm) —9)ll2
=f (2, =K (y —e) = 9)|2
< L{llzll2 + llyll2 + llell2 + [17]]-]

<AL[Clyllz + lyll2 + (1€ + y(t:) — y(ti—1)ll2 + Tllyll2] (21)

[
= L[+ C+Dllyll2 + 1+ y(t:) — y(ti-1)ll2]
YL[(1+ ¢+ T)l[e+y(to)llz + e + y(ti) — y(ti-1)ll2]
<L2+C+D)flefl + L1 + ¢+ D)y ()]l

+yL|ly(t:) — y(ti-1)|l2,

where¢ = max{ril', IT%\}' So the evolution of|é(t)||2 during the time[t;, ¢; + A;) is bounded by the

solution of

o(t) = C1¢(t) + O, (22)

whereCy =yL(2+(+T) andCy = yL(1 + 4+ T)[ly(t:)ll2 + vLlly(t:) — y(ti—1)|[2- With ¢(t;) =
y(t;) — y(t;) = 0, the solution to (22) fot € [t;,t; + A;) is given by

o(t) = % [eCr(t=t) —1]. (23)

So if we choosd) < & < 2[1(:% and letg(t; + A;) = &|ly(t;)||2, we can get an estimate of;, if

we denote it by, ", thene; is given by

C1olly(ti)ll2
T]. (24)

e =—1In [1 +
Assume that the actuator updates the control actian=at; + A;, and choos& such thatd < ¢ <

6 < ;;T then fort € [t; + As, tis1), We have

e(t) = é(t) = y(t) — y(t:), (25)



and we can obtain
d . . Oy .
g le@lz < lle@)ll2 = g0 = Ha—ix!b
y . -
< ||—||2Hx||z <Af(z,—K(y —e) =92
lzll2 + llyll2 + llell2 + l17]l2]

Cllylla + wllz + llell2 + Tllylls] (26)

vL|

vL|
YLI(+ ¢+ D)llyllz + lells]
YL[(1+ ¢ +T)lle +y(t)ll2 + [lell2]
(

<YLE2+C+D)llefl2 + L1+ ¢+ T)ly(t)]l2,
so the evolution of|e(t)||2 during [t; + A;,t;41) is bounded by the solution of
6(t) = VL2 + ¢+ D)(t) + L1+ ¢+ Dy (ti)]l2. (27)
with ¢(t; + A;) = ||y(ti + A;) — y(ti)||2 = 7lly(ti)]|2, we can get the solution to (27) which is given
by
C 4,
6(t) = (G, +lly(t:)ll2) e 140 —

whereCs = yL(1 + ¢ + I)|ly(t:) |-

Assume that at = t,;1, we have|le(t)|l2 = &|ly(t:)|]2, then an estimate of the time it takes for

G

. (28)

H“zj((:-))HH?z to evolve froma to & is given by

A | 144D
/o Y (a1 (29)
YL(2+(C+T) 0+ 55T

and notice that for ang > ¢ > 0, we haver > 0.

Next, assume that at= ¢;,1 + A;+1, we havelle(t)|2 = ;;J;%Hy( i)l2. Sincee(t) = y(t) —y(t;)

for ¢t € [tit1,tiv1+Aiy1), We can still get an estimate of the time it takes 9 ))”H2 to evolve from
K+B

based on (27). If we denote it tz;g* then we can obtain

K+4B | 14¢4D

1 2+¢+T
ef = n ( 2K +5 ) (30)
i 14+(4T
VL2 +(+T) 0+ graT
Now we could give a tight lower bound d&; which is given by
A; = minfe; ,ej], (31D

and the corresponding estimate of the time for the sensoettthg next new measurement is given
by
tiv1 =t + A+ 7. (32)

K+6
2K+4’

Since we choose< ¢ < &
le(®)]2 < KT*BHy(t)Hg,Vt > O(which also indicates that\; is strictly positive, sinces;” > 0,

<

for t € [t; + Ay, tit1 + Aipa], Vi, we can guarantee that
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and att = t;, we havelle(t;)|2 = |ly(ti) — y(ti—1)|2 < KTJFBHy(ti)HQ, one can conclude that

-5 1 (2+¢+1)5 : . _
& > g hn 1+ (1+<+F)+”L?§”§>] > 0), thusV(z) < 0,¥t > 0. Since, is ZSD, the closed-loop

system under the proposed self-triggered schedulingeglyds asymptotically stabldli

Remark 2: For linear passive system, consider the model of the plaendoy X,

i = Ax + Bu
Yo (33)
y=Cu,
and the feedback uncertainty given by
i = A% + Bi
YA ) (34)
j=Ci.

We assume thalls is a Lo stable system with finiteC, gainI” > 0. Fort € [t;,t; + A;), we have

e(t) = y(t) —y(ti—1) andeé(t) = y(t) — y(t;), SO we can obtain

d. . < . Jy . ,
ez < lle®)ll2 = llg(®)]l2 = Ha—itz = [ICz]2

(35)
= ||C Az + CBul|s < ||CAz||2 + ||CBul|2,
o [|[CAz|l, _ (zTATCTCAz)?
if Wk = Groronl < ¢, where0 < ¢ < oo, then we can get
d, .
i 1e@l2 < |C Azl + |CBullz < Cllyll2 + [CBull2
= ¢lle+y(t)llz + | = CB(Ky(ti-1) + )2
< cllellz +Clly(ta)llz + [CBEy(ti-1)ll2 + |CBl2[|7]l2 (36)
< ¢llell2 +Clly(tallz + ICBEy(ti-1) 2 + |CB||2T'[|yll2
< €+ ICBll2I)lell2 + (€ + ICBJl2T)[y(t:) 2
+ |CBKy(ti-1)]2,
so the evolution of|é(t)||2 during the time[t;, ¢; + A;) is bounded by the solution of
3(t) = (C+ [|ICB2T)é(t) + [CBKy(ti1)]l2 + (¢ + [|[CB2T) |y (t:)]l2 (37)
with ¢(t) = ||ly(t;) — y(t:)||2 = 0, the solution to (37) for € [t;,t; + A;) is given by
Blt) = 2 [eCrt=1) 1], (38)

C
whereCy = ¢ + [|CB||oI' andCy = ||CBKy(ti—1)||2 + (¢ + ||CBJ]2I") ||y(t;)]|2. So in this cases;
is given by

Gyl @)

Cs
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Fort € [ti + A, tiv1 + Air1), we havee(t) = y(t) — y(¢;), and we can obtain

d : . :
Spllellz < llell = llgllz = | C2ll2 < [CAz[lz + [CBull»

(40)
< Cllyllz + | = CB(Ky(t:) + )ll2
and we can further get
d -
g lellz < Cllyllz + ICBKy(t:)ll2 + [|C Byl
(41)
< (C+ICBl2D)lell2 + (¢ + [|CBll2I" + [CBEK]|2) [y (£:)]|2,
so the evolution ofle(t)[]2 during [t; + Aj, tiy1 + Aip1) is bounded by the solution of
o(t) = (C+ [|ICB2T)g(t) + (¢ + [|CBoT + [|CBEK |l2) |y (t:) - (42)
Based on this, we can get
1 Ot Crg Byt
5? =—1In [ ~ ], (43)
@ Cs + Cially(ti)l2
where
C3 = (C+[|[CB|]oI' + |CBK|12) [y (t:) 2,
and
oL (CHICBILE +[OBKs + (¢ +[CBlD)S, -
CHICBlI *C+ |CB|)2L + |[CBK|2 + (¢ + |CB]]2L)a
[ |

Remark 3: If the model of the plant is OFR@|) with p < 0, then we need chood€ more carefully.

Since fort € [t; + Aj,tiy1 + Aiy1), Wwe haveu = —Ky(t;) — g, we can obtain
Ve) <uy—py"y = [-Ky(t:) — 9"y — py"y (45)

thus
Viz) < -Ky"(t)y -5 y—py'y=-K@y—e)y—5"y—py'y
<-Ky'y+ Kely— gy —py'y
(46)
=—(K+pyly+Kely—g'y

< (K +p+B)yl3 + Klellllyllz.

So choosek > 0 and K > —p — B, if [lella < KB ly|ly for ¢ € [ti + Ay, tigr + Aiyal, Vi, then
V(x) < 0,9t > 0. One could show that a sufficient condition foe|ls < X252y, V¢ > 0 is
given by

K+p+p

llell2 < 2K+p+5||y(ti)\|2, fortelti+ A tivc1 + Aig), Vi (47)
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So in this case, the design parameted in the proposed self-triggered scheduling strategy in Tér@o
1 should be properly chosen such that

. N
0<&<6<+7p+ﬂ

=, 48
2K +p+p (48)

|

Remark 4: One may remark that assumptions 1)-3) in Theorem 1 are vemgerwative, and by
assuming that the output of systdthbelongs to a bounded sector of the state, we restrict thaubutp
to have the same dimension as the state. However, this aienropn be relaxed as long as we can
get

91l2 < prllyllz + p2llell2 (49)

for some constand < p; < oo and0 < ps < oo, and similar self-triggered scheduling strategy can
be obtained. Also in this case, the outputioes not need to have the same dimension as the state

2. One could check the examples shown in Section V to see howriksyvll

B. Self-Triggered Real-Time Scheduling In Presence Of Feed-forward Uncertainty

Theorem 2. Consider the control system as shown in Fig.3, where thet ptaxael is given by

T = f(x,u)
Yo (50)

Yo = h(z)
x € R™ is the statey € R" is the control input and, € R™ is the output; we assung, is passive
and ZSD.
The plant model is subject to feed-forward model unceryagiven by
i= f(z,a)
NS (51)

y = h(z),
wherez € R" is the stateqi € R"™ is the control input and; € R™ is the output. We assunm@, is
a L, stable dynamic system with finité; gainT" > 0.
Let the following conditions be satisfied:
1) f:R" x R" — R™ and f : R” x R” — R™ are Lipschitz continuous on compacts;
2) h:R™ — R is Lipschitz continuous on compacts and it is also a statidinear function ofz,
which belongs to a sectd8,, a,] such that3,z”z < 27h(z) < a,2’z, whered < a,8, < oo;
3) h: R* — R" is Lipschitz continuous on compacts and it is also a staticiinear function
of Z which belongs to a sectdfa, aa] such thatfaz”i < #7h(i) < aaz’i, where0 <

aafa < oo;

4) Hag—f)ug <7, where0 < v < oo, and][a}éf) ll2 < 72, Where0 < o < o0;

5) Bala < alg < aula, where—oo < B <0 < & < o0;
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Plant
i=fGEa |V
T op=he
+
0+ u X = f(x,u) v * ¥
» Yo =h(x) =

Fig. 3: Feed-forward Uncertainty

if we can selectk’ > 0 andd > 0 such thatk + BK? — § > 0 and —SK? + (K +28K?)? > 0,
then under the following scheduling strategy, the passistesn under the control action (8), is
asymptotically stable:

o 1o =1tg+ Ag;

C5+C16 .
o t1 =ty + T, T0 = C%ln [—3+ 1g!y(t0)||2]

o tit1 =t +A;+71,i=1,2,...;

where we have

K+BK?—§
L(K+2BK?)2—BK?
o= - , (52)
K+BK2=§
1+ \/Q(KHBKz)zBKz
0,0 are design parameters such tilakk 6 < & < o; C1 = M1 L1 + 2v1L1 + 2Ly, Cy =
(mLiGi+mLi+v2 La)lly(ti)ll2+ (v LiCi+y2 LaCo) UK [y (ti-1) 2+ (v L +y2 L2) ly () =y (ti-1) |2,
andCs = [(v1L1¢1 + 71 L1 + v2L2) + (1 Li¢1 + 72 LaC) DK [y(t:)[l2; ¢ = maX{\a—lop \5—1(4}1 G =
max{m—lA‘, w—lA'}; L is the Lipschitz constant of (x,u) and L, is the Lipschitz constant of (z, @);

1 C3 + Cia||y(ts)|l2

"o e ol 3
A, is a tight bound of the actuation update delay given by
A; = min [5;, 5;"], (54)
where
= by Qe -
N s ClUHy(tz')Hz). (56)

L0 VO34 016yt |
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Proof. Since the model of the plant is passive, we have
V(a) < uyo, (57)

sincey = yo + 7, we haveV(z) < u”(y — §); sinceu = —Ky(t;) = —K(y —e) for t € [t; +
A, tiv1 + Ai+1], we have
V<u(y—g) =u'y—u"g<u"y—fu"u
= —K(y—ey—BK*(y—e) (y—e)

= -KyTy+ Kely — BE*(y — )T (y — ¢)

5 B s (58)
= (-K — BK?)y"y + (K + 2BK*)e"y — BK’e"e
= —[oy"y — (K +26K%)c"y + 4—15(K +28K%)%eTe]
+ (=K = K+ 6)yTy + [-BK2 + 4—15(1( + 23K e

whered > 0 is a constant. So if we can find > 0 andd > 0 such thatk + K2 —§ > 0 and

~BK? + L(K +2B8K?)? > 0, and furthermore, if we can guarantee that

K ~K2 _
lella < AR 0 e, iz 0 (59)
(K +28K?)? — BK?

then we can gef/(x) < 0,Vt > 0. It can be shown that a sufficient condition for (59) to hold is
given by

HeHQ S JHy(tz‘)Hg, f07“ t e [tl‘ + Ai,tz‘+1 + Ai+1],V’i, (60)

whereo is as shown in (52). Fare [t;,t;+A;), we havee(t) = y(t)—y(t;) ande(t) = y(t)—y(ti—1),
we can get

d ~ A . . P

g le@ll2 < lle®)llz = llg(®)ll2 = [l90(t) + y(t)]l2

. 9y -
s + 15251,

61
- ||% (o1
ox

thus we have

d .

ZllE@ll2 < mll#ll2 + vz )22
= y1|f (z, u)ll2 + || (@, @)]|2 (62)
=1llf(z, =Ky —e))ll2 + 22l f (&, —K(y —e)) |2,

if assumptions 2) and 3) are satisfied, then we hgve, < (illyoll2 and ||Z]l2 < (2||gll2, Where

_ 11 _ 11
(1= max{m, W} and(; = max{m, m}. Then we can get

d, . -
—le®ll2 < mLi(ll=ll2 + lyll2 + llell2) +v2La (I 2]z + llyll2 + llell2)

< C1lé]|2 + Cq,
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whereCy = (y1L1C¢1 + 271 L1 + 272L2) andCa = (v1L1G1 + 1Ly + 2 L2)|ly(t)ll2 + (v1L1i¢i +
YaLoCo)T K ||y(ti—1)||2 + (71 L1 + v2L2)||y(ti) — y(ti—1)||2. So the evolution of|é||2 during the time
[ti, t; + A;) is bounded by the solution of

o(t) = C19(t) + Co, (64)

with initial condition ¢(¢;) = 0. The solution to (64) duringt;, ¢; + A;) is given by

_&
-z

Assume that at = ¢; + A;, we haveo(t; + A;) = a|ly(t:)||2, where0 < & < o, then we could get

o(t) (e (t=t) 1), (65)

an estimate of\; based on (65), if we denote it k', thene; is given by (55).

Notice thate, > 0 for any ¢ > 0 and ||y(t;)|l2 # 0. Moreover, even a§y(t;)|2 goes to zero
asymptotically, we will have;” > 0 as long as the scheduling strategy will enforce the staibn
condition (59) to be satisfied for all> 0, since att = ¢;, we havelle(t;)||2 = ||y(t;) — y(ti—1)[l2 <
olly(t;)|l2 and this yields

Cio

_ 1
£; zaln(1+ éz)>0’ (66)

whereCy = (v L1¢y + Ly + 72L2) + (mLiG + 72 L2G)TK + (v Ly + 2 La)o.
Assume that the actuator updates the control action=at; + A;, for ¢ € [t; + A, tiv1 + Ait1),

we havee(t) = y(t) — y(t;), and

%Ile(t)lb < lle@)llz = 15112 = llgo(t) + y(¢)ll2

— H%
oz

<nlf(z,—Ky—e)lz+lf(@-Ky—e)l:

. 6~L . ~
a2 + IIG—fﬁsz < mllll2 4+ 2l (67)

thus
d
EHe(t)Hz < Chllell2 + Cs, (68)

whereCs = [(v1L1¢1 +71L1 +72L2) + (11 L1¢1 +72L2()TK | [|y(t:) 2. So the evolution offe(t)]|
for ¢t € [t; + A;, ti+1 + As41) IS bounded by the solution of

o(t) = Cro(t) + C3 (69)

with initial condition ¢(t; + A;) = &||y(¢;)||2, the solution to (69) is given by

_ G+ 015”y(tz‘)H2ecl(t—ti—Aq,) G
& Cl.

Choose) < 6 < ¢ < o, then we can get an estimate of the time [feft)|| to evolve froma ||y (t;)||2

(1) (70)

to oy(t;) |2 and froma||y(t;)|2 to ol|y(t;)||2, if we denote them by ande;™ respectively, then one
could verify thatr ands;™ are given by (53) and (56) respectively. Notice that for any ¢ < 6 < o,

we haver > 0 ande;” > 0.
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So, a tight bound of\; is given by

A; = min[e;, ], (71)

07
and the corresponding estimate of the time for the sensoetidhg next new measurement is given

by
tiv1 =ti + A +T. (72)

Since we choosé < ¢ < ¢ < o, then by applying the proposed scheduling strategy in Téradz,
we can guarantee (59) is satisfied thug:) < 0,V¢ > 0. Then we can conclude that the closed-loop
system is asymptotically stable sinkg is ZSD andXx is £- stable.l

Remark 5: For linear passive system, consider the model of the plarmgngby >, and the feed-

forward uncertainty given bya:

& = Az + Bu 7= Az + Bu
o DIV (73)

y=Cuz, j=Ci.
We assumet, is a Lo stable system with finiteC, gainI'. Fort € [t;,t; + A;), we havee(t) =

y(t) —y(t;—1) andé(t) = y(t) — y(t;), and we can obtain

%Hé(t)!b < lle@®llz = llg@)ll2 < [5O12 + lgo(t)ll2
(74)

= |CAz + CBulls + |C Az + CBuls,

. T AT AT 1 A A ST AT AT A F) S
if ICAz|l> _ (2T ATCTCAx)2 <G and ICAZ|, _ (TATCTCAZ)2 < (o then we can get for ¢

l[yoll2 (xTCTCx)? 91l (ZTCTCF):
[ti ti + A;) p
1€z = Gllgllz + [CBull2 + Giliyollz + |CBully
< Glllullz2 + [CBullz + Gilly = gll2 + |CBull2 (75)
< Chlléllz + Co,

Where01 = Cl, CQ = K(C1F + CQF + HC’BHQ + HCBHQ)Hy(tl_l)HQ + ClHy(ti)HQ- Fort € [tz‘ +
A tiv1 + A1), we havee(t) = y(t) — y(t;), and we can verify that

d -
EHe(t)Hz < Chléfl2 + Cs. (76)

whereCs = [K(GT + &I + |CBll2 + |CBJ2) + ¢i]|ly(t:)|l2- So in this case, we can still obtain
7, ¢ ande; as shown in (53),(55) and (568

Remark 6: One may remark that assumptions 1)-3) in Theorem 2 are oatse. However, for some
cases, these assumptions can be relaxgghifz < po1 ||voll2 + pozllell2 and||Fllz < b1 |72 + B2l e]|2,

for some constan® < py1,pe2 < oo and0 < py1,pe < oo, and similar self-triggered scheduling
strategy can still be obtained. Also in this caggandy do not need to have the same dimension as

z andz.l
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V. EXAMPLE
Example 1. Consider the model of the plant which is a linear passiveesygjiven by
£1(t) = =51 (t) — 22(t)
S i Q do(t) = —xo(t) + u(t) (77)

y(t) = wa(t),

assume its feedback uncertainty is given by
21(t) = Ta(t)
YA Zo(t) = —add(t) — bEa(t) + a(t), (a>0,b>0) (78)
y(t) = Ta(t).
If we chooseV (z) = 423 for the systent,, then we have
V(x) = Ty = (—x2 + u)xe = UY — v, (79)

S0y, is passive, also notice that it is ZSD. If we chod$gr) = tait + 13, we have

V(&) = —by” + ag, (80)
One could verify that the finite; gain of 4 is ¢.
Fort € [t; + A, tiv1 + Aita], we haveu(t) = —Ky(t;) — y(t), and we can obtain
V(z) < [-Ky(t:) — 5] y(t) = = Ky(t:)"y(t) = §6)"y(t)
= —Kly(t) —e®)] y(t) = (1) y(1)
= —Kyt)Ty(t) + Ke(t)y(t) — 5(t)"y(t) (81)
< —Klly®)3 + Klle®ll2lly@)ll2 + [5E)ll2lly ()]l

< —Klly®3 + Klle®ll2ly®)ll2 + %Ily(t)llg,

so the stabilization condition is given by

_1
b

le(®)]l2 < ly(@®)]l2, vt = 0. (82)
In this case, we can get fare [t;,t; + A;),

%Hé(t)Hz < [le®llz = 9@ 2 = llz2ll2

) ) (83)
< (1+ g) [1€ll2 + (1 + g) ly(E)llz + Klly(ti-1)l2,
and fort € [t; + As, tiv1 + Aiy1), We have
d . .
g le@ll2 < lle(®)lz = llg(®)ll2 = l|z2[l2
(84)

1 1
< (143 llella + (14 5 + K)lly(t)l2,
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thus we can obtain
(1+3)ally(to)ll

€ = In +1], (85)
L+ [(1+%)Hy(ti)HQ+KHy(tz~_1)Hg ]
K—1
L1 I+ +1+3+K
g = —In] —— 1, (86)
1+ 3 A4+3)0+1+¢:+K
and 1 1
! I+ +1+3+K
T= [ ] (87)
1+3 "(I+5)0+1+3+K

(Notice that in this example, the outpytdose not belongs to a bounded sector of the full-state,
belongs to a bounded sector #f, while the unobservable statg is ZSD. However, we can get
l9ll2 < pillyll2 + p2|lel|e for some constan®d < p; < co and0 < py < oo, as what we have
mentioned in Remark 4, so assumptions 1)- 3) in Theorem leda®ad in this case.)
The simulation result fob = 10, K = 3, ¢ = 0.05, 6 = 0.2324 and o = 0.2824 is shown

in Fig.4, whereo(t) shows the evolution o%, [ti ., — t;] shows the evolution of the inter-
sampling time|e(¢)| shows the evolution dfy(t)—y(t;)||2. Based on (85), (86) and (87), we conclude
that the inter-sampling time should be larger than 0.090Bs admissible actuation update delay
A; > 0.0121s(in simulation, actuation update delay is generated froenuhiform distribution on the

interval [0, 0.0121]), stability of the closed-loop syst&serified from the simulation results.

0.8 15
0.6
. ___] _ 1
T 04 i
0.5
v W/\/WW\/WL
o LM
0 0.5 1 15 0 0.5 1 15
t(s) t(s)
0.1 2%
@ 0 T teeresnsnasssssssanssnsns
- X %
T‘;‘ 0.05 g . - _xl(t)
— - /
& . - e =X,(0)
0 -4
0 0.5 1 15 0 0.5 1 15

) ' )

Fig. 4: simulation result of Example 1
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Example 2. Consider the model of the plant which is given by
t1(t) = =323 (t) + 21 (t)22(t)
E0 : i?z(t) = 3x9 (t) + 2u(t) (88)

y(t) = x2(),
assume its feedback uncertainty is given by

z1(t) = #2()

YA Q Zo(t) = —adi(t) — bEa(t) +a(t), (a>0,b>0) (89)

We can see that, is ZSD but unstable. If we choose the storage funclit) = ix% for X,, we

can get

V(z) = uy + 1.54°. (90)
From example 1, we know that if we choose the storage fundfigh) = Laz}+ 133 for Z, then
we could verify that>A has finite£, gain % Based on Remark 3 , we need to chodéSe- 1.5+ %

K-1.5—1
2K—1.5—1"

In this case, we can get fare [t;,t; + A;),

and0 <o <<

%Hé(t)Hz <lle@llz = g2 = [l=2[l2

5 5 (91)
< (34 )lellz+ (34 3) ly(t)ll2 + 2K y(tia) 2.
and fort € [t; + Ay, tiv1 + Aiy1), we have
d . .
S le@ll2 < lle®)lz = [9(t)ll2 = llz2[l2 ©2)
2 2
< B+ ) llella + 3+ 3 +2K) [ly(t:)ll2,
thus we can obtain
1 3+ eyt
3+3 "B+ Dyl +2K][yti—1)ll2
K—-15-4%
1 B+ 3 g +3+7+2K
5;_ - D) h]- 2N ~ - 2 ]a (94)
3+ % (3+%)6+3+%+2K
and , ,
1 3+%)0+3+4%+2K
S SN A LA ShS ALil] (95)
342 'B+3)5+3+242K

Choosea = 3, b =10, K = 2.6, & = 0.05, 6 = 0.2278 ando = 0.2778 is shown in Fig.5. Based
on (93), (94) and (95), we conclude that the inter-samplinge tshould be larger than 0.0201s with
actuation update delag; > 0.0054s(in simulation, actuation update delay is generated from th
uniform distribution on the interval [0, 0.0054]), stabjliof the closed-loop system is verified from

the simulation results.
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Fig. 5: simulation result of Example 2
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VI. CONCLUSION

In this paper, we propose a robust self-triggered real-sieteeduling strategy for stabilization of
passive/output feedback passive systems. We assume ¢hatoithel of the plant is passive or output
feedback passive, and we assume that the structure umtgrisia Lo stable dynamic system in
a feedback/feedforward interconnection with the modelhef plant. We derived the self-triggered
real-time scheduling strategies for both cases and we Haweshown that the inter-sampling time
under the proposed scheduling strategy is strictly pas#ind the admissible actuation update delay

is nontrivial. Simulation results are also provided.
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